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1 Effective Secrecy: Reliability,
Confusion, and Stealth

Jie Hou, Gerhard Kramer, and Matthieu Bloch

A security measure called effective secrecy is defined that includes strong secrecy and

stealth communication. Effective secrecy ensures that a message cannot be deciphered

and that the presence of meaningful communication is hidden. To measure stealth

we use resolvability via informational divergence and relate this to binary hypothesis

testing. Results are developed for wiretap channels.

1.1 Introduction

The wiretap channel is depicted in Fig. 1.1 and has a message M that should be

decoded reliably at one receiver (Bob) while being kept secret from a second receiver

(Eve). Wyner [1] derived the secrecy capacity when the channel PYZ|X is physically

degraded, i.e., X–Y–Z forms a Markov chain. Csiszár and Körner [2] extended the

results to broadcast channels with confidential messages. In both [1] and [2], secrecy

is measured by a normalized mutual information between M and Eve’s output string

Zn = Z1Z2 . . .Zn, i.e., the secrecy requirement is

1

n
I(M;Zn) ≤ S, (1.1)

where we interpret S as a leakage rate. An interesting case is to choose S positive and

small, in which case the requirement (1.1) is referred to as weak secrecy. However, as

n → ∞ the eavesdropper can obtain nS bits of M, which grows with n.

Instead, the papers [3, 4] advocated using strong secrecy where secrecy is measured

by the unnormalized mutual information I(M;Zn) and one requires

I(M;Zn) ≤ ξ (1.2)

for any ξ > 0 and sufficiently large n. We remark that Wyner’s random codes already

ensured strong secrecy since S in (1.1) can scale inverse-exponentially with n. Also, for

finite n, whether we use (1.1) with S = ξ/n or (1.2) is obviously immaterial, i.e., the

distinction between weak and strong secrecy is of asymptotic nature only.

In related work, Han and Verdú [5] studied resolvability based on variational distance

that addresses the number of bits needed to mimic a marginal distribution of a prescribed

joint distribution. Hayashi [6] and Bloch and Laneman [7] used resolvability to prove

secrecy, and they extended results in [2] to continuous random variables and channels
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Figure 1.1 A wiretap channel with message M and random symbol W.

with memory. We also use the resolvability-based approach but replace variational

distance by informational divergence (or Kullback–Leibler divergence).

The main contribution of this work is to define and justify the usefulness of a

security measure that includes not only reliability and strong secrecy but also stealth. In

particular, we measure secrecy by the informational divergence

D(PMZn‖PMQZn), (1.3)

where PMZn is the joint distribution of MZn, PM is the distribution of M, PZn is the

distribution of Zn, and QZn is the distribution that the eavesdropper expects to observe

when the source is not communicating useful messages. We call this security measure

effective secrecy. We show that classic random codes achieve effective secrecy by

using a recently developed simplified proof [8] of resolvability based on informational

divergence (see also [9, Lemma 11]).

It turns out that the effective secrecy measure (1.3) was considered a few months

before our work [10] by Han, Endo, and Sasaki [11, 12]. Their motivation for using

(1.3) was simply that it gives a secrecy measure that is stronger than strong secrecy.

Our motivation was operational: the divergence (1.3) measures secrecy and stealth

simultaneously. In particular, one can check that (see (1.7) below)

D(PMZn‖PMQZn) = I(M;Zn)︸ ︷︷ ︸
secrecy measure

+ D(PZn‖QZn)︸ ︷︷ ︸
stealth measure

, (1.4)

where we measure secrecy and stealth by using I(M;Zn) and D(PZn‖QZn), respectively.

We justify the latter measure by using binary hypothesis testing in Section 1.4. Thus,

by making D(PMZn‖PMQZn) → 0 we not only keep the message secret from the

eavesdropper but also hide the presence of meaningful communication. Of course, one

can instead study secrecy and stealth separately rather than using (1.4); see Section 1.3.4

below. We combine these concepts mainly for convenience of the proofs.

The choice of default behavior QZn in (1.3) and (1.4) will depend on the application.

