Wildlife Disease Ecology

Linking Theory to Data and Application

Just like humans, animals and plants suffer from infectious diseases, which can critically threaten biodiversity. This book describes key studies that have driven our understanding of the ecology and evolution of wildlife diseases. Each chapter introduces the host and disease, and explains how that system has aided our general understanding of the evolution and spread of wildlife diseases, through the development and testing of important epidemiological and evolutionary theories.

Questions addressed include: How do hosts and parasites coevolve? What determines how fast a disease spreads through a population? How do coinfecting parasites interact? Why do hosts vary in parasite burden? Which factors determine parasite virulence and host resistance? How do parasites influence the spread of invasive species? How do we control infectious diseases in wildlife? This book will provide a valuable introduction to students new to the topic, and novel insights to researchers, professionals, and policymakers working in the field.

KENNETH WILSON is Professor of Evolutionary Ecology at Lancaster University, UK. With more than 25 years' experience in studying wildlife disease ecology, he has published more than 120 peer-reviewed articles and chapters, and is Senior Editor of *Journal of Animal Ecology*.

ANDY FENTON is Professor of Theoretical Ecology at the University of Liverpool, UK. He is on the Editorial Boards of *Journal of Animal Ecology* and *Parasitology*.

DAN TOMPKINS is Project Manager Science Strategy at Predator Free 2050 Ltd, Auckland, and Honorary Professor in the Department of Zoology, University of Otago, New Zealand.

Cambridge University Press 978-1-107-13656-4 — Wildlife Disease Ecology Edited by Kenneth Wilson , Andy Fenton , Dan Tompkins Frontmatter <u>More Information</u>

Ecological Reviews

SERIES EDITOR Philip Warren University of Sheffield, UK SERIES EDITORIAL BOARD Andrea Baier British Ecological Society, UK Mark Bradford Yale University, USA David Burslem University of Aberdeen, UK Alan Gray CEH Wallingford, UK Kate Harrison British Ecological Society, UK Sue Hartley University of York, UK Mark Hunter University of Michigan, USA Ivette Perfecto University of Michigan, USA Heikki Setala University of Helsinki, Finland

Ecological Reviews publishes books at the cutting edge of modern ecology, providing a forum for volumes that discuss topics that are focal points of current activity and likely long-term importance to the progress of the field. The series is an invaluable source of ideas and inspiration for ecologists at all levels from graduate students to more-established researchers and professionals. The series has been developed jointly by the British Ecological Society and Cambridge University Press and encompasses the Society's Symposia as appropriate.

Biotic Interactions in the Tropics: Their Role in the Maintenance of Species Diversity Edited by David F. R. P. Burslem, Michelle A. Pinard and Sue E. Hartley

Biological Diversity and Function in Soils Edited by Richard Bardgett, Michael Usher and David Hopkins

Island Colonization: The Origin and Development of Island Communities By Ian Thornton Edited by Tim New

Scaling Biodiversity Edited by David Storch, Pablo Margnet and James Brown

Body Size: The Structure and Function of Aquatic Ecosystems Edited by Alan G. Hildrew, David G. Raffaelli and Ronni Edmonds-Brown

Speciation and Patterns of Diversity Edited by Roger Butlin, Jon Bridle and Dolph Schluter

Ecology of Industrial Pollution Edited by Lesley C. Batty and Kevin B. Hallberg

Ecosystem Ecology: A New Synthesis Edited by David G. Raffaelli and Christopher L. J. Frid

Urban Ecology Edited by Kevin J. Gaston

> *The Ecology of Plant Secondary Metabolites: From Genes to Global Processes* Edited by Glenn R. Iason, Marcel Dicke and Susan E. Hartley

Birds and Habitat: Relationships in Changing Landscapes Edited by Robert J. Fuller

Trait-Mediated Indirect Interactions: Ecological and Evolutionary Perspectives Edited by Takayuki Ohgushi, Oswald Schmitz and Robert D. Holt

Forests and Global Change Edited by David A. Coomes, David F. R. P. Burslem and William D. Simonson

Trophic Ecology: Bottom-Up and Top-Down Interactions across Aquatic and Terrestrial Systems

Edited by Torrance C. Hanley and Kimberly J. La Pierre

Conflicts in Conservation: Navigating Towards Solutions Edited by Stephen M. Redpath, R. J Gutiérrez, Kevin A. Wood and Juliette C. Young

Peatland Restoration and Ecosystem Services Edited by Aletta Bonn, Tim Allott, Martin Evans, Hans Joosten and Rob Stoneman

Rewilding Edited by Nathalie Pettorelli, Sarah M. Durant and Johan T. du Toit

Grasslands and Climate Change Edited by David J. Gibson and Jonathan A. Newman

Agricultural Resilience: Perspectives from Ecology and Economics Edited by Sarah M. Gardner, Stephen J. Ramsden and Rosemary S. Hails

Cambridge University Press 978-1-107-13656-4 — Wildlife Disease Ecology Edited by Kenneth Wilson , Andy Fenton , Dan Tompkins Frontmatter <u>More Information</u>

Cambridge University Press 978-1-107-13656-4 — Wildlife Disease Ecology Edited by Kenneth Wilson , Andy Fenton , Dan Tompkins Frontmatter <u>More Information</u>

Wildlife Disease Ecology

Linking Theory to Data and Application

Edited by

KENNETH WILSON Lancaster University

ANDY FENTON University of Liverpool

DAN TOMPKINS Predator Free 2050 Ltd

Cambridge University Press 978-1-107-13656-4 — Wildlife Disease Ecology Edited by Kenneth Wilson , Andy Fenton , Dan Tompkins Frontmatter <u>More Information</u>

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107136564 DOI: 10.1017/9781316479964

© British Ecological Society 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2019

Printed in the United Kingdom by TJ International Ltd, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Wilson, Kenneth, 1963- editor.

Title: Wildlife disease ecology : linking theory to data and application / edited by Kenneth Wilson, Lancaster University, Andy Fenton, University of Liverpool, Dan Tompkins, Predator Free 2050 Ltd.

Description: Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2019. | Series: Ecological reviews | Includes bibliographical references and index. Identifiers: LCCN 2019012298 | ISBN 9781107136564 (alk. paper) Subjects: LCSH: Communicable diseases. Classification: LCC RC112 .W54 2019 | DDC 616.9-dc23 LC record available at https://lccn.loc.gov/2019012298

ISBN 978-1-107-13656-4 Hardback ISBN 978-1-316-50190-0 Paperback

Additional resources for this publication at www.cambridge.org/9781107136564.

