

Wireless-Powered Communication Networks

Architectures, Protocols, and Applications

Learn the fundamentals of architecture design, protocol optimization, and application development for wireless-powered communication networks with this authoritative guide. You will gain a detailed understanding of the issues surrounding architecture and protocol design, with key topics covered including relay-based energy harvesting systems, multiple-antenna systems for simultaneous wireless information and power transfer (SWIPT), performance modeling and analysis, and ambient wireless energy-harvesting-based cellular systems. Current applications of energy harvesting and transfer in different wireless networking scenarios are discussed, helping you to understand practical system development and implementation issues from an engineering perspective.

The first book to provide a unified view of energy harvesting and wireless power transfer networks from a communications perspective, this is an essential text for researchers working on wireless communication networks and wireless systems, RF engineers, and wireless application developers.

Dusit Niyato is an Associate Professor in the School of Computer Science and Engineering at Nanyang Technological University, Singapore. He is the recipient of the IEEE Communications Society Asia Pacific Best Young Researcher Award and the IEEE Communications Society Fred W. Ellersick Prize Paper Award.

Ekram Hossain is a Professor in the Department of Electrical and Computer Engineering at the University of Manitoba, Canada, and a Fellow of the IEEE. He is the co-editor or -author of several books, including *Wireless Device-to-Device Communications and Networks* (Cambridge, 2015) and *Cooperative Cellular Wireless Networks* (Cambridge, 2011).

Dong In Kim is a Professor in the School of Information and Communication Engineering at Sungkyunkwan University Korea. He previously served as the Founding Editorin-Chief for the *IEEE Wireless Communications Letters* (2012–2015), and in 2014 was the first recipient of the ERC Excellence Award in Wireless Communications from the National Research Foundation of Korea

Vijay Bhargava is a Professor in the Department of Electrical and Computer Engineering at the University of British Columbia, Canada, where he is currently leading a major research program in 5G Wireless Systems. His previous positions include President of the IEEE's Information Theory and Communications Societies, and Editor-in-Chief of the *IEEE Transactions on Wireless Communications*.

Lotfollah Shafai is a Distinguished Professor Emeritus in the Department of Electrical and Computer Engineering at the University of Manitoba, Canada. His numerous awards and recognitions include the Canada Council for the Arts Killam Prize in Engineering (2011), and the IEEE Chen-To-Tai Distinguished Educator Award (2009). He was also a Canada Research Chair in Applied Electromagnetics (2001–2015).

"This is a brilliant piece of work which provides a holistic view of the emerging energy harvesting-based wireless communications and networking technology. Starting with the basics ..., the book cohesively covers different aspects of this technology, including circuit and antenna design issues for wireless energy harvesting devices and performance modeling and analysis of wireless energy harvesting and transfer-based wireless networks, as well as applications of this technology in different wireless networking scenarios. Standardization activities on wireless energy harvesting and transfer are also discussed. As a valuable addition to the library of graduate students, researchers and practitioners working in this area, this book will equip them for further reading and research on this exciting technology."

Vahid Tarokh, Harvard University

"Wireless power transfer and energy harvesting networks have received tremendous attention in both the research community and industry recently ... This book contains a comprehensive review of the various topics which are nicely organised and blended in a coherent manner. It will be an excellent introductory text to get into this exciting new topic of research."

Vincent Lau, Hong Kong University of Science and Technology

Wireless-Powered Communication

Architectures, Protocols, and Applications

DUSIT NIYATO

Networks

Nanyang Technological University, Singapore

EKRAM HOSSAIN

University of Manitoba, Canada

DONG IN KIM

Sungkyunkwan University, Korea

VIJAY BHARGAVA

University of British Columbia, Canada

LOTFOLLAH SHAFAI

University of Manitoba, Canada

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi – 110002, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107135697

© Cambridge University Press 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2017

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalog record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data

Names: Niyato, Dusit, editor author.

Title: Wireless-powered communication networks: architectures, protocols, and applications / [edited by] Dusit Niyato, Nanyang Technological University, Ekram Hossain, University of Manitoba, Dong In Kim, Sungkyunkwan University, Korea, Vijay Bhargava, University of British Columbia, Lotfollah Shafai, University of Manitoba, Canada.

Description: Cambridge, United Kingdom: Cambridge University Press, 2017.

Includes bibliographical references and index.

Identifiers: LCCN 2016021099 | ISBN 9781107135697 (Hardback)

Subjects: LCSH: Wireless communication systems-Power supply. |

Electromagnetic induction. | Microharvesters (Electronics) | Computer

network architectures. | Computer network protocols.

