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The Homogeneous and Isotropic Universe

Notation

In this book we denote the derivative with respect to physical time by a prime and

the derivative with respect to conformal time by a dot,

τ = physical (cosmic) time
dX

dτ
≡ X′, (1.1)

t = conformal time
dX

dt
≡ Ẋ. (1.2)

Spatial 3-vectors are denoted by a boldface symbol such as k or x whereas four-

dimensional spacetime vectors are denoted as x = (xμ).

We use the metric signature (−, + , + ,+) throughout the book.

The Fourier transform is defined by

f (k) =
∫

d3x f (x) eik·x, (1.3)

so that

f (x) =
1

(2π)3

∫

d3k f (k) e−ik·x. (1.4)

We use the same letter for f (x) and for its Fourier transform f (k). The spectrum

Pf (k) of a statistically homogeneous and isotropic random variable f is given by

〈f (k)f ∗(k′)〉 = (2π)3 δ(k − k′)Pf (k). (1.5)

Since it is isotropic, Pf (k) is a function only of the modulus k = |k|.
Throughout this book we use units where the speed of light, c; Planck’s

constant, h̄; and Boltzmann’s constant, kB , are unity: c = h̄ = kB = 1. Length and

time therefore have the same units and energy, mass, and momentum also have the

same units, which are inverse to the unit of length. Temperature has the same units
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2 The Homogeneous and Isotropic Universe

as energy. We may use cm−1 to measure energy, mass, and temperature, or eV−1 to

measure distances or times. We shall use whatever unit is convenient to discuss a

given problem. Conversion factors can be found in Appendix 1.

1.1 Homogeneity and Isotropy

Modern cosmology is based on the hypothesis that our Universe is to a good

approximation homogeneous and isotropic on sufficiently large scales. This

relatively bold assumption is often called the “cosmological principle.” It is an

extension of the Copernican principle stating that not only should our place in the

Solar System not be a special one, but also that the position of the Milky Way in the

Universe should be in no way statistically distinguishable from the position of other

galaxies. Furthermore, no direction should be distinguished. The Universe looks

statistically the same in all directions. This, together with the hypothesis that the

matter density and geometry of the Universe are smooth functions of the position,

implies homogeneity and isotropy on sufficiently large scales. Isotropy around

each point together with analyticity actually already implies homogeneity of

the Universe.1 A formal proof of this quite intuitive result can be found in

Straumann (1974).

But which scale is “sufficiently large”? Certainly not the Solar System or

our Galaxy. But also not the size of galaxy clusters. [In cosmology, distances

are usually measured in Mpc (Megaparsec). 1 Mpc = 3.2615 × 106 light years

= 3.0856 × 1024 cm is a typical distance between galaxies; the distance between

our neighbor Andromeda and the Milky Way is about 0.7 Mpc. These and other

connections between frequently used units can be found in Appendix 1.]

It turns out that the scale at which the galaxy distribution becomes homogeneous

is difficult to determine. From the analysis of the Sloan Digital Sky Survey (SDSS)

it has been concluded that the irregularities in the galaxy density are still on the

level of a few percent on scales of 100 Mpc (Hogg et al., 2005). Fortunately,

we know that the geometry of the Universe shows only small deviations from

the homogeneous and isotropic background, already on scales of a few Mpc. The

geometry of the Universe can be tested with the peculiar motion of galaxies, with

lensing, and in particular with the cosmic microwave background (CMB).

The small deviations from homogeneity and isotropy in the CMB are of utmost

importance, since, most probably, they represent the “seeds,” that, via gravitational

instability, have led to the formation of large-scale structure, galaxies, and eventu-

ally solar systems with planets that support life in the Universe.

1 If “analyticity” is not assumed, the matter distribution could also be fractal and still statistically isotropic
around each point. For a detailed elaboration of this idea and its comparison with observations see Sylos
Labini et al. (1998).
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1.2 The Background Geometry of the Universe 3

Furthermore, we suppose that the initial fluctuations needed to trigger the process

of gravitational instability stem from tiny quantum fluctuations that have been

amplified during a period of inflationary expansion of the Universe. I consider

this connection of the microscopic quantum world with the largest scales of the

Universe to be of breathtaking philosophical beauty.