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List of Contributors	page x
Preface: Wildlife Disease Ecology	xix
KENNETH WILSON, ANDY FENTON & DAN TOMPKINS	
Glossary of Terms	xxiv
ANDY FENTON, DAN TOMPKINS AND KENNETH WILSON	
PART I UNDERSTANDING WITHIN-HOST PROCESSES	1
1 Pollinator diseases: the Bombus-Crithidia system	3
Paul Schmid-Hempel, Lena Wilfert and Regula Schmid-Hempel	
2 Genetic diversity and disease spread: epidemiological models and	
empirical studies of a snail-trematode system	32
Amanda K. Gibson and Curtis M. Lively	
3 Wild rodents as a natural model to study within-host parasite	
interactions	58
Amy B. Pedersen and Andy Fenton	
4 From population to individual host scale and back again: testing	
theories of infection and defence in the Soay sheep of St Kilda	91
Adam D. Hayward, Romain Garnier, Dylan Z. Childs, Bryan T. Grenfell,	
Kathryn A. Watt, Jill G. Pilkington, Josephine M. Pemberton and Andrea L.	
Graham	
5 The causes and consequences of parasite interactions:	
African buffalo as a case study	129
Vanessa O. Ezenwa, Anna E. Jolles, Brianna R. Beechler, Sarah A.	
Budischak and Erin E. Gorsich	
6 Effects of host lifespan on the evolution of age-specific resistance:	
a case study of anther-smut disease on wild carnations	161
Emily Bruns	
7 Sexually transmitted infections in natural populations:	
what have we learnt from beetles and beyond?	187
Ben Ashby, Jordan E. Jones, Robert J. Knell and Gregory D.D. Hurst	

Cambridge University Press 978-1-107-13656-4 — Wildlife Disease Ecology Edited by Kenneth Wilson , Andy Fenton , Dan Tompkins Frontmatter <u>More Information</u>

viii contents

	PART II UNDERSTANDING BETWEEN-HOST PROCESSES	223
8	Using insect baculoviruses to understand how population	
	structure affects disease spread	225
	Bret D. Elderd and Greg Dwyer	
9	Infection and invasion: study cases from aquatic communities	262
	Melanie J. Hatcher, Jaimie T.A. Dick, Jamie Bojko, Grant D. Stentiford,	
	Paul Stebbing and Alison M. Dunn	
10	Parasite-mediated selection in red grouse - consequences for	
	population dynamics and mate choice	296
	Jesús Martínez-Padilla, Marius Wenzel, François Mougeot, Lorenzo	
	Pérez-Rodríguez, Stuart Piertney and Stephen M. Redpath	
11	Emergence, transmission and evolution of an uncommon enemy:	
	Tasmanian devil facial tumour disease	321
	Menna E. Jones, Rodrigo Hamede, Andrew Storfer, Paul Hohenlohe,	
	Elizabeth P. Murchison and Hamish McCallum	
12	Bovine tuberculosis in badgers: sociality, infection and	
	demography in a social mammal	342
	Jenni L. McDonald, Richard J. Delahay and Robbie A. McDonald	
13	Mycoplasma ovipneumoniae in bighorn sheep: from exploration to	
	action	368
	Kezia Manlove, Emily S. Almberg, Pauline L. Kamath, Raina K. Plowright,	
	Thomas E. Besser and Peter J. Hudson	
14	Manipulating parasites in an Arctic herbivore: gastrointestinal	
	nematodes and the population regulation of Svalbard reindeer	397
	R. Justin Irvine, Steve D. Albon, Audun Stien, Odd Halvorsen and Anja M.	
	Carlsson	
	PART III UNDERSTANDING WILDLIFE DISEASE ECOLOGY AT THE	
	COMMUNITY AND LANDSCAPE LEVEL	427
15	The ecological and evolutionary trajectory of oak powdery	
	mildew in Europe	429
	Marie-Laure Desprez-Loustau, Frédéric M. Hamelin and Benoit Marçais	
16	Healthy herds or predator spreaders? Insights from the plankton	
	into how predators suppress and spread disease	458
	Meghan A. Duffy, Carla E. Cáceres and Spencer R. Hall	
17	Multi-trophic interactions and migration behaviour determine	
	the ecology and evolution of parasite infection in monarch	
	butterflies	480
	Jacobus C. de Roode, Sonia Altizer and Mark D. Hunter	

Cambridge University Press 978-1-107-13656-4 — Wildlife Disease Ecology Edited by Kenneth Wilson , Andy Fenton , Dan Tompkins Frontmatter <u>More Information</u>

18	When chytrid fungus invades: integrating theory and data to	
	understand disease-induced amphibian declines	511
	Mark Q. Wilber, Pieter T.J. Johnson and Cheryl J. Briggs	
19	Ecology of a marine ectoparasite in farmed and wild salmon	544
	Stephanie J. Peacock, Andrew W. Bateman, Brendan Connors, Sean Godwin,	
	Mark A. Lewis and Martin Krkošek	
20	Mycoplasmal conjunctivitis in house finches: the study of an	
	emerging disease	574
	André A. Dhondt, Andrew P. Dobson and Wesley M. Hochachka	
21	Processes generating heterogeneities in infection and transmission	
	in a parasite-rabbit system	598
	Isabella M. Cattadori, Ashutosh Pathak and Brian Boag	
22	Sylvatic plague in Central Asia: a case study of abundance	
	thresholds	623
	Mike Begon, Stephen Davis, Anne Laudisoit, Herwig Leirs and Jonas Reijniers	
Inde	X	644

Colour plates can be found between pages 316 and 317.

Contributors

STEVE D. ALBON Ecological Sciences The James Hutton Institute Aberdeen UK steve.albon@hutton.ac.uk

EMILY S. ALMBERG Montana Fish, Wildlife and Parks Bozeman MT USA ealmberg@mt.gov

SONIA ALTIZER Odum School of Ecology University of Georgia Athens GA USA saltizer@uga.edu

BEN ASHBY Mathematical Sciences University of Bath Bath UK b.n.ashby@bath.ac.uk

ANDREW W. BATEMAN Department of Geography University of Victoria Victoria Canada andrew.w.bateman@uvic.ca

BRIANNA R. BEECHLER College of Veterinary Medicine Oregon State University Corvallis OR USA brianna.beechler@oregonstate.edu

MIKE BEGON Department of Evolution, Ecology and Behaviour University of Liverpool Liverpool UK mbegon@liv.ac.uk

THOMAS E. BESSER Veterinary Microbiology and Pathology Washington State University Pullman WA USA tbesser@vetmed.wsu.edu

BRIAN BOAG The James Hutton Institute Invergowrie UK Brian.Boag@hutton.ac.uk

Cambridge University Press 978-1-107-13656-4 — Wildlife Disease Ecology Edited by Kenneth Wilson , Andy Fenton , Dan Tompkins Frontmatter <u>More Information</u>

LIST OF CONTRIBUTORS XI

JAMIE BOJKO School of Biology University of Leeds Leeds UK jamie.bojko@ufl.edu

CHERYL J. BRIGGS Ecology, Evolution and Marine Biology University of California, Santa Barbara Santa Barbara CA USA cherie.briggs@lifesci.ucsb.edu

EMILY BRUNS Department of Biology University of Maryland College Park MD USA ebruns@umd.edu

SARAH A. BUDISCHAK Keck Science Department Claremont McKenna, Pitzer, and Scripps Colleges Claremont CA USA sbudischak@kecksci.claremont.edu

CARLA E. CÁCERES Department of Animal Biology University of Illinois Urbana IL USA caceres@life.illinois.edu

ANJA M. CARLSSON

Department of Environmental Research and Monitoring Swedish Museum of Natural History Stockholm Sweden anja.carlsson@nrm.se

ISABELLA M. CATTADORI Center for Infectious Disease Dynamics The Pennsylvania State University University Park PA USA imc3@psu.edu

DYLAN Z. CHILDS Department of Animal and Plant Sciences University of Sheffield Sheffield UK d.childs@sheffield.ac.uk

