PASSIVE IMAGING WITH AMBIENT NOISE

Waves generated by opportunistic or ambient noise sources and recorded by passive sensor arrays can be used to image the medium through which they travel. Spectacular results have been obtained in seismic interferometry, which open up new perspectives in acoustics, electromagnetics, and optics. The authors present, for the first time in book form, a self-contained and unified account of correlation-based and ambient noise imaging. In order to facilitate understanding of the core material, they also address a number of related topics in conventional sensor array imaging, wave propagation in random media, and highfrequency asymptotics for wave propagation. Taking a multidisciplinary approach, the book uses mathematical tools from probability, partial differential equations, and asymptotic analysis, combined with the physics of wave propagation and modeling of imaging modalities. Suitable for applied mathematicians and geophysicists, it is also accessible to graduate students in applied mathematics, physics, and engineering.

JOSSELIN GARNIER is a professor in the Mathematics Department at the Université Paris Diderot, France. His background is in applied probability and he has many years of research experience in the field of wave propagation and imaging in random media. He received the Blaise Pascal prize from the French Academy of Sciences in 2007 and the Felix Klein prize from the European Mathematical Society in 2008.

GEORGE PAPANICOLAOU is the Robert Grimmett Professor in Mathematics at Stanford University, USA. He specializes in applied and computational mathematics, partial differential equations, and stochastic processes. He received the John von Neumann prize from the Society for Industrial and Applied Mathematics in 2006 and the William Benter prize in Applied Mathematics in 2010. He was elected to the National Academy of Sciences in 2000 and he became a fellow of the American Mathematical Society in 2012.

PASSIVE IMAGING WITH AMBIENT NOISE

JOSSELIN GARNIER Université Paris Diderot, France

GEORGE PAPANICOLAOU Stanford University, USA

 $\textcircled{\sc c}$ in this web service Cambridge University Press

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107135635

© Josselin Garnier and George Papanicolaou 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Names: Garnier, Josselin, author. | Papanicolaou, George, author. Title: Passive imaging with ambient noise / Josselin Garnier (Université Paris Diderot, France), George Papanicolaou (Stanford University, USA). Description: Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2016. | © 2016 | Includes bibliographical references and index. Identifiers: LCCN 2015051482 | ISBN 9781107135635 (hardback ; alk. paper) | ISBN 110713563X (hardback ; alk. paper) Subjects: LCSH: Image processing–Mathematics. | Noise. | Green's functions. | Wave equation. Classification: LCC TA1637 .G37 2016 | DDC 621.36/78–dc23 LC record available at http://lccn.loc.gov/2015051482

ISBN 978-1-107-13563-5 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Prefa	се		<i>page</i> xi	
1	Intro	duction a	and overview of the book	1	
	1.1	Why pa	assive, correlation-based imaging?	1	
		1.1.1	Travel time estimation	2	
		1.1.2	Applications of travel time estimation	3	
		1.1.3	Reflector imaging	4	
		1.1.4	Auxiliary array or virtual source imaging	6	
		1.1.5	Passive synthetic aperture imaging	8	
		1.1.6	Imaging with intensity cross correlations	9	
	1.2	Chapter	r-by-chapter description of the book	10	
2	Gree	n's functi	ion estimation from noise cross correlations	17	
	2.1	The scalar wave equation and its Green's function		17	
		2.1.1	The Sommerfeld radiation condition	19	
		2.1.2	Reciprocity	20	
		2.1.3	The Helmholtz-Kirchhoff identity	21	
		2.1.4	Application to time reversal	23	
	2.2	The scalar wave equation with noise sources			
	2.3	Green's function estimation with a uniform distribution of sources in			
		a homo	geneous open medium	29	
	2.4	Green's	s function estimation with an extended distribution of sources		
		in an in	homogeneous open medium	31	
	2.5	Green's	s function estimation with an extended distribution of sources		
		in an in	homogeneous cavity	34	
	2.6	2.6 Green's function estimation with a limited distribution of sources in			
		a one-d	imensional inhomogeneous medium	38	
		2.6.1	The one-dimensional wave equation	39	