In this chapter we investigate the background Universe. We shall first discuss

the geometry of a homogeneous and isotropic spacetime. Then we investigate

two important events in the thermal history of the Universe. Finally, we study the

paradigm of inflation. This chapter lays the basis for the following ones where we

shall investigate fluctuations on the background, most of which can be treated in

first-order perturbation theory.

1.2 The Background Geometry of the Universe

1.2.1 The Friedmann Equations

In this section we assume a basic knowledge of general relativity. The notation and

sign convention for the curvature tensor that we adopt are specified in Appendix 2,

Section A2.1.

Our Universe is described by a four-dimensional spacetime (M,g) given by

a pseudo-Riemannian manifold M with metric g . A homogeneous and isotropic

spacetime is one that admits a slicing into homogeneous and isotropic, that is,

maximally symmetric, 3-spaces. There is a preferred geodesic time coordinate τ ,

called “cosmic time,” such that the 3-spaces of constant time, �τ = {x|(τ,x) ∈ M},
are maximally symmetric spaces, hence spaces of constant curvature. The metric g

is therefore of the form

ds2 = gμν dxμ dxν = −dτ 2 + a2(τ )γij dxi dxj . (1.6)

The function a(τ) is called the scale factor and γij is the metric of a 3-space of

constant curvature K . Depending on the sign of K this space is locally isometric to

a 3-sphere (K > 0); a three-dimensional pseudo-sphere (K< 0); or flat, Euclidean

space (K = 0). In later chapters of this book we shall mainly use “conformal time”

t defined by a dt = dτ , so that

ds2 = gμν dxμ dxν = a2(t)
(

−dt2 + γij dxi dxj
)

. (1.7)

The geometry and physics of homogeneous and isotropic solutions to Einstein’s

equations were first investigated mathematically in the early 1920s by Friedmann

(1922, 1924) and physically as a description of the observed expanding Universe
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4 The Homogeneous and Isotropic Universe

in 1927 by Lemaı̂tre.2 Later, Robertson (1936), Walker (1936), and others redis-

covered the Friedmann metric and studied several additional aspects. However,

since we consider the contributions by Friedmann and Lemaı̂tre to be far more

fundamental than the subsequent work, we shall call a homogeneous and isotropic

solution to Einstein’s equations a “Friedmann–Lemaı̂tre universe” (FL universe) in

this book.

It is interesting to note that the Friedmann solution breaks Lorentz invariance.

Friedmann universes are not invariant under boosts; there is a preferred cosmic

time τ , the proper time of an observer who sees a spatially homogeneous and

isotropic universe. Like so often in physics, the Lagrangian and therefore also the

field equations of general relativity are invariant under Lorentz transformations, but

a specific solution in general is not. In that sense we are back to Newton’s vision

of an absolute time. But on small scales, for example, the scale of a laboratory, this

violation of Lorentz symmetry is, of course, negligible.

The topology is not determined by the metric and hence by Einstein’s equations.

There are many compact spaces of negative or vanishing curvature (e.g., the torus),

but there are no infinite spaces with positive curvature. A beautiful treatment of the

fascinating, but difficult, subject of the topology of spaces with constant curvature

and their classification is given in Wolf (1974). Its applications to cosmology are

found in Lachieze-Rey and Luminet (1995).

Forms of the metric γ , which we shall often use, are

γij dxi dxj =
δij dxi dxj

(1 + 1
4
Kρ2)2

, (1.8)

γij dxi dxj = dr2 + χ2(r)
(

dθ2 + sin2(θ) dϕ2
)

, (1.9)

γij dxi dxj =
dR2

1 − KR2
+ R2

(

dθ2 + sin2(θ) dϕ2
)

, (1.10)

where in Eq. (1.8)

ρ2 =
3

∑

i,j=1

δijx
ixj, and δij =

{

1 if i = j,

0 else ,
(1.11)

and in Eq. (1.9);

χ(r) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

r in the Euclidean case, K = 0,

1√
K

sin(
√

Kr) in the spherical case, K > 0,

1√
|K| sinh(

√
|K|r) in the hyperbolic case, K < 0.

