

Index of Notations

+ vector addition, 89, 114 a,a_{ij} adjacency matrix, 17, 165 $+^{\mathcal{F}}$ addition in field \mathcal{F} , 90, 103 · scalar and matrix multiplication, 89, 114 \mathcal{F} multiplication in field \mathcal{F} , 97 ⊙ Hadamard product, 115 ⊗ Kronecker product, 115 × Cartesian product of two sets, 71 o operator composition, 106 □ Cartesian graph product, 71 subset, subgraph, 50 operator graph identity, 155 \cong , \leftrightarrow graph isomorphism, 50 ê operator graph isomorphism, 154 |.| modulus; abs-operator, 115 |S| cardinality of set S $\|.\|_p$ ℓ^p -norm, 31 $\langle \boldsymbol{q}^k \rangle$ k-moment of $\boldsymbol{q} \in \mathbb{Q}$, 32 [.] floor, 95; floor operator, 102 [.] ceiling, 95; ceiling operator, 102 .^T transpose; transposition operator, 115 $\hat{\mathscr{G}}$ operator representation of \mathscr{G} , 139 \hat{O} graph observable, 164 Ø empty set, 14 **0** zero operator, 109, 110 $\mathbf{0}^n$ all-zeroes vector, 109 $\mathbf{0}^{m \times n}$ all-zeroes matrix, 109 I^n all-ones vector, 116 $I^{m \times n}$ all-ones matrix, 190 A total adjacency, 28, 166 \mathbf{A}^d, A_i^d node adjacency, 40 A_{ij} matrix of adjacency relations, 44

 a^d node degree sequence, 31 a_i^d node degree, 31 a_i^{im} average nearest neighbour degree, 35 A algebra, 107; operator algebra, 108 α asymmetry index, 29 α_w weighted asymmetry index, 38 B[p,q] Euler beta function, 279 \mathbb{B} Boolean set, Galois field GF(2), 17 \mathbb{B}_{-1} Galois field GF(3), 102 C, $C^d_{(k)}$ global clustering coefficient, 56 C^d total global clustering coefficient, 57 C_i local clustering coefficient, 56 $\langle C_i \rangle$ clustering coefficient, 56 C_i connected component, 289 $_{\iota}^{\text{rand}}(\mathcal{S})$ random k-subset over \mathcal{S} , 161 circ[.] circulant matrix, 65, 115 C positional chess graph, 294 \mathcal{C}_n cycle graph, 65, 121 \mathcal{C}_n^d cycle digraph, 66, 156 $\mathcal{C}_{n,k}$ k-ring graph, 67, 162 $\mathcal{C}_{n,k}^d$ k-ring digraph, 69, 161 $\mathcal{C}_{n,k,p}$ randomised *k*-ring graph, 208 $\mathfrak{C}_m(S)$ set of *m*-combinations over S, 137 *D* geodesic graph distance, 47 d^d , d^d_i node distance, 47 d, d_{ij} geodesic distance matrix, 44 d geodesic graph diameter, 47 diag[.] diagonal matrix, 99, 115 $\delta(x)$ Dirac delta function, 59 $\delta[q]$ Kronecker delta function, 28 $\delta[.]$ Kronecker delta operator, 103 $\delta^{\mathcal{F}}[.]$ Kronecker delta op. in \mathcal{F} , 104 δ [.] inverse Kronecker delta operator, 104

