

The Mechanics and Reliability of Films, Multilayers and Coatings

A wide variety of applications ranging from microelectronics to turbines for propulsion and power generation rely on films, coatings and multilayers to improve performance. As such, the ability to predict coating failure – such as delamination (debonding), mud-cracking, blistering, crack kinking and the like – is critical to component design and development. This work compiles and organizes decades of research that established the theoretical foundation for predicting such failure mechanisms and clearly outlines the methodology needed to predict performance. Detailed coverage of cracking in multilayers is provided with an emphasis on the role of differences in thermoelastic properties between the layers. The comprehensive theoretical foundation of the book is complemented by easy-to-use analysis codes designed to empower novices with the tools needed to simulate cracking; these codes enable not only precise quantitative reproduction of results presented graphically in the literature, but also the generation of new results for more complex multilayered systems.

Professor Matthew R. Begley is broadly recognized for seminal contributions in the mechanics of multilayered systems with an emphasis on computational aspects of the required analysis. His codes are employed in some industries to design experiments, assess current designs and evaluate novel multilayer systems for improved performance. Both authors are widely sought after for consulting work on the mechanics of thin films, coatings and multilayers by companies such as General Electric, Pratt & Whitney, Intel, Sunpower, Raytheon, Areva etc.

Professor John W. Hutchinson is a member of the US National Academies of Engineering and Sciences and a Foreign Member of the Royal Society of London. He is one of the leading experts in the mechanics of thin film systems, with a number of highly cited, seminal journal papers on the subject. Hutchinson is broadly credited with generating many of the conceptual developments in this field, as well as illustrations of those concepts to applications ranging from microelectronics to thermal barrier coatings, microfluidic devices, hypersonics etc.

The Mechanics and Reliability of Films, Multilayers and Coatings

MATTHEW R. BEGLEY University of California, Santa Barbara

JOHN W. HUTCHINSON

Harvard University

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107131866

© Matthew R. Begley and John W. Hutchinson 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2017

Printed in the United States of America by Sheridan Books, Inc.

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Begley, Matthew R., 1969- author. | Hutchinson, John W., author.

Title: The mechanics and reliability of films, multilayers and coatings / Matthew R. Begley (University of California, Santa Barbara), John W. Hutchinson (Harvard University).

Description: Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2017. | Includes bibliographical references and index.

Identifiers: LCCN 2016036248 | ISBN 9781107131866 (hardback; alk. paper) |

ISBN 1107131863 (hardback; alk. paper)

Subjects: LCSH: Thin films – Mechanical properties. | Protective coatings – Mechanical properties. | Fracture mechanics.

Classification: LCC TA418.9.T45 B44 2017 | DDC 667/.9–dc23 LC record available at https://lccn.loc.gov/2016036248

ISBN 978-1-107-13186-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

THE SOFTWARE WITH THIS BOOK IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contents

	Ackn	nowledgements	<i>page</i> ix
	Nota	ntion	X
1	Intro	duction	1
2	Key I	Mechanics Concepts	5
	2.1	Review of Linear Isotropic Elasticity	5
	2.2	An Overview of Thin Films and Coatings Modeled with Beam and	
		Plate Theories	9
	2.3	Beams: Strain-Displacement Relations and Constitutive Relations	10
	2.4	Governing Equations for the Beam Theory via the Principle	
		of Virtual Work	14
	2.5	Two-Dimensional Nonlinear Plate Theory for a Homogeneous	
		Single Layer	16
	2.6	A Review of Heat Transfer in One Dimension	18
3	Linea	ar Elastic Fracture Mechanics	21
	3.1	Isotropic Elastic Crack Tip Fields	22
	3.2	Crack Advance in an Isotropic Material by Kinking for a Crack	
		Subject to Mixed Mode Loading	24
	3.3	Bimaterial Interface Crack Tip Fields in Plane Strain and	
		Plane Stress	28
	3.4	Characterization of Interface Toughness for Bimaterial Interfaces	
		with $\beta_D = 0$	31
	3.5	Characterization of Interface Toughness with $\beta_D \neq 0$	35
	3.6	Interface Toughness Measurements	41
	3.7	Interface Toughness Measurements for Thermal Barrier Coatings	45
4	Stea	dy-State Delamination of Bilayers	49
	4.1	A Basic Solution	49
	4.2	Extended Application of Bilayer Results for Plane Strain Delamination	. 52