For example, if the default behavior is to send a codeword, then QZn = PZn and one

achieves stealth for free. On the other hand, if the default behavior is QZn = Qn
Z , where

Qn
Z is a product distribution (see Section 1.2.2 below), then code design requires more

care. We mostly focus on the case QZn = Qn
Z .

This paper is organized as follows. In Section 1.2, we review terminology on low

probability of detection and low probability of intercept communications. We further
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describe notation and state the problem we study. In Section 1.3 we state and prove

the main result. Section 1.4 relates this result to hypothesis testing, and Section 1.5

concludes the paper.

1.2 Preliminaries

1.2.1 Terminology

Many applications require hiding communication or information, and often the same

concept is labeled with different words. We therefore begin by reviewing terminology

in selected documents, and describe how we use the word stealth.

The United States Committee on National Security Systems Glossary [13] has the

following definitions:

• Low probability of detection (LPD): Result of measures used to hide or disguise

intentional electromagnetic transmissions.

• Low probability of intercept (LPI): Result of measures used to resist attempts by

adversaries to analyze the parameters of a transmission to determine if it is a signal

of interest.

The document [14, p. 6] has similar but slightly different terminology. There, LPI

refers generically to communication methods whose primary purpose

is to prevent an unauthorized listener from determining the presence or location of the transmitter,

in order to decrease the possibility of both electronic attack (jamming) and physical attack.

The same document [14, p. 9] refers to [15] as describing

four sequential operations that exploitation systems attempt to perform:

1. Cover the signal, that is, a receiver is tuned to some or all of the frequency intervals being

occupied by the signal when the signal is actually being transmitted.

2. Detect the signal, that is, make a decision about whether the power in the intercept bandwidth

is a signal plus noise and interference or just noise and interference.

3. Intercept the signal, that is, extract features of the signal to determine if it is a signal of interest

or not.

4. Exploit the signal, that is, extract additional signal features as necessary and then demodulate

the baseband signal to generate a stream of binary digits.

Secrecy deals with operation (4), i.e., the secrecy constraint prevents exploitation of

the signal to generate a stream of (meaningful) binary digits. Our focus in this paper

is on either operation (2) or (3), depending on how one interprets the above text. For

example, suppose the default behavior QZn has Alice sending a signal whose power is

(or more generally whose statistics are) sufficiently similar to interference. In this case,

we are interested in operation (2). As a second example, suppose the default behavior

QZn has Alice sending either a message-carrying signal or a default signal at irregular

intervals with low probability. In this case, it does not matter if Eve detects that a signal

was transmitted as long as she cannot determine if it is a message-carrying signal or not.

We are thus concerned with operation (3).

www.cambridge.org/9781107132269
www.cambridge.org


Cambridge University Press
978-1-107-13226-9 — Information Theoretic Security and Privacy of Information Systems
Edited by Rafael F. Schaefer , Holger Boche , Ashish Khisti , H. Vincent Poor 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

6 J. Hou, G. Kramer, and M. Bloch

We generically refer to scenarios in which message-carrying signals are shaped to

resemble an innocent signal as stealth communication. The extreme scenario where

signals are shaped to hide in noise has been referred to as covert communication [16],

deniable communication [17], and undetectable communication [18]. This extreme

type of stealth usually requires that Xn is a zero-power string so that no positive

communication rate is possible. More precisely, the number of bits that can be

communicated reliably over a noisy channel (often) scales as
√

n [16, 17, 19, 20].

However, as we have seen, stealth communication rates are positive if random strings

such as codewords are sent even if no information transmission occurs.

1.2.2 Notation

Random variables are written with upper case letters and their realizations with the

corresponding lower case letters. Superscripts denote strings of variables/symbols, e.g.,

Xn = X1X2 . . .Xn. Subscripts denote the position of a variable/symbol in a string. For

instance, Xi denotes the ith variable in Xn. We use Xn
i to denote Xi, . . . ,Xn, 1 ≤ i ≤ n.