334

Index of Notations

 $\bar{\delta}^{\mathcal{F}}[.]$ inverse Kronecker delta operator M linear map, 95 in \mathcal{F} , 104 n operator graph transformation, 153 δ_k^n Kronecker delta vector, 99 N_a total adjacency count, 28 $\delta_{kl}^{\tilde{m}\times n}$ Kronecker delta matrix, 119 N_{ae} number of asymmetrical edges, 29 Δ_I^m 204 gen. Kronecker delta matrix, N_{awe} number of asymmetrical weighted edges, 38 N_c number of connected node pairs, 48 $N_{ij}^{d-d'}$ number of shared neighbours, 34 \mathcal{E} set of edges, 14 $\hat{\mathcal{E}}$ set of edge operators, 139 N_e number of edges, 28, 167 \mathcal{E}_{cl} classical subset of \mathcal{E} , 139 $\hat{\mathcal{E}}_{aux}$ auxiliary subset of $\hat{\mathcal{E}}$, 143 N_a^{max} maximum number of edges, 29 N_l number of self-loops, 28, 166 $|\mathcal{E}|$ total adjacency count, 28 N_n number of nodes, 27, 166 N_m^C number of cycles, 272 \tilde{N}_m^C minimum number of Eule & algebra of edge operators, 144 **&** edge operator, 139 ϵ, ϵ_i geodesic node eccentricity, 46 minimum number of Eulerian cycles, $_{ee}^{g}$ frequency of occurrences, 51 $N_m^{\mathcal{P}}$ number of paths, 269 number of Eulerian paths, 168 \bar{F}_{n}^{d} , \bar{F}_{n}^{ud} frequency of paths, 54 $\mathring{F}_{n}^{d}, \mathring{F}_{n}^{ud}$ frequency of cycles, 54 N_m^W, N_m^W , number of walks, 119, 123, f file, 292 \mathcal{F} set of faces, 23; field, 89 265 N_m^W number of closed walks, 265 N_m^W number of Eulerian walks, 124 N_m^W minimum number of Eulerian walks, 137 $N_n^{C_i}$ size of connected component, 289 I finite graph, 14 \$\bar{\mathcal{g}}\$ graph complement, 20 \mathbb{G} , $\mathbb{G}_{n,k}$ set of finite graphs, 139, 153 **6** operator graph generator, 169 γ Euler–Mascheroni constant, 262 N_{se} number of symmetrical edges, 29 H_n harmonic number, 63 N_{swe} number of sym. weighted edges, 38 \mathcal{H} graph pattern, 51 **n** node, 139 I^n identity matrix, 99 n_0 null-node, 142 id[.] identity operator, 116 n_i^d vector of source/target nodes, 33 N set of nodes, 14 I set of ordered index pairs, 204 \mathcal{K}_0^d null-digraph, 172 \mathcal{K}_1 trivial graph, 172, 173 \hat{N} set of nodes of $\hat{\mathcal{G}}$, 139 \hat{N}_{cl} classical subset of \hat{N} , 139 \mathcal{K}_n complete simple graph, 183 \hat{N}_{aux} auxiliary subset of \hat{N} , 143 \mathcal{K}_n^d complete relational digraph, 172 |N| graph order, 27 L characteristic geodesic path length, O_{xy} occupation state, 232 o, o_i occupation vector, 234 l characteristic path length, 48 O complexity scaling behaviour, 5 ℓ geodesic connectivity length, 48 O algebraic structure, 106 \mathcal{L} set of self-looped nodes, 28 $\mathcal{O}_{\mathcal{H}}^{\mathcal{G}}$ set of occurrences, 51 $|\mathcal{L}|$ number of self-loops, 28 $|\mathcal{O}_{\mathcal{H}}^{\mathcal{G}}|$ frequency of occurrences, 51 λ_d is directed, 27, 167 Doperator, 97 λ_{ew} has Eulerian walk, 138, 168 p[q;q] probability density function, 32 λ_l is self-looped, 27, 167 p[q; q'|q] conditional pdf, 35 λ_w is weighted, 27, 167 $p[\Sigma(\mathcal{G}); \mu]$ spectral density, 58 λ_{wd} is weight-directed, 27 $\mathcal{L}_{m,n}^{(4,4)}$ square grid graph, 71 p_c critical probability, 84 \mathcal{P}_{ij} path, 42 $\mathcal{L}(\mathcal{G})$ line graph of \mathcal{G} , 91 $\mathcal{P}_{ij}, \mathcal{P}_{ij}^m$ set of paths, 43, 53 $\mathfrak{L}_{m,n}^{(4,4)}$ projection operator, 234 \mathcal{P}_n path graph, 61 \mathcal{P}_n^d path digraph, 63, 175 $\max q$ maximum value of qmax[.] max-operator, 116 $(q)_n$ Pochhammer symbol, 278 $\max q$ minimum value of qr rank, 292 min[.] min-operator, 116