Classification: LCC TK5103.2 .W574126 2017 | DDC 004.6–dc23 LC record available at https://lccn.loc.gov/2016021099

ISBN 978-1-107-13569-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List of contributors Preface	page ix xi
Part I Bas	ics of Wireless Energy Harvesting and Transfer Technology	1
1	Basics of Wireless Energy Harvesting and Transfer Dusit Niyato, Ekram Hossain, and Xiao Lu	3
	1.1 Introduction	3
	1.2 History of Wireless Energy Harvesting and Transfer Technology	5
	1.3 Wireless Energy Harvesting and Transfer Technology	7
	1.4 Wireless-Powered Communication Networks	17
	1.5 International Standards	20
	1.6 Implementation Examples	31
	1.7 Summary	36
	References	36
2	Circuit Design for Wireless Energy Harvesting Min Jae Kim, Kae Won Choi, Dong In Kim, Youngoo Yang, Kang Yoon Lee, and Keum Cheol Hwang	44
	2.1 Introduction	44
	 2.2 Test-Beds for Long- and Short-Range RF Energy Harvesting Systems 2.3 Stored Energy Evolution Model for an IoT Sensor Node with Wireless 	45
	Energy Harvesting Capability	74
	2.4 Summary	84
	References	85
3	Antennas for Wireless Energy Harvesting and Massive MIMO Applications Zahra A. Pour, Lotfollah Shafai, Ali M. Mehrabani, and Navid Rezazadeh	86
	3.1 Introduction	86
	3.2 Historical Overview on Wireless Power Transmission	87
	3.3 Wireless Power Transmission Techniques	89
	3.4 Block Diagram of RF Wireless Power Transmission	92
	3.5 Candidate Antennas	93

•

vi **Contents**

	3.6	Universal Design Examples: Slotted Microstrip Patch Antennas	103
	3.7	Wideband Diversity Antennas	109
	3.8	Design III: Wideband Dual-Diversity Antenna	114
	3.9	Antennas for Massive-MIMO Applications	123
	3.10	Summary	126
	Refe	erences	127
Part II	Archited	ctures, Protocols, and Performance Analysis	133
4	Coop	perative Networks with Wireless Energy Harvesting	135
	Sudha	a Lohani, Roya Arab Loodaricheh, Shankhanaad Mallick, Ekram Hossain, and Vijay Bhargava	
	4.1	Introduction	135
	4.2	Relay-Based Energy Harvesting Systems	137
	4.3	Relay Operation Policy	139
	4.4	Resource Allocation	146
	4.5	Open Issues and Challenges	164
	4.6	Summary	166
	Refe	erences	167
5	Mult	iple Antennas and Beamforming for SWIPT Systems	170
	Derric	sk Wing Kwan Ng, Shiyang Leng, and Robert Schober	
	5.1	Introduction	170
		System Model	174
	5.3	Single-Objective Optimization	174
	5.4	Multi-Objective SWIPT Optimization	190
	5.5	Secure Communications in SWIPT Systems	199
	5.6	Research Challenges	207
	5.7	Summary	209
	5.8	Appendix	209
	Refe	erences	212
6	Back	scattering Wireless-Powered Communications	217
	Dinh ¹	Thai Hoang	
	6.1	Introduction	217
	6.2	Application of Backscattering Communication in Wireless-Powered	
		Body Area Networks	222
	6.3	Future Research Directions	240
	6.4	Summary	241
	6.5	Appendix	242
	Refe	erences	244