BRENDAN CONNORS Fisheries and Oceans Canada Sidney Canada brendan.connors@dfo-mpo.gc.ca

STEPHEN DAVIS School of Mathematical and Geospatial Sciences RMIT University Melbourne Australia stephen.davis@rmit.edu.au

RICHARD J. DELAHAY National Wildlife Management Centre Animal and Plant Health Agency Woodchester Park

XII LIST OF CONTRIBUTORS

Nympsfield UK Dez.Delahay@apha.gov.uk MARIE-LAURE DESPREZ-LOUSTAU **UMR Biogeco** INRA, Université Bordeaux Pierroton France marie-laure.desprez-loustau@inra.fr ANDRÉ A. DHONDT Laboratory of Ornithology **Cornell University** Ithaca NY USA aad4@cornell.edu JAIMIE T.A. DICK School of Biological Sciences Queen's University, Belfast Belfast UK j.dick@qub.ac.uk ANDREW P. DOBSON Department of Biology and **Evolutionary Ecology** Princeton University Princeton NJ USA dobber@princeton.edu MEGHAN A. DUFFY Department of Ecology and **Evolutionary Biology** University of Michigan Ann Arbor MI USA duffymeg@umich.edu ALISON M. DUNN

School of Biology & water@leeds University of Leeds Leeds UK a.dunn@leeds.ac.uk GREG DWYER Department of Ecology and

Department of Ecology and Evolution University of Chicago Chicago IL USA gdwyer@uchicago.edu

BRET D. ELDERD Department of Biological Sciences Louisiana State University Baton Rouge LA USA elderd@lsu.edu

VANESSA O. EZENWA Odum School of Ecology and Department of Infectious Diseases University of Georgia Athens GA USA vezenwa@uga.edu

ANDY FENTON Institute of Integrative Biology University of Liverpool Biosciences Building Liverpool UK a.fenton@liverpool.ac.uk

ROMAIN GARNIER Department of Veterinary Medicine University of Cambridge Cambridge

Cambridge University Press 978-1-107-13656-4 — Wildlife Disease Ecology Edited by Kenneth Wilson , Andy Fenton , Dan Tompkins Frontmatter <u>More Information</u>

UK

LIST OF CONTRIBUTORS XIII

rg535@cam.ac.uk AMANDA K. GIBSON Biology Department University of Virginia Charlottesville VA USA akg5nq@virginia.edu

SEAN GODWIN Department of Biological Sciences Simon Fraser University Burnaby Canada sgodwin@sfu.ca

ERIN E. GORSICH School of Life Sciences & the Zeeman Institute University of Warwick Coventry UK erin.gorsich@warwick.ac.uk

ANDREA L. GRAHAM Department of Ecology and Evolutionary Biology Princeton University NJ USA algraham@princeton.edu

BRYAN T. GRENFELL Department of Ecology and Evolutionary Biology Princeton University Princeton NJ USA grenfell@princeton.edu

SPENCER R. HALL Department of Biology

Indiana University Bloomington IN USA sprhall@indiana.edu ODD HALVORSEN Natural History Museum University of Oslo Oslo Norway odd.halvorsen@nhm.uio.no RODRIGO HAMEDE School of Natural Sciences University of Tasmania Hobart Australia rodrigo.hamedeross@utas.edu.au FRÉDÉRIC M. HAMELIN IGEPP Agrocampus Ouest INRA Université de Rennes 1, Université Bretagne-Loire Rennes France Frederic.hamelin@agrocampusouest.fr MELANIE J. HATCHER School of Biology University of Leeds Leeds UK m.j.hatcher@btinternet.com ADAM D. HAYWARD

Moredun Research Institute Penicuik Midlothian UK adam.hayward@moredun.ac.uk

Cambridge University Press 978-1-107-13656-4 — Wildlife Disease Ecology Edited by Kenneth Wilson , Andy Fenton , Dan Tompkins Frontmatter <u>More Information</u>

XIV LIST OF CONTRIBUTORS

WESLEY M. HOCHACHKA Laboratory of Ornithology Cornell University Ithaca NY USA wmh6@cornell.edu PAUL HOHENLOHE Department of Biological Sciences University of Idaho Moscow ID USA hohenlohe@uidaho.edu PETER J. HUDSON Center for Infectious Disease **Dynamics** Pennsylvania State University University Park PA USA pjh18@psu.edu MARK D. HUNTER Department of Ecology and **Evolutionary Biology** University of Michigan Ann Arbor MI USA mdhunter@umich.edu GREGORY D.D. HURST Institute of Integrative Biology University of Liverpool Liverpool UK G.Hurst@liverpool.ac.uk **R. JUSTIN IRVINE**

Ecological Sciences James Hutton Institute Aberdeen UK justin.irvine@hutton.ac.uk

PIETER T.J. JOHNSON Ecology and Evolutionary Biology University of Colorado Boulder CO USA pieter.johnson@colorado.edu

ANNA E. JOLLES College of Veterinary Medicine and Department of Integrative Biology Oregon State University Corvallis OR USA jollesa@science.oregonstate.edu

JORDAN E. JONES Institute of Integrative Biology University of Liverpool Liverpool UK jordan.jones@liverpool.ac.uk

MENNA E. JONES School of Natural Sciences University of Tasmania Hobart Australia Menna.Jones@utas.edu.au

PAULINE L. KAMATH School of Food and Agriculture University of Maine Orono ME USA pauline.kamath@maine.edu

ROBERT J. KNELL School of Biological and Chemical Sciences

Cambridge University Press 978-1-107-13656-4 — Wildlife Disease Ecology Edited by Kenneth Wilson , Andy Fenton , Dan Tompkins Frontmatter <u>More Information</u>

LIST OF CONTRIBUTORS XV

Queen Mary University of London London UK r.knell@qmul.ac.uk

MARTIN KRKOŠEK Department of Ecology and Evolutionary Biology University of Toronto Toronto Canada martin.Krkošek@utoronto.ca

ANNE LAUDISOIT Department of Biology University of Antwerp Antwerp Belgium anne.laudisoit@uantwerpen.be

HERWIG LEIRS Department of Biology University of Antwerp Antwerp Belgium herwig.leirs@uantwerpen.be

MARK A. LEWIS Department of Biological Sciences University of Alberta Edmonton Canada mark.lewis@ualberta.ca

CURTIS M. LIVELY Department of Biology Indiana University Bloomington IN USA clively@indiana.edu

KEZIA MANLOVE Department of Woodland Resources and Ecology Center Utah State University Logan UT USA kezia.manlove@usu.edu

BENOIT MARÇAIS UMR IAM INRA, Université de Lorraine Seichamps France benoit.marcais@inra.fr

JESÚS MARTÍNEZ-PADILLA Department of Biodiversity, Conservation and Ecosystem Restoration Biodiversity Conservation Group Pyrenean Institute of Ecology (CSIC) Jaca Spain jmartinezpadilla12@gmail.com

HAMISH MCCALLUM Griffith School of the Environment Griffith University Brisbane Australia h.mccallum@griffith.edu.au

JENNI L. MCDONALD Centre for Ecology and Conservation University of Exeter Penryn UK jennifer.mcdonald@cats.org.uk

ROBBIE A. MCDONALD Environment and Sustainability Institute University of Exeter Penryn UK r.mcdonald@exeter.ac.uk