A random variable X has probability distribution PX and the support of PX is denoted

as supp(PX). We write probabilities with subscripts PX(x) but we drop the subscripts if

the arguments of the distribution are lower case versions of the random variables. For

example, we write P(x) = PX(x). If the Xi, i = 1, . . . ,n, are independent and identically

distributed (i.i.d.) according to PX , then we have P(xn) =
∏n

i=1 PX(xi) and we write

PXn = Pn
X . We also use Qn

X to refer to strings of i.i.d. random variables. Calligraphic let-

ters denote sets. The size of a set S is denoted as |S| and the complement is denoted as Sc.

For X with alphabet X, we denote PX(S)=
∑

x∈S PX(x) for any S⊆X. We use Tn
ǫ (PX) to

denote the set of letter-typical strings (or finite sequences) of length n with respect to the

probability distribution PX and the non-negative number ǫ [21, Ch. 3], [22], i.e., we have

T
n
ǫ (PX) =

{
xn :

∣∣∣N(a|xn)

n
− PX(a)

∣∣∣ ≤ ǫPX(a), ∀a ∈X

}
,

where N(a|xn) is the number of occurrences of a in xn.

1.2.3 Wiretap Channel

Consider the wiretap channel depicted in Fig. 1.1. Alice has a message M that is destined

for Bob but should be kept secret from Eve. The message M is uniformly distributed

over {1, . . . ,L}, L = 2nR, and an encoder f (·) maps M,W to the string

Xn = f (M,W) (1.5)

with the help of a random variable W that is independent of M and uniformly distributed

over {1, . . . ,L1}, L1 = 2nR1 . The purpose of W is to confuse Eve so that she learns

little about M. Xn is transmitted through a memoryless channel PYZ|X . Bob observes

the channel output Yn while Eve observes Zn. The pair MZn has the joint distribution

PMZn . Bob estimates M̂ from Yn and the average error probability is

P(n)
e = Pr

[
M̂ 
= M

]
. (1.6)
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Eve tries to learn M from Zn and secrecy is measured by

D(PMZn‖PMQZn) =
∑

(m,zn)
∈supp(PMZn )

P(m,zn) log

(
P(m,zn)

P(m) · Q(zn)
· P(zn)

P(zn)

)

=
∑

(m,zn)
∈supp(PMZn )

P(m,zn)

(
log

P(zn|m)

P(zn)
+ log

P(zn)

Q(zn)

)

= I(M;Zn)+ D(PZn‖QZn), (1.7)

where PZn is the distribution that Eve observes and QZn is the default distribution that

Eve expects to observe if Alice is not sending useful information.

For example, suppose Alice’s default behavior is to transmit xn with memoryless

distribution Qn
X(xn). The default output distribution is then

Q(zn) =
∑

xn∈supp(Qn
X)

Qn
X(xn)Pn

Z|X(zn|xn) = Pn
Z(zn), (1.8)

where PZ(z) =
∑

x QX(x)PZ|X(z|x). When Alice sends useful messages, then PZn and

QZn are different in general. But if we can make D(PMZn‖PMQZn) small then both

I(M;Zn) and D(PZn‖QZn) are small, which in turn implies (as we shall see) that Eve

learns little about M and cannot recognize whether Alice is communicating anything

meaningful.

We will consider the case Q(zn) = Qn
Z(zn), i.e., the default behavior has a memoryless

distribution. Of course, other distributions may also be interesting. We say that a rate

R is achievable if for any ξ1,ξ2 > 0 there is a sufficiently large n and an encoder and a

decoder such that

P(n)
e ≤ ξ1, (1.9)

D(PMZn‖PMQn
Z) ≤ ξ2. (1.10)

The effective secrecy capacity CS is the supremum of the set of achievable R. We wish

to determine CS.

1.3 Effective Secrecy Capacity

We prove the following result:

T H E O R E M 1.1 CS is zero if there is no QX such that PZ = QZ , and otherwise

CS = max
QVX : PZ=QZ

[I(V;Y)− I(V;Z)] , (1.11)

where the maximization is over all joint distributions QVX and we have the Markov

chain

V–X–YZ. (1.12)

One may restrict the cardinality of V to |V| ≤ |X| .
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R E M A R K 1.1 Theorem 1.1 applies to random variables with discrete and finite

alphabets. However, extensions to real-valued channels such as additive white Gaussian

noise (AWGN) channels with power constraints are possible.