Index of Notations

335

r geodesic graph radius, 47 $\bar{\mathbf{r}}^k$ column randomisation operator, 161 \mathbf{r}^p binomial randomisation operator, 150 ρ connectedness, 29 \mathcal{R} ring, 105 $\mathcal{R}^{BA}_{n,k,n_0,k_0}$ Barabási–Albert random graph, 8Ŏ $\mathcal{R}_{n,k}^{ER}$ Erdős–Rényi random graph, 74, 184 $\mathcal{R}_{n,k}^{d\tilde{E}R}$ Erdős–Rényi random digraph, 74 $\mathcal{R}_{n,k}^G$ Gilbert random graph, 75 $\mathcal{R}_{n,k}^{dG}$ Gilbert random graph, 74 $\mathcal{L}_{m,n,p}$ randomised square grid graph, 235 $\frac{WS}{n,k,q}$ Watts–Strogatz random graph, 78 S^{d} global small-worldness index, 261 $S_{ij}^{d-d'}$ similarity of nearest neighbours, similarity of nearest neighbours, 34 s^d , s_i^d node strength, 40 s^n, s_i^n node state vector, 91 \mathbf{s}^e, s_i^e edge state vector, 91 sgn[.] signum, 95; signum operator, 102 [.] signum operator in \mathcal{F} , 103 $\frac{\log \pi}{\sin \mathcal{F}}$ [.] inverse signum operator in \mathcal{F} ,109 $S^n(\mathcal{G})$ node state vector space, 91

 $S^{e}(\mathcal{G})$ edge state vector space, 91 $\mathfrak{S}_m(\mathcal{S})$ ordered *m*-subsets over \mathcal{S} , 123 \mathcal{S}_n star graph, 176, 174 $\mathcal{S}_{n,m}$ generalised star graph, 218 $\mathcal{S}_{n,m,p}$ randomised gen. star graph, 220 $\Sigma(\mathcal{G})$ graph spectrum, 58 T[.] total sum operator, 116 Tr[.] trace operator, 104 $Tr^{\mathcal{F}}[.]$ trace operator in \mathcal{F} , 105 $\overline{\text{Tr}}[.]$ inverse trace operator, 110 $\overline{\operatorname{Tr}}^{\mathcal{F}}[.]$ inverse trace operator in \mathcal{F} , 111 \mathbf{t}_{ij}^{reg} regular chess move, 316 \mathbf{t}_{ii}^{ep} en passant capture move, 317 \mathbf{t}_{ii}^{0} castling move, 317 $\mathfrak{T}_m(S)$ ordered *m*-tuples over S, 123 τ assortativity, 36 V vector space, 89 \boldsymbol{w}, w_{ij} weight matrix, 14, 165 W potential walk, 98 W_{ij} walk, 42 W_{ij} set of walks, 265 W_{ij}^m set of walks of length m, 265 w[.] weight matrix operator, 296