v

vi	Contents			
	2.6.2 Reflection seismology	43		
	2.6.3 Daylight imaging	45		
2.7	Conclusion	48		
2.A	Appendix: the covariance of the empirical cross correlation	48		
3 Tra	avel time estimation from noise cross correlations using			
sta	tionary phase	51		
3.1	High-frequency wave propagation	52		
3.2	High-frequency asymptotic analysis of the Green's function in a homogeneous medium	53		
3.3	High-frequency asymptotic analysis of the Green's function in a			
	smoothly varying medium	53		
	3.3.1 An introduction to geometrical optics	53		
	3.3.2 Ray solution of the eikonal equation	55		
	3.3.3 Fermat's principle for the travel time	57		
	3.3.4 Properties of the travel time	58		
3.4	High-frequency asymptotic analysis of the cross correlation	60		
3.5	Conclusion	67		
4 Ov	Overview of conventional sensor array imaging			
4.1	Passive array imaging of sources	68		
	4.1.1 Data acquisition	68		
	4.1.2 Imaging function	69		
	4.1.3 The linear forward operator	69		
	4.1.4 The adjoint operator	70		
	4.1.5 Least squares inversion	71		
	4.1.6 The reverse-time imaging function	73		
	4.1.7 Kirchhoff migration (or travel-time migration)	74		
4.2	Passive array imaging of sources: resolution analysis	74		
	4.2.1 Full-aperture array	75		
	4.2.2 Partial-aperture array	75		
	4.2.3 Summary of resolution analysis for passive source imagin	1g 83		
4.3	Active array imaging of reflectors	84		
	4.3.1 Data acquisition	84		
	4.3.2 Source and reflector array imaging: comparison	85		
	4.3.3 Modeling	85		
	4.3.4 Nonlinear inversion	86		
	4.3.5 Linearization of the forward problem	86		
	4.3.6 Linearized inversion	88		
	4.3.7 The reverse-time imaging function	89		
	4.3.8 Kirchhoff migration (or travel-time migration)	91		
	4.3.9 Summary of resolution analysis for active reflector imagi	ng 91		

		Contents	vii
	4.4	A remark about time-reversal experiments	92
	4.5	Conclusion	92
5	Passi	ive array imaging of reflectors using ambient noise illumination	94
	5.1	Imaging configurations of noise sources, sensors, and reflectors	94
	5.2	Stationary phase analysis of the cross correlation with reflectors	96
	5.3	Migration imaging of cross correlations	99
		5.3.1 Migration imaging with daylight illumination	100
		5.3.2 Migration imaging with backlight illumination	101
		5.3.3 Migration imaging with surround light illumination	103
	5.4	Conclusion	105
6	Reso	lution analysis for passive array imaging using ambient noise	
Ŭ	illum	ination	106
	6.1	A comparison of reflector imaging with active and passive arrays	107
	6.2	Imaging by cross correlation of signals generated by ambient noise	107
	0.2	sources	108
		6.2.1 The wave equation with noise sources	108
		6.2.2 Statistical stability of the cross correlation function	108
		6.2.3 Passive sensor imaging	109
		6.2.4 Hypothesis of small decoherence time and correlation	
		radius for the noise sources	110
	6.3	Structure of the cross correlations in a homogeneous medium	111
		6.3.1 The background Green's function	111
		6.3.2 The peaks of the cross correlation in the presence of a reflector	111
	6.4	Resolution analysis of correlation-based imaging	115
		6.4.1 The daylight imaging function	115
		6.4.2 The backlight imaging function	122
		6.4.3 Numerical simulations	124
		6.4.4 Role of illumination diversity	125
	6.5	Conclusion	126
	6.A	Appendix: Proof of Proposition 6.2	126
	6.B	Appendix: Proof of Propositions 6.4-6.5	128
	6.C	Appendix: Proof of Proposition 6.6	132
7	Тион	al time estimation using ambient noise in weakly secttoring	
/	medi	a more commation using amorent noise in weakiy scattering	136
	7 1	Role of scattering in travel time estimation with cross correlations	136
	7.2	A model for the scattering medium	138
	7.3	Signal-to-noise ratio reduction and enhanced resolution due to	100
		scattering	140
	7.4	Use of fourth-order cross correlations	142

