CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 162

Editorial Board B. BOLLOBÁS, W. FULTON, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO

FRACTALS IN PROBABILITY AND ANALYSIS

A mathematically rigorous introduction to fractals which emphasizes examples and fundamental ideas. Building up from basic techniques of geometric measure theory and probability, central topics such as Hausdorff dimension, self-similar sets and Brownian motion are introduced, as are more specialized topics, including Kakeya sets, capacity, percolation on trees and the Traveling Salesman Theorem. The broad range of techniques presented enables key ideas to be highlighted, without the distraction of excessive technicalities. The authors incorporate some novel proofs which are simpler than those available elsewhere. Where possible, chapters are designed to be read independently so the book can be used to teach a variety of courses, with the clear structure offering students an accessible route into the topic.

Christopher J. Bishop is a professor in the Department of Mathematics at Stony Brook University. He has made contributions to the theory of function algebras, Kleinian groups, harmonic measure, conformal and quasiconformal mapping, holomorphic dynamics and computational geometry.

Yuval Peres is a Principal Researcher at Microsoft Research in Redmond, WA. He is particularly known for his research in topics such as fractals and Hausdorff measure, random walks, Brownian motion, percolation and Markov chain mixing times. In 2016 he was elected to the National Academy of Science.

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS

Editorial Board:

B. Bollobás, W. Fulton, F. Kirwan, P. Sarnak, B. Simon, B. Totaro

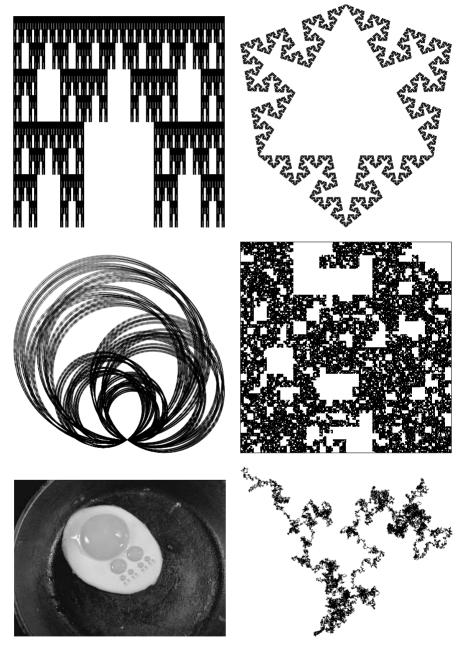
All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit: www.cambridge.org/mathematics.

Already published

- 124 K. Lux & H. Pahlings Representations of groups
- 125 K. S. Kedlaya *p*-adic differential equations
- 126 R. Beals & R. Wong Special functions
- 127 E. de Faria & W. de Melo Mathematical aspects of quantum field theory
- 128 A. Terras Zeta functions of graphs
- 129 D. Goldfeld & J. Hundley Automorphic representations and L-functions for the general linear group, I
- 130 D. Goldfeld & J. Hundley Automorphic representations and L-functions for the general linear group, II
- 131 D. A. Craven The theory of fusion systems
- 132 J. Väänänen Models and games
- 133 G. Malle & D. Testerman Linear algebraic groups and finite groups of Lie type
- 134 P. Li Geometric analysis
- 135 F. Maggi Sets of finite perimeter and geometric variational problems
- 136 M. Brodmann & R. Y. Sharp Local cohomology (2nd Edition)
- 137 C. Muscalu & W. Schlag Classical and multilinear harmonic analysis, I
- 138 C. Muscalu & W. Schlag Classical and multilinear harmonic analysis, II
- 139 B. Helffer Spectral theory and its applications
- 140 R. Pemantle & M. C. Wilson Analytic combinatorics in several variables
- 141 B. Branner & N. Fagella Quasiconformal surgery in holomorphic dynamics
- 142 R. M. Dudley Uniform central limit theorems (2nd Edition)
- 143 T. Leinster Basic category theory
- 144 I. Arzhantsev, U. Derenthal, J. Hausen & A. Laface Cox rings
- 145 M. Viana Lectures on Lyapunov exponents
- 146 J.-H. Evertse & K. Győry Unit equations in Diophantine number theory
- 147 A. Prasad Representation theory
- 148 S. R. Garcia, J. Mashreghi & W. T. Ross Introduction to model spaces and their operators
- 149 C. Godsil & K. Meagher Erdős-Ko-Rado theorems: Algebraic approaches
- 150 P. Mattila Fourier analysis and Hausdorff dimension
- 151 M. Viana & K. Oliveira Foundations of ergodic theory
- 152 V. I. Paulsen & M. Raghupathi An introduction to the theory of reproducing kernel Hilbert spaces
- 153 R. Beals & R. Wong Special functions and orthogonal polynomials
- 154 V. Jurdjevic Optimal control and geometry: Integrable systems
- 155 G. Pisier Martingales in Banach spaces
- 156 C. T. C. Wall Differential topology
- 157 J. C. Robinson, J. L. Rodrigo & W. Sadowski The three-dimensional Navier-Stokes equations
- 158 D. Huybrechts Lectures on K3 surfaces
- 159 H. Matsumoto & S. Taniguchi Stochastic analysis
- 160 A. Borodin & G. Olshanski Representations of the infinite symmetric group
- 161 P. Webb Finite group representations for the pure mathematician
- 162 C. J. Bishop & Y. Peres Fractals in probability and analysis
- 163 A. Bovier Gaussian processes on trees