Subject Index

abs-operator, 115 Barabási-Albert random graph, 6, 77, 79-81, adjacency matrix, 17 adjacency matrix observable, 225 graph observable, 165, 193 canonical model, 217-220 algebra, 106 associative, 107 operator graph generator, 224 operator representation, 225 commutative, 107 total adjacency observable, 224, 241, 277, of operators, 108 algebraic structure, 106 total node degree observable, 279 appearance of a graph, 50 total node degree sequence observable, 224 approximate degree-matched random digraph, biclique, see bipartite graph 226-231 bilinear product, 107 adjacency matrix observable, 230 binomial randomisation operator, 150, 196, operator graph generator, 229 operator representation, 229 addition, 198 approximate degree-matched random graph algebra, 198 asymmetry index observable, 248 composition, 150, 197 number of asymmetrical edges observable, expectation values, 150 multiplication, 150, 202 number of symmetrical edges observable, bipartite graph, 22, 23 biclique, 22, 23 total adjacency observable, 242 bond, see edge assortative graph, 36 Boolean set, 17, 90 assortativity, 36 operation, 90 asymmetry index, 29 truth table, 90 graph observable, 243 Boolean vector space, 90 average geodesic graph distance, 48 brain network, 261 average geodesic node distance, see characteristic path length Cartesian graph product, 71 average nearest neighbour degree, 35 ceiling function, 95, 102 average node adjacency, 40 ceiling operator, 102 average node degree, 33, 277 algebra, 109 average node distance, 47 composition, 106 average node strength, 41 central node, 47 average number of shared neighbours, 34 characteristic geodesic path length, 48 average similarity of nearest neighbours, 35 characteristic path length, 48

Subject Index

337

chess, 292	operator representation, 149
castling move, 295	relational, 17
checkmate, 292	self-looped, 17, 27
en passant move, 294	weight-directed, 37
regular move, 292, 294	weighted, 17, 27
special move, 292	distance, 42
chess graph, see positional chess graph	domino graph, 71, 173
circulant diagonalisation theorem, 252, 256,	edge, 2, 13
266	directed, 15
circulant operator, 115	half-edge, 227
closed geodesics, 44	multiedge, 17
clustering, 55	self-loop, 16
clustering coefficient, 56	weighted, 14
column randomisation operator, 161, 184,	edge operator, 127, 140
188–191, 196, 199	edge-generating operator, see edge operator
addition, 189	edge-to-vertex dual, see line graph
algebra, 198	endomorphism, 96
composition, 189, 196	Erdős–Rényi random graph
complete graph, 19, 22, 85, 296	total global clustering coefficient
biclique, 22, 23	observable, 259
operator representation, 172, 184, 211, 214,	Erdős–Rényi random graph, 6, 73–75, 77, 160,
297	162, 181–200
total global clustering coefficient	adjacency matrix observable, 187, 193
observable, 253	asymmetry index observable, 244
computational complexity, 4	generation, 161
conditional node degree distribution, 35	number of asymmetrical edges observable,
configuration model, 227	244
connected component, 289	number of symmetrical edges observable,
connected graph, 21, 22	244
connected nodes, 22, 44	operator graph generator, 184, 193
connectedness, 29	operator representation, 185, 193
critical connectivity threshold, see critical	total adjacency observable, 239
probability	total global clustering coefficient
critical percolation threshold, 274	observable, 255, 259
critical probability, 83, 274	Euclidean distance, 34
critical transition, 84, 274	Euler's formula, 23
cycle, 23, 42	evolving graph, 79
Eulerian, 131	exact graph, 61
Hamiltonian, 42, 65, 276	cycle graph, 65, 66
cycle graph, 63–67, 82, 85	k-ring graph, 67, 69
operator graph generator, 174	lattice graph, 70
operator graph transformation, 158	path graph, 61, 63
operator representation, 158, 165, 175	square grid graph, 71
degree balance condition, 35	exhaustive search, 5
dense graph, 29	\mathcal{F} -algebra, 106
diagonal operator, 115	\mathcal{F} -linear map, see linear map
digraph, see directed graph	\mathcal{F} -linear operator, 97
Dirac delta function, 59	F-operator algebra, 108
directed edge, 15	F-operator graph, 144
directed graph, 15	face, 23
multigraph, 17	file, 292