R E M A R K 1.2 If one can choose QZ to be the PZ corresponding to the

capacity-achieving output distribution of the wiretap channel, then the effective-secrecy

capacity is the same as the wiretap channel capacity with (weak or) strong secrecy.

R E M A R K 1.3 Consider a physically degraded channel where X–Y–Z forms a Markov

chain. We have (see [2, p. 342])

I(V;Y)− I(V;Z) = I(V;Y|Z)

≤ I(X;Y|Z)

= I(X;Y)− I(X;Z), (1.13)

so that choosing V = X achieves capacity.

R E M A R K 1.4 The capacity (1.11) of a general wiretap channel depends only on the

marginals P(y|x) and P(z|x). Hence, the capacity of a (stochastically degraded) channel

whose marginals P(y|x) and P(z|x) are the same as those of a physically degraded

channel has the same capacity as this physically degraded channel.

1.3.1 Examples

We consider two examples to show how the stealth requirement impacts CS. These

examples show that fixing PZ = QZ can make calculating CS rather easy.

E X A M P L E 1.1 Consider the binary symmetric channels (BSCs)

Y = X ⊕ A1, Z = X ⊕ A2, (1.14)

where the alphabet of all random variables is {0,1}, the operator ⊕ is addition

modulo 2, A1 and A2 are independent of X, PA1
(1) = p1, and PA2

(1) = p2. Suppose

that 0 ≤ p1 ≤ p2 ≤ 1/2. If p2 = 1/2 then I(X;Z) = 0 and the only interesting case is

uniform QZ , for which CS is the same as the BSC capacity. So consider p2 < 1/2 and

suppose the default behavior is QZ(1) = q, where p2 ≤ q ≤ (1 − p2). We compute

PX(1) = q − p2

1 − 2p2
(1.15)

and, since the channel is stochastically degraded, we have

CS = Hb(p2)− Hb(p1)− Hb(q)

+ Hb

(
(q − p2)

1 − 2p1

1 − 2p2
+ p1

)
, (1.16)
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where Hb(·) is the binary entropy function. Choosing q = 1/2 gives H(X) = 1 and we

recover the wiretap channel capacity, as expected. But if q = p2 or q = 1 − p2 then

H(X) = 0 and CS = 0.

E X A M P L E 1.2 Consider next the AWGN channels

Y = X + A1, Z = X + A2 (1.17)

with the power constraint E[X2] ≤ P. The random variables A1 and A2 are independent

of X, Gaussian, zero-mean, and have variances N1 and N2, respectively. We consider

0 ≤ N1 ≤ N2. Suppose the default Z is a Gaussian random variable with zero mean and

variance Q, where N2 ≤ Q ≤ P+N2. We thus require that X is zero-mean Gaussian with

variance Q − N2. We assume that Theorem 1.1 applies to such channels, and since the

channel is stochastically degraded, we compute

CS = 1

2
log2

(
1 + Q − N2

N1

)
− 1

2
log2

(
Q

N2

)
, (1.18)

where the capacity is measured in bits per channel use. Choosing Q = P + N2 implies

E[X2] = P, and we recover the wiretap channel capacity. But if Q = N2 then E[X2] = 0

and CS = 0 (this is the regime of covert communication [16–18], see Section 1.2.1).

Furthermore, the power required for the default transmissions increases with CS.

1.3.2 Achievability

We use random coding and the proof technique of [8]. We assume that there is a QX for

which PZ = QZ .

Random code: Fix a distribution QX for which PZ = QZ and generate L · L1

codewords xn(m,w), m = 1, . . . ,L, w = 1, . . . ,L1 using
∏n

i=1 QX(xi(m,w)). This defines

the codebook

C= {xn(m,w),m = 1, . . . ,L, w = 1, . . . ,L1} (1.19)

and we denote the random codebook by

C̃= {Xn(m,w)}(L,L1)
(m,w)=(1,1)

. (1.20)

Encoding: To send a message m, Alice chooses w uniformly from {1, . . . ,L1} and

transmits xn(m,w). Hence, for any C we have

PXn|C̃
(
xn(m,w) |C

)
= 1

L · L1
. (1.21)

Since (1.21) is not Qn
X(xn(m,w)), the PZn is not the desired Qn

Z in general, see (1.8).