Cambridge University Press 978-1-107-13656-4 — Wildlife Disease Ecology Edited by Kenneth Wilson , Andy Fenton , Dan Tompkins Frontmatter <u>More Information</u>

XVI LIST OF CONTRIBUTORS

FRANÇOIS MOUGEOT Department of Ecology Institute for Game and Wildlife Research Ciudad Real Castilla-La Mancha Spain Francois.Mougeot@uclm.es

ELIZABETH P. MURCHISON Department of Veterinary Medicine University of Cambridge Cambridge UK epm27@cam.ac.uk

ASHUTOSH PATHAK Department of Infectious Diseases The University of Georgia Athens GA USA ash1@uga.edu

STEPHANIE J. PEACOCK Department of Biological Sciences University of Calgary Calgary Canada stephaniepeacock@ucalgary.ca

AMY B. PEDERSEN Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK amy.pedersen@ed.ac.uk

JOSEPHINE M. PEMBERTON Institute of Evolutionary Biology, University of Edinburgh Edinburgh UK j.pemberton@ed.ac.uk

LORENZO PÉREZ-RODRÍGUEZ Department of Ecology Institute for Game and Wildlife Research Ciudad Real Castilla-La Mancha Spain lorenzo.perez@uclm.es

STUART PIERTNEY School of Biological Sciences University of Aberdeen Aberdeen UK s.piertney@abdn.ac.uk

JILL G. PILKINGTON Institute of Evolutionary Biology University of Edinburgh Edinburgh UK j.pilkington@ed.ac.uk

RAINA K. PLOWRIGHT Department of Microbiology and Immunology Montana State University Bozeman MT USA raina.plowright@montana.edu

STEPHEN M. REDPATH School of Biological Sciences University of Aberdeen Aberdeen UK s.redpath@abdn.ac.uk

JONAS REIJNIERS Department of Biology University of Antwerp

Cambridge University Press 978-1-107-13656-4 — Wildlife Disease Ecology Edited by Kenneth Wilson , Andy Fenton , Dan Tompkins Frontmatter <u>More Information</u>

LIST OF CONTRIBUTORS XVII

Antwerp Belgium jonas.reijniers@uantwerpen.be

JACOBUS C. DE ROODE Department of Biology

Emory University Atlanta GA USA jderood@emory.edu

PAUL SCHMID-HEMPEL Institute of Integrative Biology (IBZ) ETH Zürich Zürich Switzerland psh@env.ethz.ch

REGULA SCHMID-HEMPEL Institute of Integrative Biology (IBZ) ETH Zürich Zürich Switzerland rsh@env.ethz.ch

PAUL STEBBING Centre for Environment Fisheries and Aquaculture Science Weymouth UK paul.stebbing@cefas.co.uk

AUDUN STEIN Department for Arctic Ecology Norwegian Institute for Nature Research Tromsø Norway audun.stien@nina.no

GRANT D. STENTIFORD Centre for Environment, Fisheries and Aquaculture Science Weymouth UK grant.stentiford@cefas.co.uk

ANDREW STORFER School of Biological Sciences Washington State University Pullman WA USA astorfer@wsu.edu

DAN TOMPKINS Predator Free 2050 New Zealand daut@pf2050.co.nz

KATHRYN A. WATT Institute of Evolutionary Biology & Centre for Immunity, Infection and Evolution University of Edinburgh Edinburgh UK Kathryn.watt@ed.ac.uk

MARIUS WENZEL School of Biological Sciences University of Aberdeen Aberdeen UK marius.wenzel@abdn.ac.uk

MARK Q. WILBER Ecology, Evolution and Marine Biology University of California, Santa Barbara

XVIII LIST OF CONTRIBUTORS

Santa Barbara CA USA mark.wilber@lifesci.ucsb.edu

LENA WILFERT Institute of Evolutionary Ecology and Conservation Genomics University of Ulm Ulm Germany lena.wilfert@uni.ulm.de

KENNETH WILSON Lancaster Environment Centre Lancaster University Lancaster UK ken.wilson@lancaster.ac.uk

Preface: Wildlife Disease Ecology

KENNETH WILSON, ANDY FENTON & DAN TOMPKINS

Introduction

Infectious diseases are ubiquitous and account for some of the most dramatic impacts in human history. These include The Black Death, caused by the bacterium *Yersinia pestis*, which killed at least 25 million people across Eurasia between 1347 and 1352 (Cohn, 2002); the Spanish Flu pandemic of 1918, caused by a highly virulent form of the influenza virus, which caused the deaths of 25–50 million people (Taubenberger, 2006); and, more recently, the global AIDS epidemic, caused by the human immunodeficiency virus (HIV), which is responsible for the mortality of an estimated 35 million people worldwide since its emergence in the early 1980s (Fajardo-Ortiz et al., 2017). In many instances, microparasites like influenza mutate and evolve over time into new lethal forms, re-emerging as new epidemics or global pandemics (Nichols, 2006).

However, infectious diseases are not exclusive to humans; wildlife, both animals and plants, experience potentially huge burdens of disease. Indeed, many of the most devastating infectious diseases of humans, including all those mentioned above, had a wildlife (zoonotic) origin. Infectious diseases are a significant driver of global biodiversity loss, illustrated by the amphibian species extinctions and population declines globally caused by the fungal disease chytridiomycosis (Fisher et al., 2009), and more localised impacts such as the loss of much of the native Hawaiian avifauna due to avian malaria and pox (Atkinson & LaPointe, 2009). With ongoing wildlife disease emergence, arising primarily from increasing human-driven global connectivity (Tompkins et al., 2015), the understanding for management that wildlife disease ecology gives has never been more important.

Not all parasites, though, cause high levels of mortality, but instead cause significant morbidity in terms of reduced growth rate and fertility. This is particularly true of macroparasites, such as gut helminths and ectoparasites, where morbidity increases as a function of parasite load (Wilson et al., 2002). Even when not resulting in extinctions or declines, wildlife diseases can have

XX PREFACE: WILDLIFE DISEASE ECOLOGY

profound ecological and evolutionary impacts on their wildlife hosts, causing the evolution of costly resistance mechanisms, potentially driving sexual selection for exaggerated traits, altering host population dynamics, and shaping the structure of ecological communities. There has thus been a considerable effort to understand and address disease across a wide range of wildlife systems in which management is important for both conservation and public health reasons. Many of the most influential studies of infectious diseases in wildlife systems have achieved their status by coupling intensive observational and experimental studies together with a strong connection to mathematical models of infectious disease dynamics. In recent decades this has allowed the amendment, advancement and refining of earlier theories and ideas.

Mathematical models have played a key part in our understanding of human infectious diseases and their control since the first epidemiological models developed over a century ago by people such as Ronald Ross and George Macdonald (Smith et al., 2012). In the late 1970s and early-mid 1980s, Roy Anderson and Robert May applied the same basic principles to the diseases of wildlife (Heesterbeek & Roberts, 2015). Those models allowed simple exploration of key aspects of host-parasite ecology; for example, by laying bare the potential for parasites to regulate host populations, or to drive cycles in host population dynamics. Since then, a burgeoning array of mathematical models have been developed for wildlife diseases, parameterised with empirical data collected during meticulous field and laboratory studies. The aim of this book is to present a core group of those studies, some of which are now decades old, highlighting the connection of these studies to general epidemiological and evolutionary theory, and emphasising the contribution they have made, and continue to make, in advancing our understanding of the spread and impact of infectious diseases more generally.