(1.12)

2 In the English translation of (Lemaı̂tre, 1927) from 1931 Lemaı̂tre’s somewhat premature but pioneering
arguments that the observed Universe is actually expanding have been omitted.
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1.2 The Background Geometry of the Universe 5

Often one normalizes the scale factor such that K = ±1 whenever K 
= 0. One has,

however, to keep in mind that in this case r and K become dimensionless and the

scale factor a has the dimension of length. If K = 0 we can normalize a arbitrarily.

We shall usually normalize the scale factor such that a0 = 1 and the curvature is

not dimensionless. The coordinate transformations that relate these coordinates are

determined in Exercise 1.1.

Owing to the symmetry of spacetime, the energy–momentum tensor can only be

of the form

(

Tμν

)

=
(

−ρg00 0

0 P gij

)

. (1.13)

There is no additional assumption going into this ansatz, such as the matter content

of the Universe being an ideal fluid. It is a simple consequence of homogeneity and

isotropy and is also verified for scalar field matter, a viscous fluid, or free-streaming

particles in a FL universe. As usual, the energy density ρ and the pressure P are

defined as the time- and space-like eigenvalues of (T μ
ν ).

The Einstein tensor can be calculated from the definition (A2.12) and

Eqs. (A2.32)–(A2.39),

G00 = 3

[

(

a′

a

)2

+
K

a2

]

(cosmic time), (1.14)

Gij = −
(

2a′′a + a′2 + K
)

γij (cosmic time), (1.15)

G00 = 3

[

(

ȧ

a

)2

+ K

]

(conformal time), (1.16)

Gij = −
(

2

(

ȧ

a

)•
+

(

ȧ

a

)2

+ K

)

γij (conformal time). (1.17)

The Einstein equations relate the Einstein tensor to the energy–momentum con-

tent of the Universe via Gμν = 8πGTμν − gμν�. Here � is the so-called cosmo-

logical constant. In an FL universe the Einstein equations become

(

a′

a

)2

+
K

a2
=

8πG

3
ρ +

�

3
(cosmic time), (1.18)

2
a′′

a
+

(a′)2

a2
+

K

a2
= −8πGP + � (cosmic time), (1.19)

(

ȧ

a

)2

+ K =
8πG

3
a2ρ +

a2�

3
(conformal time), (1.20)

2

(

ȧ

a

)•
+

(

ȧ

a

)2

+ K = −8πGa2P + a2� (conformal time). (1.21)
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6 The Homogeneous and Isotropic Universe

Energy “conservation,” T
μν

;μ = 0, yields

ρ̇ = −3(ρ + P)

(

ȧ

a

)

or, equivalently ρ ′ = −3(ρ + P)

(

a′

a

)

. (1.22)

This equation can also be obtained by differentiating Eq. (1.18) or (1.20) and insert-

ing (1.19) or (1.21); it is a consequence of the contracted Bianchi identities (see

Appendix 2, Section A2.1). Equations (1.18)–(1.21) are the Friedmann equations.

The quantity

H(τ) ≡
a′

a
=

ȧ

a2
≡ Ha−1, (1.23)

is called the Hubble rate or the Hubble parameter, where H is the comoving Hubble

parameter. At present, the Universe is expanding, so that H0 > 0. We parameterize

it by

H0 = 100 h km s−1 Mpc
−1 ≃ 3.241 × 10−18 h s−1 ≃ 0.3336 × 10−3 h Mpc−1.

Observations show (Freedman et al., 2001) that h ≃ 0.72 ± 0.1. Equation (1.22) is

easily solved in the case w = P/ρ = constant. Then one finds

ρ = ρ0(a0/a)3(1+w), (1.24)

where ρ0 and a0 denote the value of the energy density and the scale factor at

present time, τ0. In this book cosmological quantities indexed by a “0” are evaluated

today, X0 = X(τ0). For nonrelativistic matter, Pm = 0, we therefore have ρm ∝
a−3 while for radiation (or any kind of massless particles) Pr = ρr/3 and hence