Contents vii

7	Dedicated Wireless Energy Harvesting in Cellular Networks: Performance Modeling and Analysis Hina Tabassum and Ekram Hossain	246
	7.1 Introduction	246
	7.2 Major Challenges in Dedicated Wireless Energy Harvesting7.3 Centralized and Decentralized Dedicated WEH Architectures:	247
	Comparative Analysis	250
	7.4 Numerical Results and Discussion7.5 Summary	258 261
	References	263
8	Ambient Wireless Energy Harvesting in Small Cell Networks: Performance	
	Modeling and Analysis	265
	Ahmed Hamdi Sakr, Hina Tabassum, and Ekram Hossain	
	8.1 Introduction	265
	8.2 Challenges in Ambient Wireless Energy Harvesting in Small	200
	Cell Networks	266
	8.3 RF Ambient Energy Harvesting: Literature Review	268
	8.4 Ambient Energy Harvesting: Network Performance Modeling and Analysis	271
	8.5 Discussion	277
	8.6 Uplink Coverage Probability	280
	8.7 Numerical Results and Discussion	281
	8.8 Summary	286
	References	286
Part III	Applications of Wireless Energy Harvesting and Transfer	289
9	Sensor Networks with Wireless Energy Harvesting Xiao Lu	291
	9.1 Introduction	291
	9.2 Static Wireless Charger Deployment	291
	9.3 Mobile Sensor Charger Optimization	298
	9.4 Hardware Designs for Sensor Nodes with Wireless Energy Harvesting	309
	9.5 Energy Scheduling in Wireless-Powered Sensor Networks	311
	9.6 Future Research Directions	326
	9.7 Summary References	329 329
10	Cognitive Radio Networks with Wireless Energy Harvesting	338
	Dinh Thai Hoang	
	10.1 Introduction	338
	10.2 Opportunistic Channel Access for RF-powered Cognitive Radio Networks	343

viii **Contents**

	10.3 Performance Optimization for Cooperative Multiuser Cognitive Radio	
	Networks with RF Energy Harvesting Capability	355
	10.4 Performance Optimization for Wireless-Powered Cognitive Radio	
	Networks under Smart Jamming Attacks	368
	10.5 Future Research Directions	379
	10.6 Summary	380
	References	381
11	Mobile Ad-Hoc Networks and Delay-Tolerant Networks With Wireless	
	Energy Harvesting	383
	Dusit Niyato	
	11.1 Introduction	383
	11.2 Basics of MANETs and DTNs	384
	11.3 Cooperation in DTNs	389
	11.4 Delay-Limited Communication in MANETs	403
	11.5 Mobile Energy Sharing	413
	11.6 Future Research Directions	424
	11.7 Summary	425
	References	426
	Index	430

Contributors

Vijay Bhargava

University of British Columbia, Vancouver, BC, Canada

Kae Won Choi

Sungkyunkwan University, Korea

Dinh Thai Hoang

Nanyang Technological University, Singapore

Ekram Hossain

University of Manitoba, Winnipeg, MB, Canada

Keum Cheol Hwang

Sungkyunkwan University, Korea

Dong In Kim

Sungkyunkwan University, Korea

Min Jae Kim

Sungkyankwan University, Korea

Kang Yoon Lee

Sungkyunkwan University, Korea

Shiyang Leng

The Pennsylvania State University, USA

Sudha Lohani

University of British Columbia, Vancouver, BC, Canada

Roya Arab Loodaricheh

314-2730 Acadia Road, Vancouver, BC, Canada

İΧ

x List of contributors

Xiao Lu

University of Alberta, AB, Canada

Shankhanaad Mallick

110-8738 French Street, Vancouver, BC, Canada

Ali M. Mehrabani

University of Manitoba, Winnipeg, MB, Canada

Derrick Wing Kwan Ng

University of New South Wales, Sydney, Australia

Dusit Niyato

Nanyang Technological University, Singapore

Zahra A. Pour

University of Alabama at Huntsville, Huntsville, AL, USA

Navid Rezazadeh

University of Manitoba, Winnipeg, MB, Canada

Ahmed Hamdi Sakr

University of Monitoba, Winnipeg, MB, Canada

Robert Schober

Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

Lotfollah Shafai

University of Manitoba, Winnipeg, MB, Canada

Hina Tabassum

University of Manitoba, Winnipeg, MB, Canada

Youngoo Ynag

Sungkyunkwan University, Korea

Preface

Recently, there has been an upsurge of research interest in wireless-powered communication networks. These networks are based on energy harvesting and/or energy transfer technology, for mobile devices using wireless propagation media. This technology offers the capability of using different types of wireless medium, such as radio frequency and magnetic induction, to carry energy from dedicated sources to wireless nodes or to harvest energy from ambient sources. Therefore, this has become a promising solution to power energy-constrained wireless networks. Conventionally, energyconstrained wireless networks such as wireless sensor networks have a limited lifetime, which leads to significant deterioration in network performance and usability. By contrast, a network with wireless energy harvesting and transfer capability can be powered without using a fixed power supply. For example, it can harvest energy from environmental sources such as solar and wind energy or from other dedicated or nondedicated sources which are tetherless. Hence, there is no need to charge or replace the batteries physically, which can improve the flexibility and availability of the network substantially. Wireless energy has many advantages over other energy sources, including indoor support and stable and more predictable supply.

