

Coarse Grained Simulation and Turbulent Mixing

Small-scale turbulent flow dynamics is traditionally viewed as universal and as enslaved to that of larger scales. In coarse grained simulation (CGS), large energy-containing structures are resolved, smaller structures are spatially filtered out, and unresolved subgrid scale effects are modeled. *Coarse Grained Simulation and Turbulent Mixing* reviews our understanding of CGS. Beginning with an introduction to the fundamental theory, the discussion then moves to the crucial challenges of predictability. Next, it addresses verification and validation, the primary means of assessing accuracy and reliability of numerical simulation. The final part reports on the progress made in addressing difficult nonequilibrium applications of timely current interest involving variable density turbulent mixing.

The book will be of fundamental interest to graduate students, research scientists, and professionals involved in the design and analysis of complex turbulent flows.

Fernando F. Grinstein is a scientist at the X-Computational Physics Division of the Los Alamos National Laboratory. He is a world leader in issues of large eddy simulation (LES) of turbulent material mixing physics in complex multidisciplinary applications. He has led integration efforts of the pioneers of the implicit LES techniques in workshops and special meetings worldwide, and in the first comprehensive description of the methodology, *Implicit LES: Computing Turbulent Flow Dynamics*, written with Len Margolin and William Rider.

Coarse Grained Simulation and Turbulent Mixing

FERNANDO F. GRINSTEIN

Los Alamos National Laboratory

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107137042

© Cambridge University Press & Assessment 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2016

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data

Names: Grinstein, Fenando F., editor.

Title: Coarse grained simulation and turbulent mixing / edited by Fernando F. Grinstein,

Los Alamos National Laboratory.

Description: New York, NY : Cambridge University Press, [2016] | @2016 |

Includes bibliographical references and index.

Identifiers: LCCN 2015042013| ISBN 9781107137042 (Hardback; alk. paper) |

ISBN 1107137047 (Hardback; alk. paper) Subjects: LCSH: Turbulence. | Fluid dynamics.

Classification: LCC TA357.5.T87 C53 2016 | DDC 532/.0527-dc23 LC

record available at http://lccn.loc.gov/2015042013

ISBN 978-1-107-13704-2 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To Julia and Frederic, and to the many contributors to this volume.

Contents

	List of Contributors Preface	<i>page</i> ix xi
	Prologue: Introduction to Coarse Grained Simulation <i>Fernando F. Grinstein</i>	1
Part I F	undamentals	13
1	Proof of Concept: Enslaved Turbulent Mixing Fernando F. Grinstein and Adam J. Wachtor	15
2	A Minimum Turbulence State for Coarse Grained Simulation <i>Ye Zhou</i>	30
3	Finite Scale Theory: Compressible Hydrodynamics at Second Order Len G. Margolin	48
4	Material Conservation of Passive Scalar Mixing in Finite Scale Navier Stokes Fluid Turbulence J. Raymond Ristorcelli	87
Part II(Challenges	105
5	Subgrid and Supergrid Modeling Fernando F. Grinstein	107
6	Cloud Modeling: An Example of Why Small Scale Details Matter for Accurate Prediction Jon Reisner	134
7	Verification, Validation, and Uncertainty Quantification for Coarse Grained Simulation <i>William J. Rider, James R. Kamm, and V. Gregory Weirs</i>	168

Vİİ

viii Table of Contents

Part III	Complex Mixing Consequences	191
8	Shock Driven Turbulence Fernando F. Grinstein, Akshay A. Gowardhan, and J. Raymond Ristorcelli	193
9	Laser Driven Turbulence in High Energy Density Physics and Inertial Confinement Fusion Experiments Brian M. Haines, Fernando F. Grinstein, Leslie Welser–Sherrill, and James R. Fincke	232
10	Drive Asymmetry, Convergence, and the Origin of Turbulence in Inertial Confinement Fusion Implosions Vincent A. Thomas and Robert J. Kares	282
11	Rayleigh-Taylor Driven Turbulence Nicholas A. Denissen, Jon Reisner, Malcolm J. Andrews, and Bertrand Rollin	325
12	Spray Combustion in Swirling Flow Suresh Menon and Reetesh Ranjan	351
13	Combustion in Afterburning Behind Explosive Blasts Ekaterina Fedina, Kalyana C. Gottiparthi, Christer Fureby, and Suresh Menon	393
	Epilogue: Vision for Coarse Grained Simulation <i>Fernando F. Grinstein</i>	432
	Index	443
	Color plate section between pages 212 and 213	

Contributors

Malcolm J. Andrews

Los Alamos National Laboratory

Nicholas A. Denissen

Los Alamos National Laboratory

Ekaterina Fedina

Swedish Defense Research Agency

James R. Fincke

Los Alamos National Laboratory

Christer Fureby

Swedish Defense Research Agency

Kalyana C. Gottiparthi

School of Aerospace Engineering, Georgia Institute of Technology

Akshay A. Gowardhan

Lawrence Livermore National Laboratory

Fernando F. Grinstein

Los Alamos National Laboratory

Brian M. Haines

Los Alamos National Laboratory

James R. Kamm

Los Alamos National Laboratory

Robert J. Kares

Los Alamos National Laboratory

Contributors

Len G. Margolin

Los Alamos National Laboratory

Suresh Menon

School of Aerospace Engineering, Georgia Institute of Technology

Reetesh Ranjan

School of Aerospace Engineering, Georgia Institute of Technology

Jon Reisner

Los Alamos National Laboratory

William J. Rider

Sandia National Laboratories

J. Raymond Ristorcelli

Los Alamos National Laboratory

Bertrand Rollin

Department of Aerospace Engineering, University of Florida

Vincent A. Thomas

Los Alamos National Laboratory

Adam J. Wachtor

Los Alamos National Laboratory

V. Gregory Weirs

Sandia National Laboratories

Leslie Welser-Sherrill

Los Alamos National Laboratory

Ye 7hoi

Lawrence Livermore National Laboratory

Preface

The small scale turbulent flow dynamics is traditionally viewed as universal and enslaved to that of larger scales. In coarse grained simulation (CGS) large energy containing structures are resolved, smaller structures are spatially filtered out, and unresolved subgrid scale (SGS) effects are modeled. CGS includes classical large eddy simulation (LES) strategies focusing on explicit SGS models, implicit LES (ILES) relying on SGS modeling and filtering provided by physics capturing numerical algorithms, and, more generally, LES combining mixed explicit/implicit SGS modeling. The CGS strategy of separating resolved/unresolved physics constitutes the viable approach to address complex transition, unsteady flow, and multiphysics in practical geometries.

The validity of the scale separation assumptions in CGS needs to be carefully tested when potentially important SGS flow physics is involved, specifically, for turbulent material mixing – the underlying focus of the book. Fundamental CGS issues receiving special dedicated attention, include: (1) coupling convectively driven flow with relevant other physics – for example, with material mixing and combustion; (2) inherent sensitivities of turbulent flow to initial conditions; and (3) capturing complex turbulent mixing consequences. The book reviews our understanding of CGS, its theoretical basis, verification, validation, predictability aspects, and reports progress in difficult nonequilibrium applications of timely current interest involving variable density turbulent mixing.

The research surveyed here was supported by many sponsors. It is a pleasure to specially acknowledge the support from the Los Alamos National Laboratory Laboratory Directed Research and Development (LDRD) Program on "Turbulence by Design," and the LDRD Exploratory Research Program on "LES Modeling for Predictive Simulations of Material Mixing."

Fernando F. Grinstein