CAMBRIDGE

Cambridge University Press & Assessment 978-1-107-13411-9 — Fractals in Probability and Analysis Christopher J. Bishop, Yuval Peres Frontmatter <u>More Information</u>



A selection of fractals from the book – and a fractal egg, reproduced with the permission of Kevin Van Aelst.

Fractals in Probability and Analysis

CHRISTOPHER J. BISHOP Stony Brook University, Stony Brook, NY

YUVAL PERES Microsoft Research, Redmond, WA

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107134119

10.1017/9781316460238

© Christopher J. Bishop and Yuval Peres 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2017

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-13411-9 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface		
1	Mink	owski and Hausdorff dimensions	1
	1.1	Minkowski dimension	1
	1.2	Hausdorff dimension and the Mass Distribution Principle	4
	1.3	Sets defined by digit restrictions	9
	1.4	Billingsley's Lemma and the dimension of measures	17
	1.5	Sets defined by digit frequency	21
	1.6	Slices	26
	1.7	Intersecting translates of Cantor sets *	29
	1.8	Notes	34
	1.9	Exercises	36
2	Self-s	imilarity and packing dimension	45
	2.1	Self-similar sets	45
	2.2	The open set condition is sufficient	51
	2.3	Homogeneous sets	54
	2.4	Microsets	57
	2.5	Poincaré sets *	61
	2.6	Alternative definitions of Minkowski dimension	67
	2.7	Packing measures and dimension	71
	2.8	When do packing and Minkowski dimension agree?	74
	2.9	Notes	76
	2.10	Exercises	78
3	Frost	man's theory and capacity	83
	3.1	Frostman's Lemma	83
	3.2	The dimension of product sets	88
	3.3	Generalized Marstrand Slicing Theorem	90
	3.4	Capacity and dimension	93

viii		Contents	
	3.5	Marstrand's Projection Theorem	95
	3.6	Mapping a tree to Euclidean space preserves capacity	100
	3.7	Dimension of random Cantor sets	104
	3.8	Notes	112
	3.9	Exercises	115
4	Self-affine sets		
	4.1	Construction and Minkowski dimension	119
	4.2	The Hausdorff dimension of self-affine sets	121
	4.3	A dichotomy for Hausdorff measure	125
	4.4	The Hausdorff measure is infinite *	127
	4.5	Notes	131
	4.6	Exercises	133
5	Grap	hs of continuous functions	136
	5.1	Hölder continuous functions	136
	5.2	The Weierstrass function is nowhere differentiable	140
	5.3	Lower Hölder estimates	145
	5.4	Notes	149
	5.5	Exercises	151
6	Brow	vnian motion, Part I	160
	6.1	Gaussian random variables	160
	6.2	Lévy's construction of Brownian motion	163
	6.3	Basic properties of Brownian motion	167
	6.4	Hausdorff dimension of the Brownian path and graph	172
	6.5	Nowhere differentiability is prevalent	176
	6.6	Strong Markov property and the reflection principle	178
	6.7	Local extrema of Brownian motion	180
	6.8	Area of planar Brownian motion	181
	6.9	General Markov processes	183
	6.10	Zeros of Brownian motion	185
	6.11	Harris' inequality and its consequences	189
	6.12	Points of increase	192
	6.13	Notes	196
	6.14	Exercises	199
7	Brownian motion, Part II		
	7.1	Dimension doubling	201
	7.2	The Law of the Iterated Logarithm	206
	7.3	Skorokhod's Representation	209
	7.4	Donsker's Invariance Principle	216
	7.5	Harmonic functions and Brownian motion in \mathbb{R}^d	221