Furthermore, we have

PZn|MC̃
(zn|m,C) =

L1∑

w=1

1

L1
· Pn

Z|X(zn|xn(m,w)), (1.22)

PZn|C̃(zn|C) =
L∑

m=1

L1∑

w=1

1

L · L1
· Pn

Z|X(zn|xn(m,w)). (1.23)
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Bob: Bob knows C and puts out (m̂, ŵ) if there is a unique pair (m̂, ŵ) satisfying the

typicality check

(xn(m̂, ŵ),yn) ∈ T
n
ǫ (QXPY|X). (1.24)

Otherwise he puts out (m̂, ŵ) = (1,1).

Analysis: Define the real-valued random variables

E1 = Pr
[
(M̂,Ŵ) 
= (M,W)|̃C

]
, (1.25)

E2 = D
(

PMZn|C̃

∥∥∥PMQn
Z

)
. (1.26)

E1 is Bob’s block decoding error probability, and E2 represents the security (secrecy

and stealth) with respect to Eve’s receiver. Using standard arguments (see [22]), E[E1]

can be made small with large n as long as

R + R1 < I(X;Y). (1.27)

To bound E[E2], we use the steps in [8, Eq. (9)] to write

E
[
D

(
PMZn|C̃

∥∥∥PMQn
Z

)]

(a)= E

[
log

∑L1

j=1 Pn
Z|X(Zn|Xn(M, j))

L1 · Qn
Z(Zn)

]

=
L∑

m=1

L1∑

w=1

1

L · L1
E

[
log

∑L1

j=1 Pn
Z|X(Zn|Xn(m, j))

L1 · Qn
Z(Zn)

∣∣∣∣M = m,W = w

]

(b)
≤

L∑

m=1

L1∑

w=1

1

L · L1
E

[
log

(
Pn

Z|X(Zn|Xn(m,w))

L1 · Qn
Z(Zn)

+ 1

)∣∣∣∣M = m,W = w

]

(c)= E

[
log

(
Pn

Z|X(Zn|Xn)

L1 · Qn
Z(Zn)

+ 1

)]
, (1.28)

where

(a) follows from (1.22) and by taking the expectation over M, W,

Xn(1,1), . . . ,Xn(L,L1), Zn;

(b) follows by applying Jensen’s inequality to the expectation over the Xn(m, j), j 
= w

for a fixed m, using (1.8), and using PZ = QZ ;

(c) follows by choosing XnZn ∼ Qn
XPn

Z|X .

We may write (1.28) as

E

[
log

(
Pn

Z|X(Zn|Xn)

L1 · Qn
Z(Zn)

+ 1

)]
= d1 + d2, (1.29)
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where the expectation is split based on typical pairs via

d1 =
∑

(xn,zn)∈Tn
ǫ (QXPZ|X)

Qn
X(xn)Pn

Z|X(zn|xn) log

(
Pn

Z|X(zn|xn)

L1 · Qn
Z(zn)

+ 1

)
,

d2 =
∑

(xn,zn)/∈Tn
ǫ (QXPZ|X)

(xn ,zn)∈supp(Qn
X

Pn
Z|X )

Qn
X(xn)Pn

Z|X(zn|xn) log

(
Pn

Z|X(zn|xn)

L1 · Qn
Z(zn)

+ 1

)
.