This book is aimed at researchers working in the field but we specifically asked authors to write their chapters in an engaging style that would also appeal to non-experts such as advanced undergraduates. To help the novice reader, we have included a Glossary of Terms (page xvi) and provide both technical Abstracts and non-technical Lay Summaries (available online at www.cambridge.org/9781107136564).

Book structure

The book is loosely divided into three parts depending on the scale of the interactions that are the main focus of each chapter. Perhaps inevitably, given the inherent multi-scale nature of disease ecology (Johnson et al 2015), no chapter is limited in scope to their 'assigned' part, but this grouping was chosen as an attempt to bring together chapters that deal with similar concepts, and is perhaps preferable to (or at least no less arbitrary than) one based on taxonomy or geography.

PREFACE: WILDLIFE DISEASE ECOLOGY XXI

Part I deals with our understanding of within-host processes, such as interactions between different parasite strains and species within individual hosts, the evolution of parasite virulence, host resistance and the immune system, and host-parasite coevolution. Part II explores our understanding of betweenhost processes, such as the roles that parasites play in regulating and driving host population dynamics, the factors influencing parasite transmission between individuals, and herd immunity. Part III expands out to interactions at the host community and landscape scale, including the effects of climate and seasonality, trophic interactions, host migration, and spatial and multihost dynamics.

Case studies were selected for inclusion based on their contributions to the field of wildlife disease ecology, and to cover the comprehensive range of theoretical concepts in disease epidemiology, evolution, and ecology. To illustrate the ubiquity of wildlife diseases, we chose a broad variety of host taxa (including plants, insects, gastropods, crustacea, fish, amphibia, birds, and mammals) and geographical regions (Europe, Americas, Australasia, Asia, and Africa). We wanted authors to focus on their particularly well-understood study systems but also to place their work in the broader context of other wildlife disease ecology studies; we also asked them to reflect on why their studies had been so successful, to discuss the history and natural history of the system and, where appropriate, to highlight its applied relevance.

Although all the case studies are guided by theoretical considerations, the extent of the system-specific mathematical modelling varies. We asked authors to reflect on the reasons for this, and to identify areas for future empirical and modelling work, particularly where this might benefit from advances in methods and theory (such as novel molecular or statistical approaches, new remote sensing and biologging technology, and enhanced computational capacity).

Some concluding remarks

Several common themes emerge from this book. First, our understanding of wildlife disease ecology is greatly enhanced by studies that: (i) collect longterm observational field data, providing time series and accumulated knowledge of the system (i.e. most of the chapters in this book); (ii) combine observational data with well-designed field and laboratory experiments, especially those that include experimental perturbations such as short-term parasite removals/additions (e.g. Chapters 3, 4, 5, 8, 10, 12, 14, 21); (iii) have a strong theoretical component and integrate empirical data with statistical, simulation and/or mathematical models (again, most of the chapters in this book); (iv) take advantage of new and developing technologies, such as modern molecular approaches to characterise host/parasite genetic variation (e.g. Chapters 1, 2, 4, 10, 13, 15, 18), or sophisticated statistical approaches, particularly allowing the rigorous fitting of models to data (e.g. Chapter 8).

XXII PREFACE: WILDLIFE DISEASE ECOLOGY

A second theme to emerge is that the types of questions that can be addressed, and their success, are often determined by the specific natural history of the system and the logistical constraints they present. For example, the ladybird system provides an ideal opportunity for studying sexually transmitted infections (STIs) in the field because mating contacts and the STI (an ectoparasitic mite) are both easily scored visually (Chapter 7). Likewise, the fact that the snail Potamopyrgus antipodarum has both sexual and asexual (parthenogenic) females, often in the same lake, makes it an ideal system for studying the interaction between mode of reproduction and parasite resistance (Chapter 2). Isolated populations, such as the Soay sheep on St Kilda (Chapter 4) and the reindeer on Svalbard (Chapter 14), provide relatively simple ecological systems in which to study wildlife diseases in the absence of significant pressure from predators or competitors (although the logistics of getting there can often add an extra layer of complexity!). Most ecological systems, however, are not this simple and some, such as the three aquatic systems in this book (Chapters 9, 16 and 19), as well as the monarch butterfly system (Chapter 17), seem to lend themselves particularly well to studying these multi-trophic interactions.

A third theme to emerge is the key role that variation and heterogeneity play in determining wildlife disease dynamics at all scales. The theory of hostparasite interactions initially developed in a 'mean field' manner, such that accompanying mathematical models frequently contained simplifying assumptions and parameter values expressed as population or subpopulation averages. This was not solely due to the developmental stage of the field of study, but also to the data requirements to accurately parameterise more complex models. Many of the long-term studies presented here show that when sufficient data are amassed, allowing more complex models to be employed, our understanding of wildlife disease dynamics is improved through the realisation of how variation alters previous mean field predictions. In turn, this allows more accurate projections, and more effective management, of wildlife disease impacts.

This consideration of management illustrates a final theme to emerge from this book – while some systems are ideally placed to ask interesting and fundamental questions about wildlife disease ecology and evolution, others have the added attribute that they also have significant applied relevance. For example, a number of the study systems in this book focus on emerging diseases that have conservation and policy relevance (e.g. Chapters 5, 9, 11, 13, 15, 17, 18, 20) or impact on the management of harvested stocks (e.g. Chapters 8 and 19).

With increased international movements and global change (climate, land use, population growth, etc.), we are likely to see continued emergence of infectious diseases in humans, livestock and wildlife, and further exchange of infectious diseases between them. Based on the work presented in this book, it seems to us that the ongoing development and application of new tools and

PREFACE: WILDLIFE DISEASE ECOLOGY XXIII

approaches makes the field of wildlife disease ecology better placed than ever to understand and overcome these challenges.

Acknowledgements

We would like to thank all our authors for their hard work and patience during the long process of pulling this book together. We would also like to thank Mike Boots for his input during the early stages of book development and the many reviewers who helped to improve the chapters. During the editing of this book, KW was in receipt of funding from Innovate UK and the UK's Biotechnology and Biological Sciences Research Council (BB/P023444/1, BB/P004970/1, TS/P000436/1, BB/L026821/1) and AF received funding from the UK's Natural Environment Research Council (NE/N009800/1).