Contents				
	7.6	The maximum principle for harmonic functions	226	
	7.7	The Dirichlet problem	227	
	7.8	Polar points and recurrence	228	
	7.9	Conformal invariance *	230	
	7.10	Capacity and harmonic functions	235	
	7.11	Notes	239	
	7.12	Exercises	241	
8	Rand	om walks, Markov chains and capacity	244	
	8.1	Frostman's theory for discrete sets	244	
	8.2	Markov chains and capacity	250	
	8.3	Intersection equivalence and return times	254	
	8.4	Lyons' Theorem on percolation on trees	258	
	8.5	Dimension of random Cantor sets (again)	260	
	8.6	Brownian motion and Martin capacity	264	
	8.7	Notes	266	
	8.8	Exercises	266	
9	Besic	ovitch–Kakeya sets	270	
	9.1	Existence and dimension	270	
	9.2	Splitting triangles	276	
	9.3	Fefferman's Disk Multiplier Theorem *	278	
	9.4	Random Besicovitch sets	286	
	9.5	Projections of self-similar Cantor sets	290	
	9.6	The open set condition is necessary *	297	
	9.7	Notes	302	
	9.8	Exercises	305	
10	The T	Traveling Salesman Theorem	313	
	10.1	Lines and length	313	
	10.2	The β -numbers	318	
	10.3	Counting with dyadic squares	322	
	10.4	β and μ are equivalent	325	
	10.5	β -sums estimate minimal paths	329	
	10.6	Notes	334	
	10.7	Exercises	337	
Appe	endix A	Banach's Fixed-Point Theorem	343	
Appendix B		Frostman's Lemma for analytic sets	353	
Appendix C		Hints and solutions to selected exercises	360	
	Refer	ences	379	
Index			396	

Preface

The aim of this book is to acquaint readers with some fractal sets that arise naturally in probability and analysis, and the methods used to study them. The book is based on courses taught by the authors at Yale, Stony Brook University, the Hebrew University and UC Berkeley. We owe a great debt to our advisors, Peter Jones and Hillel Furstenberg; thus the book conveys some of their perspectives on the subject, as well as our own.

We have made an effort to keep the book self-contained. The only prerequisite is familiarity with measure theory and probability at the level acquired in a first graduate course. The book contains many exercises of varying difficulty. We have indicated with a "•" those for which a solution, or a hint, is given in Appendix C. A few sections are technically challenging and not needed for subsequent sections, so could be skipped in the presentation of a given chapter. We mark these with a "*" in the section title.

Acknowledgments: We are very grateful to Tonći Antunović, Subhroshekhar Ghosh and Liat Kessler for helpful comments and crucial editorial work. We also thank Ilgar Eroglu, Hrant Hakobyan, Michael Hochman, Nina Holden, Pertti Mattila, Elchanan Mossel, Boris Solomyak, Perla Sousi, Ryokichi Tanaka, Tatiana Toro, Bálint Virág, Samuel S. Watson, Yimin Xiao and Alex Zhai for useful comments. Richárd Balka carefully read the entire manuscript and provided hundreds of detailed corrections and suggestions. Many thanks to David Tranah and Sam Harrison at Cambridge University Press for numerous helpful suggestions.

Finally, we dedicate this book to our families: Cheryl, David and Emily Bishop, and Deborah, Alon and Noam Peres; without their support and understanding, it would have taken even longer to write.