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Preface

The aim of this book is to acquaint readers with some fractal sets that arise

naturally in probability and analysis, and the methods used to study them. The

book is based on courses taught by the authors at Yale, Stony Brook University,

the Hebrew University and UC Berkeley. We owe a great debt to our advisors,

Peter Jones and Hillel Furstenberg; thus the book conveys some of their per-

spectives on the subject, as well as our own.

We have made an effort to keep the book self-contained. The only prerequi-

site is familiarity with measure theory and probability at the level acquired in

a first graduate course. The book contains many exercises of varying difficulty.

We have indicated with a “•” those for which a solution, or a hint, is given

in Appendix C. A few sections are technically challenging and not needed for

subsequent sections, so could be skipped in the presentation of a given chapter.

We mark these with a “*” in the section title.
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