References

- Atkinson, C.T. & LaPointe, D.A. (2009)
 Ecology and pathogenicity of avian malaria and pox. In: Pratt, T.K.,
 Atkinson, C.T., Banko, P.C., Jacobi, J.D.
 & Woodworth, B.L. (eds.), *Conservation Biology of Hawaiian Forest Birds*. New Haven, CT: Yale University Press.
- Cohn, S.K. (2002) The Black Death Transformed: Disease and Culture in Early Renaissance Europe. London: Arnold.
- Fajardo-Ortiz, D., Lopez-Cervantes, M., Duran, L., et al. (2017) The emergence and evolution of the research fronts in HIV/ AIDS research. *PLoS ONE*, **12**(5), e0178293. https://doi.org/10.1371/journal .pone.0178293
- Fisher, M.C., Garner, T.W.J. & Walker, S.F. (2009) Global emergence of *Batrachochytrium dendrobatidis* and amphibian chytridiomycosis in space, time, and host. *Annual Review of Microbiology*, **63**, 291–310.
- Heesterbeek, J.A.P. & Roberts, M.G. (2015) How mathematical epidemiology became a field of biology: a commentary on Anderson and May (1981) 'The population dynamics of microparasites and their invertebrate hosts'. *Philosophical Transactions of the Royal Society*, **370**, 20140307. http://dx.doi.org/ 10.1098/rstb.2014.0307

- Johnson, P.T.J., de Roode, J.C., & Andy Fenton, A. (2015) Why infectious disease research needs community ecology. *Science*, **349** (6252), 1259504. DOI:10.1126/ science.1259504
- Nichols, H. (2006).Pandemic influenza: the inside story. *PLoS Biology*, **4**(2), e50.
- Smith, D.L., Battle, K.E., Hay, S.I., et al. (2012) Ross, Macdonald, and a theory for the dynamics and control of mosquitotransmitted pathogens. *PLoS Pathogens*, 8(4), e1002588. https://doi.org/10.1371/journal .ppat.1002588
- Taubenberger, J.K. (2006). The origin and virulence of the 1918 "Spanish" Influenza Virus. Proceedings of the Americal Philosophical Society, **150**(1), 86–112.
- Tompkins, D.M., Carver, S., Jones, M.E., Krkosek, M. & Skerratt, L.F. (2015). Current emerging infectious diseases of wildlife: a critical perspective. *Trends in Parasitology*, 31(4), 149–159.
- Wilson, K., Bjørnstad, O.N., Dobson, A.P., et al.
 (2002) Heterogeneities in macroparasite infections: patterns and processes. In: Hudson, P.J., Rizzoli, A., Grenfell, B.T., Heesterbeek, J.A.P. & Dobson, A.P. (eds.), *The Ecology of Wildlife Diseases* (pp. 6–44). Oxford: Oxford University Press.

Glossary of Terms

ANDY FENTON, DAN TOMPKINS AND KENNETH WILSON

Term Definition

Acquired immunity	Antigen-specific immunity gained from
	prior exposure to that <i>antigen</i> .
Adaptive immunity	The components of the vertebrate
	immune system involved in developing
	acquired immunity.
Aetiology/aetiological agent	The cause/causative agent of a <i>disease</i> .
Agent-based (or individual-	Computational simulation models in
based) models (ABMs	which individuals or groups of
or IBMs)	individuals ('agents') are explicitly
	modelled, for example to consider how
	variation in states, actions or experiences
	between those individuals combine to
	affect population-level dynamics.
Aggregated parasite distribution	The often-observed highly skewed
	distribution of <i>macroparasite</i> burdens
	among <i>hosts</i> , characterised by high
	variance: mean ratios, such that typically
	most hosts are observed to have relatively
	light (or zero) burdens, but some hosts
	have very high burdens. The observed
	distribution is often described statistically
	by a negative binomial distribution .
Akaike Information Criteria	Measures of the statistical fit of a model to
(AIC), Watanabe–Akaike	data that take into account the goodness
Information Criteria (WAIC),	of fit (often related to the likelihood of the
Bayesian Information	data given the model parameters) and
Criteria (BIC), etc.	model complexity (penalising in some
	way models with higher numbers of
	parameters).

Cambridge University Press 978-1-107-13656-4 — Wildlife Disease Ecology Edited by Kenneth Wilson , Andy Fenton , Dan Tompkins Frontmatter <u>More Information</u>

GLOSSARY OF TERMS XXV

Allee effect	Demographic and behavioural changes that cause fitness to increase with population density (positive density
Antibody	dependence) at low population density. Large protein, specific to a given antigen , used as part of the vertebrate immune system to fight certain parasites containing that antigen.
Antigen	A foreign substance which stimulates an immune response.
Antimicrobial peptides (AMPs)	Peptides produced by all classes of hosts (vertebrates, invertebrates and plants) as part of their innate immune system, to combat bacteria, viruses and fungi.
Apex predator	The predator species at the top of a food chain.
Apparent competition	A negative interaction occurring between two or more <i>host</i> species, mediated by a shared natural enemy
Arrested development	A life-cycle stage of some helminth parasites in which infecting worms undergo a temporary cessation of development or dormancy inside the host.
Assortative contact	The tendency to make contact with individuals of the same type as self. Contrast with disassortative contact .
Basic reproductive	A measure of the <i>parasite's</i> maximum
number/ratio/rate (R ₀)	potential to spread through a host
	population. Defined differently for
	<i>microparasites</i> (the number of secondary
	infections produced by a single primary
	infection in an otherwise wholly
	susceptible host population) and
	macroparasites (the number of mature
	parasite offspring produced by a single
	mature parasite in a wholly susceptible host population)
Capture-Mark(-Release)-	The recapturing of previously marked
Recapture (CMR or CMRR)	individuals to allow estimation of (for
	example) population sizes, and (state-
	dependent) survival, state transition and recapture probabilities.

XXVI GLOSSARY OF TERMS

Coefficient of variation	A measure of relative variability, defined as the standard deviation of a trait divided by its mean, producing a scalable measure of variation.
Coinfection (or co-infection or polyparasitism)	Simultaneous infection of an individual host by multiple parasite genotypes (intraspecific coinfection) or species
Community assembly	(interspecific coinfection). The order in which the species in an ecological community (e.g. a parasite <i>infracommunity</i>) assemble, and the underlying processes determining that
Compartmental model	order. Mathematical model of host-parasite population dynamics, in which the abundances of hosts and/or parasites are represented as 'compartments', with
	flows of individuals into and out of compartments being determined by epidemiologically important processes (births, deaths, transmission , recovery).
Competitive release	See SIR , SEIR , SIS , <i>etc. models</i> . The expansion or increase in abundance of a competitively inferior species due to suppression or removal of a dominant competitor.
Contact network	Who contacts whom at an individual level, defined in terms of nodes (the individuals on network) and edges or links (the contacts between nodes); often
Covert infections	used within a <i>network-based model</i> . Non-lethal <i>infections</i> that may be hard to detect, but which can contribute to overall <i>transmission</i> and persistence of the <i>parasite</i> in the <i>host</i> population.
Cytokine	Small signalling molecules secreted by
Density-dependent prophylaxis	cells of the <i>immune system</i> . A phenomenon where <i>hosts</i> invest more
Density-dependent transmission	in defence at high densities. Transmission in which the <i>per-capita</i> rate of acquisition of new infections increases

GLOSSARY OF TERMS XXVII

Deterministic	with host density. Contrast with frequency-dependent transmission . A system or modelling framework which does not incorporate any random
Dilution effect	components. Contrast with stochastic . The phenomenon by which low competence host species reduce infection risk for other potential host species,
Directly transmitted parasites	through the removal of parasite infective stages. Parasites which transmit from one host to another, possibly via an environmental stage, but without involvement of an
Disassortative contact	alternative, intermediate, or vector host species. The tendency to make contact with dissimilar individuals, those of the opposite type to self. Contrast with
Disease	<i>assortative contact</i> . The pathological, detrimental impact of
Disease triangle	parasitic infection on host health. A concept that recognises that the occurrence and outcome of infection depends on the interaction between the
Effective partner acquisition rate	<pre>parasite, the host and the environment they occur in. A measure of partner acquisition for a sexually transmitted infection (STI), measured from the perspective of the infection, rather than hosts generally, which includes both mean and variation</pre>
Emerging infectious disease (EID)	in partner acquisition. An <i>infectious disease</i> which has recently emerged in a novel <i>host</i> species or population.
Endemic (infection)	An infectious disease regularly found
Enemy release hypothesis	infecting a population of hosts . The hypothesis that invasive alien species perform better in their introduced habitat because they have been introduced without natural enemies (predators and parasites) from their native range.