ρr ∝ a−4. A cosmological constant corresponds to P� = −ρ� and we obtain,

as expected, ρ� = constant. If the curvature K can be neglected and the energy

density is dominated by one component with w = constant, inserting Eq. (1.24)

into the Friedmann equations yields the solutions

a ∝ τ 2/3(1+w) ∝ t2/(1+3w) w = constant 
= −1, (1.25)

a ∝ τ 2/3 ∝ t2 w = 0, (dust), (1.26)

a ∝ τ 1/2 ∝ t w = 1/3, (radiation), (1.27)

a ∝ exp(Hτ) ∝ 1/|t | w = −1, (cosmol. const.). (1.28)

It is interesting to note that if w < −1, so-called phantom matter, we have

to choose τ < 0 to obtain an expanding universe and the scale factor diverges

in finite time, at τ = 0. This is the so-called big rip. Phantom matter has many

problems but it is discussed in connection with the supernova type 1a (SN1a) data,

which are compatible with an equation of state with w < −1 or with an ordinary

cosmological constant (Caldwell et al., 2003). For w < − 1
3

the time coordinate t
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1.2 The Background Geometry of the Universe 7

has to be chosen as negative for the Universe to expand and spacetime cannot be

continued beyond t = 0. But t = 0 corresponds to a cosmic time, the proper time of

a static observer, τ = ∞; this is not a singularity. (The geodesics can be continued

until affine parameter ∞.)

We also introduce the adiabatic sound speed cs determined by

c2
s =

P ′

ρ ′ =
Ṗ

ρ̇
. (1.29)

From this definition and Eq. (1.22) it is easy to see that

ẇ = 3H(1 + w)
(

w − c2
s

)

. (1.30)

Hence w = constant if and only if w = c2
s or w = −1. Note that already in a

simple mixture of matter and radiation w 
= c2
s 
= constant (see Exercise 1.3).

Equation (1.18) implies that for a critical value of the energy density given by

ρ(τ) = ρc(τ ) =
3H 2

8πG
(1.31)

the curvature and the cosmological constant vanish. The value ρc is called the

critical density. The ratio �X = ρX/ρc is the “density parameter” of the component

X. It indicates the fraction that the component X contributes to the expansion of

the Universe. We shall make use especially of

�r ≡ �r(τ0) =
ρr(τ0)

ρc(τ0)
, (1.32)

�m ≡ �m(τ0) =
ρm(τ0)

ρc(τ0)
, (1.33)

�K ≡ �K(τ0) =
−K

a2
0H

2
0

, (1.34)

�� ≡ ��(τ0) =
�

3H 2
0

. (1.35)

1.2.2 The “Big Bang” and “Big Crunch” Singularities

We can absorb the cosmological constant into the energy density and pressure by

redefining

ρeff = ρ +
�

8πG
, Peff = P −

�

8πG
.
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8 The Homogeneous and Isotropic Universe

Since � is a constant and ρeff +Peff = ρ +P , the conservation equation (1.22) still

holds. A first interesting consequence of the Friedmann equations is obtained when

subtracting Eq. (1.18) from (1.19). This yields

a′′

a
= −

4πG

3
(ρeff + 3Peff). (1.36)

Hence if ρeff + 3Peff > 0, the Universe is decelerating. Furthermore, Eqs. (1.22)

and (1.36) then imply that in an expanding and decelerating universe

ρ ′
eff

ρeff

< −2
a′

a
,

so that ρ decays faster than 1/a2. If the curvature is positive, K > 0, this implies

that at some time in the future, τmax, the density has dropped down to the value of

the curvature term, K/a2(τmax) = 8πGρeff(τmax). Then the Universe stops expand-

ing and recollapses. Furthermore, this is independent of curvature; as a′ decreases

the curve a(τ) is concave and thus cuts the a = 0 line at some finite time in the

past. This moment of time is called the “big bang.” The spatial metric vanishes

at this value of τ , which we usually choose to be τ = 0; and spacetime cannot

be continued to earlier times. This is not a coordinate singularity. From the Ricci

tensor given in Eqs. (A2.32) and (A2.33) one obtains the Riemann scalar

R = 6

[

a′′

a
+

(

a′

a

)2

+
K

a2

]

,

which also diverges if a → 0. Also the energy density, which grows faster than

1/a2 as a → 0, diverges at the big bang.

If the curvature K is positive, the Universe contracts after τ = τmax and, since

the graph a(τ) is convex, reaches a = 0 at some finite time τc, the time of the

“big crunch.” The big crunch is also a physical singularity beyond which spacetime

cannot be continued.