Using standard inequalities (see [22, Lemmas 18 and 20]) we have

d1 ≤ log

[
2−n(1−ǫ)H(Z|X)

L1 · 2−n(1+ǫ)[H(Z)+D(PZ‖QZ)] + 1

]

(a)= log
[
2−n(R1−I(X;Z)−κǫ) + 1

]

≤ log(e) · 2−n(R1−I(X;Z)−κǫ), (1.30)

where (a) follows because we chose QX so that PZ = QZ , and κ is a constant independent

of n. We find that d1 → 0 if n → ∞ and

R1 > I(X;Z)+ κǫ. (1.31)

Next, consider d2 and a pair (xn,zn) in the support of Qn
XPn

Z|X . We have

Qn
Z(zn) = Pn

Z(zn) =
∑

x̃n∈supp(Qn
X)

Qn
X(x̃n)Pn

Z|X(zn|x̃n), (1.32)

so that Qn
Z(zn) is positive. We bound (see [22, Lemma 17])

d2 ≤
∑

(xn,zn)/∈Tn
ǫ (QXPZ|X)

(xn ,zn)∈supp(Qn
X

Pn
Z|X )

Qn
X(xn)Pn

Z|X(zn|xn) log

[(
1

μZ

)n

+ 1

]

≤ 2|X| · |Z| · e−nǫ2μXZ/3 log

[(
1

μZ

)n

+ 1

]
, (1.33)

where

μZ = minz∈supp(QZ)Q(z), (1.34)

μXZ = min(x,z)∈supp(QXPZ|X)Q(x)P(z|x). (1.35)

If 1
μZ

< 1, we have

d2 ≤ 2|X| · |Z| · e−nǫ2μXZ/3 · log2 (1.36)

and d2 → 0 as n → ∞. If 1
μZ

≥ 1, we have

d2 ≤ 2|X| · |Z| · e−nǫ2μXZ/3 · n · log

(
1

μZ

+ 1

)
(1.37)

and d2 → 0 as n → ∞.
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For any ξ1,ξ2 > 0, define the event

E= {E1 > ξ1 or E2 > ξ2}. (1.38)

Using the union bound and Markov’s inequality, we obtain

Pr
[
E
]
≤ Pr[E1 > ξ1] + Pr[E2 > ξ2]

≤ 1

ξ1
E[E1]+

1

ξ2
E[E2]. (1.39)

Combining the above, we can make Pr[E] → 0 as n → ∞ as long as

R + R1 < I(X;Y), (1.40)

R1 > I(X;Z). (1.41)

We hence have the achievability of any R satisfying

0 ≤ R < max
QX :PZ=QZ

[I(X;Y)− I(X;Z)]. (1.42)

Of course, if the right-hand side of (1.42) is non-positive, then we require R = 0.

Finally, following [2] we prefix a channel QX|V to the channel PYZ|X and obtain a new

channel QYZ|V where

Q(y,z|v) =
∑

x

Q(x|v)P(y,z|x). (1.43)

Using a similar analysis as above, we have the achievability of any R satisfying

0 ≤ R < max
QVX :PZ=QZ

[I(V;Y)− I(V;Z)], (1.44)

where the maximization is over all QVX satisfying (1.12). Again, if the right-hand side

of (1.44) is non-positive, then we require R = 0. As usual, the purpose of adding the

auxiliary variable V is to potentially increase R. Note that V = X recovers (1.42). Hence,

the right-hand side of (1.42) is at most the right-hand side of (1.44).

R E M A R K 1.5 The average divergence E[D(PMZn|C̃||PMQn
Z)] is the sum of I(MC̃;Zn)

and D(PZn ||Qn
Z) [6, Section III] (see also [8, Section III-B]). To see this, consider

E[D(PMZn|C̃||PMQn
Z)]

= D(PMZn|C̃||PMQn
Z |P

C̃
)

(a)= D(PZn|MC̃
||Qn

Z |PMP
C̃
)

= D(PZn|MC̃
||PZn |PMP

C̃
)+ D(PZn ||Qn

Z)

= I(MC̃;Zn)+ D(PZn ||Qn
Z), (1.45)

where (a) follows by the independence of M and the codewords. Therefore, as

E[D(PMZn|C̃||PMQn
Z)] → 0 we have I(MC̃;Zn) → 0, which means that MC̃ and Zn are

(almost) independent. This makes sense, since for effective secrecy the adversary learns

little about M and the presence of meaningful transmission.
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