XXVIII GLOSSARY OF TERMS

Enzootic	An <i>infectious disease</i> regularly found infecting a population of wild animal
	hosts. Contrast with epizootic.
Epidemic	A rapid increase in the occurrence of an
	infectious disease in a population.
Epizootic	An <i>infectious disease</i> that suddenly
	increases in frequency in a wild animal
	population. Contrast with <i>enzootic</i> .
Extirpation	The local extinction of a species from a
	given location.
Faecal egg count (FEC)	The number of eggs of a gastrointestinal
	parasite counted from a faecal sample of
	the host , often used as an indirect
	measure of the <i>infection intensity</i> of the
	host.
Force of infection	The per-capita rate at which susceptible
	individuals become infected.
Frequency-dependent	Transmission in which the per-capita rate
transmission	of acquisition of new infections is
	independent of host density, but
	increases with the frequency of infection
	in the host population. Contrast with
	density-dependent transmission.
Functional response	The relationship between resource
	availability and consumer ingestion rate.
Gene-for-gene model of	Genetic model of <i>host-parasite</i>
host-parasite compatibility	compatibility in which there is a
	universally infective <i>parasite</i> genotype
	that experiences high infection rates
	across all host genotypes. Contrast with
	inverse gene-for-gene, matching alleles
	and inverse matching alleles models of
	host-parasite compatibility.
Handicap principle	The hypothesis that the honesty of
	extravagant sexual signals of quality
	relies on costs (possibly mediated by
	parasitic infection) involved in their
	production or maintenance. See also
	Immunocompetence Handicap
	Hypothesis (ICHH).
Healthy herds hypothesis	The hypothesis that predators selectively
	remove <i>diseased</i> individuals, thereby

Cambridge University Press 978-1-107-13656-4 — Wildlife Disease Ecology Edited by Kenneth Wilson , Andy Fenton , Dan Tompkins Frontmatter <u>More Information</u>

GLOSSARY OF TERMS XXIX

Heterogeneity (e.g. in contacts, susceptibility, etc.)	raising the overall health of the remaining prey population. The occurrence of differences among individuals or groups of individuals that result in transmission deviating from assumptions of mass action
Horizontal transmission	assumptions of mass action . Transmission occurring between host individuals that does not involve direct mother-to-offspring (vertical) transmission.
Host	An organism infected by a <i>parasite</i> .
Immune priming	The reduction in host susceptibility to infection due to prior exposure to the same parasite .
Immune system	The collection of cells and molecules that a host uses to fight infection.
Immunocompetence Handicap Hypothesis (ICHH)	An extension of the <i>handicap principle</i> of the evolution of extravagant sexual signals, which argues that androgens (e.g. testosterone) mediate a trade-off between enhanced sexual behaviours or signals and ability to resist <i>parasites</i> via
	immunosuppression.
Immunomodulation/ immunosuppression	The alteration of a host's immune response by an infecting parasite . If immune function is in some way impaired, this is termed immunosuppression.
Immunoparasitology	The study of the interaction between parasitic infection and the immune response of the host .
Immunosenescence	The loss in <i>immune</i> function as the individual ages.
Infection	The presence of a <i>parasite</i> within a <i>host</i> .
Infection intensity	Number of parasites in an infected host .
Infectious disease	<i>Disease</i> (pathology) caused by a <i>parasite</i> , capable of being transmitted between <i>hosts</i> .
Infracommunity	The collection of parasites <i>coinfecting</i> an individual <i>host</i> .
Innate immunity	The non-specific (or less specific) immune response. Contrast with <i>adaptive immunity</i> .

XXX GLOSSARY OF TERMS

Integral projection (or	A population dynamic modelling
population) models (IPMs)	approach which links demographic rates
	across individuals to population
	dynamics.
Interactionist parasite	Within-host parasite communities which
communities	are structured by interactions between
	coinfecting parasites. Contrast with
	isolationist parasite communities.
Intraguild predation (IGP)	Predation among competitors within a
()	trophic level.
Invasive alien species (IAS)	Species that have been introduced and
	established outside their native range.
Inverse gene-for-gene model of	Genetic model of host-parasite
host-parasite compatibility	compatibility in which there is a
hose parasite compatibility	universally resistant host genotype that
	experiences reduced <i>infection</i> rates for all
	parasite genotypes. Contrast with gene-
	for-gene, matching alleles and inverse
	matching alleles models of host-parasite
T	compatibility.
Inverse matching alleles model	Genetic model of host-parasite
of host-parasite compatibility	compatibility by which a host must
	genetically match its parasite at relevant
	loci in order to resist infection . Contrast
	with gene-for-gene, inverse gene-for-gene
	and matching alleles models of host-
	parasite compatibility.
Isolationist parasite communities	Within-host parasite communities in
	which interactions between coinfecting
	<i>parasites</i> are rare, there are many vacant
	niches, and species infect largely
	independently of each other. Contrast
	with interactionist parasite communities.
Iteroparous	An organism which reproduces multiple
	times in its life. Contrast with
	semelparous.
Koch's postulates	Criteria established by Robert Koch to
-	identify the causative (<i>aetiological</i>) agent
	of a <i>disease</i> .
Latent period	The time between an individual
*	becoming infected with a <i>parasite</i> , and it
	becoming infectious to other individuals.
	second in the second to other marviduals.

Cambridge University Press 978-1-107-13656-4 — Wildlife Disease Ecology Edited by Kenneth Wilson , Andy Fenton , Dan Tompkins Frontmatter <u>More Information</u>

GLOSSARY OF TERMS XXXI

Macroparasite	Parasites which do not multiply inside individual hosts (e.g. helminths, ectoparasites); typically the parasite is the unit of study (e.g. the number of infecting worms). Contrast with microparasite .
Major Histocompatibility Complex (MHC)	A cluster of genes that code for cell-surface proteins, which are used by the <i>adaptive immune response</i> to recognise specific <i>antigens</i> .
Mass action transmission	The assumption that susceptible and infectious individuals contact each other, and therefore transmit infections, randomly.
Matching alleles model of host-parasite compatibility	Genetic model of host-parasite compatibility by which a parasite must genetically match its host at relevant loci in order to infect. Contrast with gene-for- gene , inverse gene-for-gene and inverse matching alleles models of host-parasite compatibility .
Mean field approximation	The approximation of a large number of individual effects by a single averaged effect. This approximation is commonly used in <i>compartmental models</i> of disease spread (see <i>SIR</i> , etc.).
Metapopulation	A collection of discrete populations in isolated patches, connected by occasional dispersal events.
Microbiota	The community of microorganisms associated with individual hosts .
Microparasite	Parasites which multiply inside individual hosts (e.g. viruses, bacteria, protozoa); typically the host is the unit of study (e.g. the number or proportion of infected hosts). Contrast with macroparasite .
Migratory allopatry	The spatial separation of adults and juveniles after breeding, which can reduce infection risk from adults to vulnerable juveniles.