viii			Contents	
	7.5	Conclusion		145
	7.A	Appendix: (Complete expression of the average cross correlation	146
	7.B	Appendix: I	Proof of Proposition 7.1	148
	7.C	Appendix: I	Proof of Proposition 7.2	149
8	Corr	elation-based	reflector imaging using ambient noise in weakly	
	scatt	ering media		152
	8.1	Role of scat	tering in correlation-based imaging	152
	8.2	Passive sens	sor imaging in a randomly scattering medium	154
		8.2.1 A r	nodel for the scattering medium	155
		8.2.2 The	e differential cross correlation	156
		8.2.3 Exp	pansion of the clutter Green's function	157
		8.2.4 Exp	pansion of the differential cross correlation	159
		8.2.5 Sta	tistical analysis of the differential cross correlation	160
		8.2.6 On	the trade-off between resolution enhancement and	
		sig	nal-to-noise ratio reduction	164
		8.2.7 Nu	merical simulation of migration imaging with cross	
		cor	relations in the presence of scatterers	164
	8.3	Passive sens	sor imaging with a reflecting interface	165
		8.3.1 Sta	tionary phase analysis of the cross correlation with a	
		refl	ecting interface	166
		8.3.2 Nu	merical simulations of migration imaging with cross	
		cor	relations in the presence of an interface	168
	8.4	Iterated cros	ss correlations for passive imaging in a randomly	
		scattering m	nedium	170
		8.4.1 The	e coda cross correlation	170
		8.4.2 Nu	merical simulations of migration imaging with coda	
		cro	ss correlations	172
	8.5 Conclusion		172	
	8.A	A Appendix: Proof of Proposition 8.1		174
	8.B	Appendix: I	Proof of Proposition 8.2	178
		8.B.1 First	st group	178
		8.B.2 Sec	cond group	180
	8.C	Appendix: S	Statistical analysis of the cross correlations	182
		8.C.1 The	e cross correlation at the difference of travel times	182
		8.C.2 The	e cross correlation at the sum of travel times	184
	8.D	Appendix: I	Proof of Proposition 8.3	185
9	Virtu	al source ima	aging in homogeneous media	187
	9.1	Introduction	n to virtual source imaging	187
	9.2	Ideal virtual	source imaging with an infinite source array	190

		Contents	ix		
	9.3	9.3 High-frequency analysis in a homogeneous background with a			
		limited source array	191		
		9.3.1 Direct scattering problem	191		
		9.3.2 High-frequency analysis of the cross correlations	192		
		9.3.3 High-frequency analysis of the imaging function	195		
	9.4	Passive synthetic aperture imaging in a homogeneous background	197		
		9.4.1 High-frequency analysis of the imaging function	198		
		9.4.2 Comparison with classical synthetic aperture imaging	199		
	9.5	Conclusion	201		
	9.A	Appendix: Proof of Proposition 9.2	202		
	9.B	Appendix: Proof of Proposition 9.3	203		
10	Virtual source imaging in scattering media				
	10.1	The auxiliary array imaging setup	206		
	10.2	Time-reversal interpretation of virtual source imaging	208		
	10.3	The paraxial approximation in random media	209		
		10.3.1 The main results in the paraxial approximation	210		
		10.3.2 Validity of the paraxial approximation in random media	211		
	10.4	Analysis of virtual source imaging in the random paraxial regime	212		
		10.4.1 The cross correlation of the recorded field	212		
		10.4.2 Migration of cross correlations	216		
	10.5	Numerical simulations	218		
	10.6	Passive synthetic aperture imaging in random media	219		
	10.7	Conclusion	222		
	10.A	Appendix: Proofs of Propositions 10.1–10.2	223		
	10.B	Appendix: Proofs of Propositions 10.3–10.4	227		
11	Imagi	ing with intensity cross correlations	228		
	11.1	The ghost imaging setup	228		
	11.2	The intensity correlation function	231		
		11.2.1 The empirical and statistical correlations	231		
		11.2.2 Paraxial regime	233		
		11.2.3 Time-reversal interpretation	235		
		11.2.4 Averaging with respect to the random medium	236		
	11.3	Resolution analysis	237		
		11.3.1 Resolution analysis for the fully incoherent case	237		
		11.3.2 Resolution analysis for the partially coherent case	240		
	11.4	Conclusion	242		
	11.A	Appendix: The fields in the white-noise paraxial regime	243		
12	A rev	iew of wave propagation in random media	245		
	12.1	The random travel time model	245		

Х			Contents		
		12.1.1	Domain of validity	245	
		12.1.2	Statistics of the amplitude and phase perturbations	247	
		12.1.3	The moments of the Green's function	250	
	12.2	The ran	ndom paraxial model	253	
		12.2.1	The random paraxial regime	253	
		12.2.2	The random paraxial wave equation	254	
		12.2.3	The moments of the fundamental solution	255	
	12.3	The ran	ndomly layered model	258	
		12.3.1	The scaling regime	258	
		12.3.2	Review of wave propagation in randomly layered media	260	
		12.3.3	Statistics of the Green's function	261	
	12.4	Conclu	sion	262	
	12.A	Append	dix: Proof of Lemma 12.1	262	
	12.B	Append	dix: Proof of Proposition 12.6	264	
	12.C	2.C Appendix: Proof of Proposition 12.8			
13	Appe	ndix: Ba	sic facts from analysis and probability	269	
10	13.1	Fourier	identities	269	
	13.2	Diverge	ence theorem	270	
	13.3	Station	ary phase method	270	
	13.4	Sampli	ng theorem	272	
	13.5	Randor	n processes	274	
		13.5.1	Random variables	274	
		13.5.2	Random vectors	275	
		13.5.3	Gaussian random vectors	276	
		13.5.4	Random processes	277	
		13.5.5	Ergodic processes	278	
		13.5.6	Mean square theory	279	
		13.5.7	Gaussian processes	281	
		13.5.8	Stationary Gaussian processes	282	
		13.5.9	Vector- and complex-valued Gaussian processes	283	
	Refere	ences		285	
	Index			293	