338

Subject Index

finitary operation, 106	global small-worldness index, 261
finite graph, 14, 81	graph, 13
finite graph theory, 87	classical representation, 14
floor function, 95, 102	directed, 15, 17, 27
floor operator, 102	finite, 14
algebra, 109	multigraph, 17
composition, 106	operator graph, 144
four-colour problem, 24	operator representation, 139
frequency of occurence	self-looped, 16, 17, 27
cycles, 54	simple, 17
frequency of occurrence, 51	weight-directed, 37
graph patterns, 53	weighted, 17, 27
paths, 54, 269	graph complement, 20
frequent subgraph, see recurrent graph	graph inverse, see graph complement
pattern	graph isomorphism, 50, 154, 159
1	graph measure, 163
Galois field, see Boolean set, 103	degree-based, 30–36
geodesic connectivity length, 48	distance-based, 41–48
geodesic cycle, 44, 287	general, 27–30
geodesic distance, 44, 287	network motif, 48–57
graph observable, 287	spectral, 57–60
geodesic distance matrix, 44	weight-based, 36-41
geodesic graph diameter, 47	graph model
geodesic graph distance, 47	approximate degree-matched digraph,
geodesic graph radius, 47	229
geodesic loop, 44	Barabási-Albert model, 6, 80
geodesic node eccentricity, 46	cycle graph, 65, 66
geodesic path, see shortest path	Erdős–Rényi model, 6, 74
giant component, 86, 274	evolving graph, 79
Gilbert random graph, 74–77, 83, 149,	exact graph, 61
200–205, 237	Gilbert model, 74
adjacency matrix observable, 202, 205	k-ring graph, 67, 69
asymmetry index observable, 245	lattice graph, 70
asymptotic limit, 83–87	of Königsberg's bridges, 2
critical percolation threshold, 274, 276	path graph, 61, 63
number of asymmetrical edges observable,	random graph, 6, 61
245	scale-free graph, 80
number of closed walks observable, 266	square grid graph, 71
number of cycles observable, 272	static graph, 79
number of Hamiltonian cycles, 276	Watts-Strogatz model, 6, 78
number of Hamiltonian paths, 274	graph observable, 164, 285
number of paths observable, 270, 272	graph pattern, 49, 51, 52
number of symmetrical edges observable,	graph product, see Cartesian graph product
245, 273	graph spectrum, 58
number of walks observable, 266	graph sum, 20
operator graph generator, 201, 203	graph theory, 1, 14
operator representation, 151, 202, 203	graph transitivity, see global clustering
total adjacency observable, 240, 267, 271	coefficient
total global clustering coefficient	grid graph, see lattice graph
observable, 253	Hadamard product, 115
global clustering coefficient, 55, 56	half-edge, see stub
<i>5</i>	