XXXII GLOSSARY OF TERMS

Migratory culling	Mortality of infected hosts during long- distance movement events.
Migratory escape	Migration of <i>hosts</i> from <i>parasite</i> -contaminated areas, thereby
Mixing matrix	lowering their risk of infection . Mathematical matrix that defines the contact patterns of individuals from one population group with individuals of another group.
Muller's ratchet	The accumulation of deleterious mutations in clonal (asexual) lineages.
Negative binomial distribution	Discrete statistical distribution often used to describe the typically observed <i>aggregated</i> distribution of <i>macroparasite</i>
Network-based models	burdens across the host population. Models that include explicit contact network structure between individuals (see contact network).
Ordinary infectious disease (OID)	A <i>parasite</i> where the majority of transmission infection occurs infectiously outside of mating contact. Contrast with <i>sexually transmitted infection (STI)</i> .
Oxidation Handicap Hypothesis (OHH)	An extension of the <i>Immunocompetence</i> <i>Handicap Hypothesis</i> of sexual signalling, which argues that the main cost of elevated testosterone is increased oxidative stress.
Pair approximation	Deterministic model approximating the dynamics of pairs of individuals in a network (see contact network), rather than the dynamics of individuals themselves.
Pandemic	An epidemic of <i>infectious disease</i> that has spread across a large region, such as multiple continents or globally.
Parasite	An organism that lives in (<i>endoparasite</i>) or on (ectoparasite) another organism (the <i>host</i>), and obtains resources from it.
Pathogen	(the nost), and obtains resources from it. Parasites that typically cause acute, highly pathogenic infections , often used as a synonym for microparasite .

Cambridge University Press 978-1-107-13656-4 — Wildlife Disease Ecology Edited by Kenneth Wilson , Andy Fenton , Dan Tompkins Frontmatter <u>More Information</u>

GLOSSARY OF TERMS XXXIII

Pathosystem	Part of an ecosystem that involves <i>parasitism</i> .
Phenology	The pattern and timing of life-history events such as of birth, maturation, reproduction, and death through the year.
Phyllosphere	The above-ground elements of plants, particularly in terms of the microbes associated with it.
Polygyny/polyandry	Where a single male mates with more than one female, and where a single female mates with more than one male, respectively.
Population Viability Analysis (PVA)	An analytical tool that seeks to predict the viability and extinction risk of a population.
Prevalence	The proportion of infected individuals in the host population.
Regulation (of host population dynamics)	The limitation of (<i>host</i>) population size through density-dependent feedback processes.
Reservoir (environmental)	The persistence of <i>parasite</i> infective stages in the abiotic environment, acting as a potential source of new <i>infections</i> .
Reservoir (host)	A host species, or collection of species, that maintains a parasite and acts as a source of infection to another host species.
Resistance	The ability of hosts to prevent an infection from establishing or to limit its growth rate. Contrast with tolerance .
Semelparous	An organism that reproduces once in its life. Contrast with <i>iteroparous</i> .
Sexually transmitted infection (STI)	A <i>parasite</i> transmitted during its <i>host's</i> mating activity. Contrast with <i>ordinary infectious disease (OID)</i> .
SIR, SEIR, SIS, etc. models	Compartmental models of microparasite dynamics, structured according to assumptions about the flow of host individuals between compartments defined by their infection status (S=susceptible (uninfected), <i>I</i> =infected (and infectious), <i>E</i> =exposed (infected but

XXXIV GLOSSARY OF TERMS

	not infectious), R=recovered (and
Co ciol immunity	immune from reinfection)). Collective host behaviours that reduce
Social immunity	
	the likelihood of infection in social or communal species.
Spillover	The process by which parasites from one
Spinover	host species (typically a <i>reservoir host</i>)
	cross over to infect a different host
	species.
Stochastic	A system or modelling framework which
Stochastic	incorporates some element of random
	variation. Contrast with <i>deterministic</i> .
Subclinical infections	Infections which result in no obvious
Subcliment intections	signs of <i>disease</i> in the <i>host</i> .
Supershedder	Individuals that are highly infectious
s up cicilea act	through high levels of release of parasite
	infective stages. See also superspreader .
Superspreader	An individual host that contributes
	disproportionately highly to parasite
	transmission (e.g. due to their high
	number of contacts with other
	individuals). See also supershedder .
Susceptible [host]	A host that can be infected by a specific
	parasite.
Th1/Th2 immune	Characterisation of the immune response
response	into the 'T-helper 1' (Th1) and 'T-helper 2'
	(Th2) arms, based on the different
	cytokines and antibodies produced,
	typically in response to intracellular
	(~microparasitic) or extracellular
	(~macroparasitic) infections,
	respectively.
	Often these arms of the <i>immune response</i>
	are assumed to trade-off against each
	other, such that investment in one
	response limits the ability of the host to
Threehold non-1-time	invest in the other.
Threshold population	The minimum host population size
size/critical community size	required for a parasite to persist.
Tolerance	The ability of hosts to reduce the
	detrimental impact of a given infection . Contrast with resistance .
	Contrast with resistance.

Cambridge University Press 978-1-107-13656-4 — Wildlife Disease Ecology Edited by Kenneth Wilson , Andy Fenton , Dan Tompkins Frontmatter <u>More Information</u>

GLOSSARY OF TERMS XXXV

Trait-mediated effects (of parasitism)	Infection alters host traits such as appearance or behaviour, which affects vulnerability to predation, potentially affecting population, community, or ecosystem dynamics.
Trait-mediated indirect effects (TMIE) (predator-mediated)	Indirect effects on a host-parasite interaction, mediated by another member of the community. May be predator-mediated (e.g. non-lethal effects of natural enemies on hosts , which alter traits such as host behaviour, rather than survival) or resource plant) mediated (e.g. plant traits affect the interaction between herbivores and their natural enemies).
Transmission	The process by which a <i>susceptible</i> (uninfected) <i>host</i> acquires a new <i>infection</i> .
Trickle infection	Experimentally infecting hosts with low, repeated doses of parasites , to mimic the natural rate of acquisition of infections .
Trophic cascade	Changes in the structure of a community occurring when predators reduce the density of their prey, which has knock-on effects at lower trophic levels.
Trophic transmission	The transmission of parasites between trophic levels through the ingestion of infected prey by predators, which then become infected.
Vertical transmission	Transmission directly from parent to offspring, for example trans-placental (in mammals) or via eggs (e.g. in insects). Contrast with horizontal transmission .
Virulence	The impact of a <i>parasite</i> on its <i>host's</i> fitness (i.e. through reduction in individual <i>host</i> survival or reproduction). See also <i>virulence (density-dependent)</i> .
Virulence (density-dependent) Zoonosis	Host fitness cost of infection (virulence) increases as host density increases. An infectious disease that is maintained in a wild reservoir , but which may cause
	<i>infection</i> in humans.

Cambridge University Press 978-1-107-13656-4 — Wildlife Disease Ecology Edited by Kenneth Wilson , Andy Fenton , Dan Tompkins Frontmatter <u>More Information</u>