Preface

In sensor array imaging the objective is to probe an unknown medium with waves, and this can be done in two steps. In the data acquisition step, waves are emitted by a source array, they propagate through the medium being probed, and they are recorded by a receiver array. In the data processing step, this data set is used to extract information about the medium, such as the location of reflectors embedded in it. Recent developments in imaging in complex media and on passive, ambient noise imaging have had a profound impact in many different applied fields. It is these developments that have motivated us to write this book.

Research in wave propagation in complex, scattering media has been active for a long time. It is relevant in many imaging applications in which one wants to probe a medium such as the Earth's lithosphere in seismic imaging, concrete structures in non-destructive testing, the human body in medical imaging, the turbulent atmosphere in optical imaging, or shallow water environments in acoustic imaging. These media are quite complex, while we often want to image only some particular features in them. It turns out that the established imaging methods, which we also describe in this book, may fail when the ambient medium is scattering. It is only recently that wave propagation in complex media, modeled by random media, has been formulated and analyzed in a way that makes it possible to develop new imaging techniques that can mitigate the effects of random scattering.

Array imaging has also been analyzed and used in many applications for a long time. The recent trend to deploy large sensor arrays is due to improved sensor technology, reduced cost in data storage, and increased computational capabilities. In particular, passive sensor array imaging has recently become an area of intense research activity because of the potential impact of its applications. Passive means here that only receiver arrays are used, instead of active source/receiver arrays, and the illumination is provided by unknown, uncontrolled, asynchronous, or opportunistic sources. Imaging with ambient noise sources is one of the main topics of this book. Of course, the structure of the array data is quite different from that of active sensor arrays, and this requires the development of new imaging techniques.

Both in the field of imaging in complex media and in passive, ambient noise imaging, the theoretical analysis shows that the cross correlations between the recorded signals play

xi

xii

Preface

an important role. This is because they carry information about the medium through which the waves propagate, and they also reduce spurious noise effects. Interferometric imaging is another commonly used term for correlation-based imaging. The study of the wave field correlations is central to this book. In seismology the emergence of correlation-based imaging using ambient seismic noise has had a profound impact. The use of seismograms generated by earthquakes was previously the only way to image the Earth. With correlation-based imaging, the apparent seismic noise recorded by a distributed network of sensors on the Earth's surface can provide a lot of information about its structure. Beyond seismology, there are many new, emerging areas for correlation-based imaging methods, in passive synthetic aperture radar or in optical speckle intensity correlations for communications and imaging, as discussed in the last chapters of the book.

The subject of this book is multidisciplinary. It uses mathematical tools from probability and stochastic processes, partial differential equations and asymptotic analysis, combined with the physics of wave propagation and modeling of imaging modalities in complex environments. However, the essential results can be obtained at an elementary level by using the multidimensional stationary phase method. This book is aimed at readers with interdisciplinary interests, and in particular students and researchers engaged with imaging methodologies related to wave propagation and sensor arrays.

Acknowledgments

We would like to thank our colleagues and collaborators in our work on imaging and random media: Habib Ammari, Guillaume Bal, Greg Beroza, Biondo Biondi, Liliana Borcea, Thomas Callaghan, Michel Campillo, Jon Claerbout, Nicolai Czink, Manos Daskalakis, Maarten de Hoop, Sjoerd de Ridder, Christos Evangelides, Albert Fannjiang, Christophe Gomez, Wenjia Jing, Joe Keller, Nicos Melis, Miguel Moscoso, Alexei Novikov, Arogyaswami Paulraj, Lenya Ryzhik, Arlen Schmidt, Adrien Semin, Knut Sølna, Chrysoula Tsogka, and Howard Zebker. Their contributions in the ever-expanding field of imaging in complex media and its applications have profoundly influenced our views and the writing of this book.

George Papanicolaou would like to thank Dr. Arje Nachman at the Air Force Office of Scientific Research for his support over many years of work in imaging and random media. Josselin Garnier would like to acknowledge support for this work from the European Research Council.

Most of this book was written while we were visiting at the Institut des Hautes Études Scientifiques (IHÉS) in Bures-sur-Yvette. We thank our colleagues at IHÉS for their support and hospitality.

Paris, France Stanford, California Josselin Garnier George Papanicolaou