Subject Index

339

handshaking lemma, 32 operator representation, 129, 136, 178 harmonic number, 63 paths, 43 potential walk, 98 has Eulerian walk, 138 set of nodes/edges, 15 has Fulerian walks observable, 168 subgraphs, 50 hexagonal grid graph, 71 walk-generating operators, 99, 100, 111 walks, 43 identical graphs, 155 weight matrix, 15 identity operator, 116 Königsberg bridge problem, 1, 93 induced subgraph, see subgraph classical solution, 1 is directed, 27 graph-theoretical solution, 41 graph observable, 167 operator graph-theoretical solution, 133, is self-looped, 27 138 graph observable, 167 operator solution, 89, 101, 113 is weight-directed, 37 Kronecker delta function, 28 is weighted, 27 Kronecker delta matrix, 119, 188 graph observable, 167 generalisation, 204, 215 isolated node, 21 Kronecker delta operator, 103 operator representation, 173 algebra, 110 isomorphic graphs, 50, 154 Boolean, 104 k-regular graph, 21, 22 composition, 106 k-ring graph, 64, 67-70, 78, 206, 210 generalisation, 268 graph complement, 206, 214 inverse, 104 operator graph generator, 174 inverse Boolean, 104 operator graph transformation, 161 Kronecker delta vector, 99, 187 operator representation, 161, 175, 214 Kronecker product, 115 randomised, 208, 210 ladder graph, 71, 175 total global clustering coefficient operator graph generator, 174 observable, 258 operator representation, 175 Königsberg bridge graph, 2, 14, 60 lattice graph, 70-73 assortativity, 36 line graph, 91 average number of shared neighbours, 34 linear map, 95 average similarity of nearest linear operator, 97 neighbours, 35 linear space, see vector space clustering coefficient, 56 link, see edge Eulerian walks, 101 local clustering coefficient, 56 geodesic distance matrix, 46 logical operation geodesic node eccentricity, 47 AND, 90, 289 global clustering coefficient, 56 XOR, 90 graph patterns, 49 Manhattan distance, see taxicab distance is directed/weighted/self-looped, 27 map, see operator line graph, 93, 94 matrix of adjacency relations, 44 matrix of adjacency relations, 45, 93 matrix operator, 97 node adjacency, 41 max-operator, 116 node degree sequence, 41 mesh graph, see lattice graph node strength, 41 min-operator, 116 node/edge state vector, 91 module, 105 node/edge state vector space, 91 multiedge, 17, 176, 227 number of Eulerian cycles, 137 multigraph, 17, 176 number of Eulerian walks, 130, 137 number of walks, 45, 130 nearest neighbour, 34, 92, 289 operator graph generator, 177 network, see graph

340

Subject Index

network motif, 51	occurrence of a graph, 51
node, 2, 13	operator, 89, 94, 97
central, 47	operator algebra, 108
connected, 22, 44	operator calculus, 88
endnode, 42, 272	operator composition, 106, 127
intermediate, 136	operator graph, 144
isolated, 21, 173	operator graph generator, 169
	operator graph identity, 155
null-node, 142	operator graph isomorphism, 154
peripheral, 47	operator graph observable, see graph
terminal, 61	observable
transitive, 55	operator graph seed, 169
node adjacency, 40	operator graph theory, 9, 117, 139–152 operator graph transform, 153
node connectivity, see node degree	operator graph transformation, 153
node degree, 31, 39	operator representation, 121, 139, 142
node degree distribution, 32	associative, 127
node degree sequence, 31	identity, 155
node distance, 47	isomorphism, 154
node strength, 40	minimal, 140
null-digraph, 172	non-associative, 127
number of asymmetrical edges, 29	operator graph generator, 169
graph observable, 243	transformation, 153
number of asymmetrical weighted edges, 38	operator representations, 146
number of closed walks, 265	order, see number of nodes
graph observable, 265	path, 42
number of connected node pairs, 48	endnode, 42
number of cycles, 272	Eulerian, 3, 42, 98
graph observable, 272	Hamiltonian, 42, 274
number of edges, 28	path graph, 61–64, 82
graph observable, 167	operator graph generator, 174
number of Eulerian paths observable, 168	operator representation, 175
number of Eulerian walks, 124	path length, 42
number of nodes, 27	percolation, 265, 274 peripheral node, 47
graph observable, 166	planar graph, 23, 70
number of paths, 269	Platonic graph, 25
graph observable, 269	Platonic solids, 25
- 1	positional chess graph, 292, 294
number of self-loops, 28	castling move, 295, 311, 317
graph observable, 166	check, 295, 317–320
number of shared neighbours, 34	checkmate, 295, 323
number of symmetrical edges, 29	en passant capture, 294, 309, 317
graph observable, 243	illegal capture move, 302
number of symmetrical weighted edges, 38	initial pawn move, 307
number of walks, 119, 123, 265	initial position, 292, 307, 322
graph observable, 265	maximum number of edges, 295 node states, 293
observable, 163	operator graph generator, 296, 320
occupation state, 232	operator graph transformation, 323
occupation vector, 234	operator representation, 297