It is important to note that this behavior of the scale factor can be implied only

if the so-called strong energy condition holds, ρeff + 3Peff > 0. This is illustrated

in Fig. 1.1.

1.2.3 Cosmological Distance Measures

It is notoriously difficult to measure distances in the Universe. The position of an

object in the sky gives us its angular coordinates, but how far away is the object

from us? This problem had plagued cosmology for centuries. It took until 1915–

1920 when Hubble discovered that the “spiral nebulae” are actually not situated

inside our own galaxy but much further away. This then led to the discovery of the

expansion of the Universe.
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1.2 The Background Geometry of the Universe 9

Fig. 1.1 The kinematics of the scale factor in a Friedmann–Lemaı̂tre universe that
satisfies the strong energy condition, ρeff + 3Peff > 0.

For cosmologically distant objects, a third coordinate, which is today relatively

easy to obtain, is the redshift z experienced by the photons emitted from the object.

A given spectral line with intrinsic wavelength λ is redshifted due to the expansion

of the Universe. If it is emitted at some time τ , it reaches us today with wavelength

λ0 = λa0/a(τ) = (1 + z)λ. This leads to the definition of the cosmic redshift

z(τ ) + 1 =
a0

a(τ)
. (1.37)

On the other hand, an object at physical distance d = a0r away from us, at redshift

z ≪ 1, recedes with speed v = H0d. To the lowest order in z, we have τ0 − τ ≈ d

and a0 ≈ a(τ) + a′(τ0 − τ), so that

1 + z ≈ 1 +
a′

a
(τ0 − τ) ≈ 1 + H0d .

For objects that are sufficiently close, z ≪ 1. We therefore have v ≈ z and hence

H0 = z/d . This is the method usually applied to measure the Hubble constant.

There are different ways to measure distances in cosmology, all of which give

the same result in a Minkowski universe but differ in an expanding universe. They

are, however, simply related, as we shall see.

One possibility is to define the distance dA to a certain object of given physical

size � seen at redshift z1 such that the angle subtended by the object is given by

ϑ = �/dA, dA = �/ϑ . (1.38)

This is the angular diameter distance; see Fig. 1.2.
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10 The Homogeneous and Isotropic Universe

Fig. 1.2 The two ends of the object emit a flash simultaneously from A and B at
z1 which reaches us today. The angular diameter distance to A (or B) is defined
by dA = �/ϑ .

We now derive the expression

dA(z) =
1

√
|�K |H0(1 + z)

χ

(

√

|�K |H0

∫ z

0

dz′

H(z′)

)

, (1.39)

for the angular diameter distance to redshift z. In a given cosmological model, this

allows us to express the angular diameter distance for a given redshift as a function

of the cosmological parameters.

To derive Eq. (1.39) we use the coordinates introduced in Eq. (1.9). Without loss

of generality we set r = 0 at our position. We consider an object of physical size

� at redshift z1 simultaneously emitting a flash at both of its ends, A and B. Hence

r = r1 = t0−t1 at the position of the flashes, A and B at redshift z1. If � denotes the

physical arc length between A and B we have � = a(t1)χ(r1)ϑ = a(t1)χ(t0−t1)ϑ ,

that is,

ϑ =
�

a(t1)χ(t0 − t1)
. (1.40)

According to Eq. (1.38) the angular diameter distance to t1 or z1 is therefore

given by

a(t1)χ(t0 − t1) ≡ dA(z1). (1.41)

To obtain an expression for dA(z) in terms of the cosmic density parameters and

the redshift, we have to calculate (t0 − t1)(z1).

Note that in the case K = 0 we can normalize the scale factor a as we want, and

it is convenient to choose a0 = 1, so that comoving scales become physical scales

today. However, for K 
= 0, we have already normalized a such that K = ±1 and

χ(r) = sin r or sinh r . In this case, we have no normalization constant left and a0

has the dimension of a length. The present spatial curvature of the Universe then is

±1/a2
0 .

The Friedmann equation Eq. (1.20) reads

ȧ2 =
8πG

3
a4ρ +

1

3
�a4 − Ka2, (1.42)
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