There are three major types of wireless energy harvesting and transfer technique, namely, radio frequency (RF), inductive coupling, and magnetic resonance coupling techniques. In RF energy harvesting, radio signals with frequencies in the range from 3 kHz to 300 GHz are used as a medium to carry energy in the form of electromagnetic radiation. Inductive coupling is based on magnetic coupling that delivers electrical energy between two coils tuned to resonate at the same frequency. The electric power is carried through the magnetic field between two coils. Magnetic resonance coupling utilizes evanescent-wave coupling to generate and transfer electrical energy between two resonators. The resonator is formed by adding a capacitance on an induction coil. Inductive coupling and magnetic resonance coupling are near-field wireless transmission techniques featuring high power density and conversion efficiency. By contrast, RF energy transfer can be regarded as a far-field energy transfer technique. It is suitable for powering a larger number of devices distributed over a wide area. Wireless energy harvesting and transfer have found many applications and have recently been implemented in many devices, including mobile phones, healthcare devices, sensors, and RFID tags. With the increasing number of applications of RF energy harvesting/charging, the Wireless Power Consortium is also making efforts toward establishing an international standard for RF energy harvesting and transfer technology.

Χİ

xii Preface

Although wireless energy harvesting and transfer can be adopted in different types of wireless network, such as wireless sensor networks, mobile ad-hoc networks, and delaytolerant networks, to provide the power supply for the wireless nodes, it introduces many challenges. Unlike other forms of energy harvesting, e.g., wind, solar, and vibration, the efficiency of wireless energy harvesting and transfer depends on the relative distances between the energy sources and the harvesting devices of the wireless nodes. Therefore, the locations or placements as well as the density of power sources become a significant architectural issue for such networks. Moreover, with dedicated power sources in a wireless network, issues such as scheduling of users for energy transfer (or charging) as well as data transfer and transmission scheduling of data packets in the energy harvesting wireless nodes become important. Efficient usage of the harvested energy depends on the communication protocols used by these devices as well as other network nodes such as the base stations. Therefore, the schemes and solutions developed for traditional wireless communication networks without or with other forms of energy harvesting have to be revisited. They have to be redesigned and developed to meet the unique challenges that arise due to the distinctive nature of wireless energy harvesting and transfer.

This book entitled Wireless-Powered Communication Networks: Architectures, Protocols, and Applications provides a comprehensive treatment of the latest research and technological developments concerning the architectures, protocols, and applications of networks with wireless energy harvesting and transfer capability. It is divided into three parts: Basics of Wireless Energy Harvesting and Transfer Technology (Part I), Architectures, Protocols, and Performance Analysis (Part II), and Applications of Wireless Energy Harvesting and Transfer (Part III). It starts with an introduction to the circuit and antenna design of wireless energy harvesting and transfer devices as well as the standardization efforts toward wireless energy transfer and harvesting technology (Part I). Then, in Part II, the book deals with several issues related to architecture and protocol design for networks with wireless energy harvesting and transfer capability. The topics covered in this part include relay-based energy harvesting systems and the related radio resource management issues, multiple antenna systems for simultaneous wireless information and power transfer (SWIPT), backscattering wireless-powered communications systems, and performance modeling and analysis of dedicated wireless energy harvesting as well as ambient wireless energy harvesting-based cellular systems. Part III of the book deals with applications of energy harvesting and transfer in different wireless networking scenarios, including those in sensor networks, cognitive radio networks, and mobile ad-hoc and delay-tolerant networks. In addition to reviewing the existing approaches for design and operation of energy harvesting wireless networks, the book also outlines the open issues and research challenges in this emerging area which will need to be explored by researchers.

The book provides the following.

- Background on wireless energy harvesting and transfer for RF, inductive coupling, and magnetic resonant coupling methods;
- Introduction to the circuit and antenna design issues for energy-harvesting devices;

Preface

XIII

- Reviews of several important network architecture and protocol design issues and performance analysis models for wireless energy harvesting and transfer-based wireless networks;
- Applications of wireless energy harvesting and transfer in different wireless networking scenarios;
- Standardization activities on wireless energy harvesting and transfer;
- A comprehensive list of references on topics related to wireless energy harvesting and transfer technology;
- Potential research directions.

We would like to acknowledge various grant-awarding agencies that supported part of the work reported in this book. These agencies include the Natural Sciences and Engineering Research Council of Canada (NSERC), the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (2014R1A5A1011478) and Singapore MOE Tier 1 (RG18/13 and RG33/12) and MOE Tier 2 (MOE2014-T2-2-015 ARC 4/15).