Subject Index

341

spectral density, 58 pawn capture move, 307 regular move, 294, 304-309, 316 square graph, 71 special move, 309-315 square grid graph, 64, 71-73, 234 weight matrix, 294, 320 operator representation, 235 preferential attachment, 80 randomised, 231, 282 projection operator, 234, 283 star graph, 176, 218 generalised, 218 random graph, 61, 74 operator graph generator, 174 approximate degree-matched model, 229 operator representation, 176 Barabási-Albert model, 6, 80 randomised, 220 configuration model, 227 state vector, 89, 289, 293 Erdős-Rényi model, 6, 74 static graph, 79 Gilbert model, 74 strongly connected digraph, 22 Watts-Strogatz model, 6, 78 structural equivalence, 33 random graph theory, 7, 83 stub, 227 randomised square grid graph, 231-237 subcritical phase, 83 adjacency matrix, 235 subgraph, 50 adjacency matrix observable, 236 frequent, 51 connectedness observable, 283 in Gilbert random graphs, 84 number of paths observable, 283, 285 induced, 50 operator graph generator, 236 supercritical phase, 83 operator representation, 236 supergraph, 50 total adjacency observable, 283 symmetrisation, 18, 30, 246 rank, 292 recurrent graph pattern, 51 taxicab distance, 32, 73 regular graph, see k-regular graph tessellation, 70 regular tiling, see tessellation time complexity, 5 relational digraph, 17 total adjacency, 28 ring graph, see k-ring graph graph observable, 166, 239 total adjacency count, 28 scale-free graph, 80 total global clustering coefficient, 57, 249 seed, see operator graph seed graph observable, 250 self-loop, 16, 19, 227 total node degree, 31 operator representation, 148 self-looped graph, 16, 17 graph observable, 277 total node degree sequence, 31 shortest path, 44 total sum operator, 116 signum function, 95 trace operator, 104 signum operator, 103 \mathbb{B}_{-1} -algebra, 110 B-algebra, 111 Boolean, 105, 111 algebra, 109 composition, 106, 111 Boolean, 103 composition, 106, 110 inverse, 110 inverse Boolean, 109 Q-algebra, 111 transform, see operator graph transform similarity of nearest neighbours, 34 simple graph, 17 transitive nodes, 55 adjacency matrix observable, 165 transitivity, 55 size of connected component, 289 transposition operator, 115 small-world, 49, 260 tree graph, 24, 85 small-world network, see Watts-Strogatz triangle graph, 119 random graph multigraph, 125 space complexity, 5 number of Eulerian paths, 124, 129 sparse graph, 29 number of Eulerian walks, 124, 129

342

Subject Index

number of asymmetrical edges observable, triangle graph (cont.) number of walks, 123, 128 246 operator graph transformation, 156 number of symmetrical edges observable, operator representation, 121, 126, 156 246 walks, 121 operator graph generator, 212, 214 triangular grid graph, 71 operator representation, 212, 214 trivial graph, 173 total adjacency observable, 241 operator graph generator, 172 total global clustering coefficient observable, 257 operator representation, 173 weakly connected digraph, 22 vector of source/target nodes, 33 weight matrix, 14 vector space, 89 graph observable, 165 Boolean, 90 weighted asymmetry index, 38 vertex, see node weighted edge, 14 w-regular graph, 21, 22 operator representation, 149 walk, 42 weighted graph, 17 endnode, 42 directed, 17, 27 Eulerian, 3, 42, 98, 123 multigraph, 17 intermediate node, 136 operator representation, 149 potential, 98, 121 self-looped, 17, 27 Watts-Strogatz random graph, 6, 76-79, 160, weight matrix observable, 165 205-216 weight-directed, 37 adjacency matrix observable, 213, 215 Wood problem, 232, 280-285 asymmetry index observable, 246 canonical model, 206-210 zero operator, 109, 111