More Information

vi **Contents**

	4.3	General Results for a Thin Film on an Infinitely Thick Substrate	54
	4.4	Equal Thickness Bilayer with Elastic Mismatch Subject to Moments	55
	4.5	Four-Point Bend Delamination Specimen	57
	4.6	Bilayer with Thermal Expansion Mismatch Subject to a Uniform	
		Temperature	58
	4.7	Soft Material Substrates: A Stiff Film on an Infinitely Deep, Highly	
		Compliant Substrate	61
5	Stead	ly-State Delamination in Multilayers	70
	5.1	Stresses and Strains in a Multilayer Subject to Overall Stretch and	
		Bending with Internal Misfit Strains	70
	5.2	Energy Release Rates in the Absence of Any Misfit Strains:	
		$All \theta^i = 0$	74
	5.3	An Alternative Derivation for Energy Release Rates Including Misfit	
		Strains: Application to Equi-biaxial Stressing Followed by Plane	
		Strain Cracking	76
	5.4	Computation of Mode Mix for Steady-State Delamination	
		in Multilayers	78 7 8
	5.5	A Bilayer Approximation and Approximate Estimates of the Mode Mix	79
	5.6	Examples of Delamination in Multilayers	81
6	Stead	ly-State Channeling and Tunneling Cracks	89
	6.1	An Isolated Through-Crack at Steady State	92
	6.2	A Two-Dimensional Film Cracking Model with Application to	
		Multiple Interacting Cracks	96
	6.3	Film Cracking Accompanied by Limited Interface Delamination	100
	6.4	Tunnel Cracking in Brittle Buried Layers	102
7	Crack	k Kinking from an Interface	106
	7.1	Kinking for Materials Joined at an Interface with No	
	7.1	Elastic Mismatch	106
	7.2	Kinking for Materials Joined at an Interface with Elastic	100
		Mismatch with $\beta_D = 0$	110
	7.3	Kinking for Materials Joined at an Interface with Elastic	
		Mismatch with $\beta_D \neq 0$	111
	7.4	The Roles of Flaw Size and Residual Stress Parallel to the	
		Interface on Kinking	114
8	Crack	c Penetration, Deflection or Arrest?	119
	8.1	Penetration and Arrest	119
	8.2	Crack Deflection at an Interface	122

<u>More Information</u>

		Contents	vii
9	Fdae	and Corner Interface Cracks	127
Ū			
	9.1	Interface Edge-Cracks: The Transition to Steady State Interface Cracks at Thin Film Corners	127
	9.2		132
	9.3	Interface Cracks Approaching Edges: Delamination Arrest	133
10	Buckling Delamination		
	10.1	A Simple Example: Buckling Delamination of a Symmetric Bilayer	138
	10.2	Straight-Sided Buckling Delamination of Thin Films on	
		Thick Substrates	142
	10.3	Circular Buckle Delaminations for Films and Coatings under	
		Equi-biaxial Compression	146
	10.4	Propagation Conditions for the Straight-Sided Delamination	147
	10.5	Telephone Cord Delaminations and Other Aspects of Buckling	
		Delamination	152
11	Delamination of Thin Strips (Patterned Lines)		
	11.1	Film Strips: The Stored Elastic Energy Due to a Mismatch Strain	155
	11.2	Film Strips: Short Interface Cracks and the Transition to Steady-State	
		Energy Release Rate for Delamination	158
12	Delan	nination in Multilayers Subject to Steady-State Temperatures	162
	12.1	Stress Intensity Factors and Energy Release Rate for an Isolated	
	12.1	Crack in a Temperature Gradient	162
	12.2	Edge Delamination in a Bilayer Due to a Steady-State	102
	12,2	Temperature Distribution	164
	12.3	Edge Delamination Due to Steady-State Thermal Gradients	104
	12.3	in Multilayers	171
		in Municipality	1,1
13	Crack	king under Transient Temperature Distributions	174
	13.1	Cold and Hot Shock of an Entire Surface of a Uniform Half-Space	174
	13.2	Cracking Due to a Sudden Localized Temperature Increase –	1,,
	10.2	Localized Hot Spots	178
	13.3	The Effect of Temperature Transients on Delamination in a Single	1,0
	13.3	Layer with Finite Thickness	180
	13.4	The Effects of Temperature Transients on Delamination in Multilayers	183
14	Softw	vare for Semi-Infinite Multilayers: Steady-State Delamination	188
	14.1 14.2	Overview of <i>LayerSlayer</i> 's Assumptions, Capabilities and Interface	189 192
		Steady-State Temperature Distributions Deformation and Stresses	192
	17.3	Determination and Differen	170

viii Contents

	14.4	Energy Release Rates	197
	14.5	A Basic Example with Three Layers	198
	14.6	An Advanced Example: An Environmental Barrier Coating	
		(EBC) System	202
15	Softw	vare for Semi-Infinite Multilayers: Transient Delamination	208
	15.1	Overview of LayerSlayer Transients's Assumptions,	
		Capabilities and Interface	209
	15.2	Transient Temperature Distributions	212
	15.3	Deformation and Stresses	215
	15.4	Energy Release Rates	216
	15.5	A Case Study of a Bilayer Subjected to a Sudden Rise and Fall	
		in Ambient Temperature	217
16	Finite	Element Software for Multilayers: LayerSlayer FEA	227
	16.1	Basics of the Finite Element Approach	228
	16.2	Computation of Fracture Parameters	231
	16.3	An Overview of the LayerSlayer FEA Framework	234
	16.4	Multilayer Delamination Module	239
	16.5	Multilayer Penetration (Channeling) Module	247
17	Convergence and Benchmarks with LayerSlayer FEA		255
	17.1	Convergence of Crack Tip Parameters	255
	17.2	Benchmark: Delamination during Four-Point Bending of a Bilayer	256
	17.3	Benchmark: Delamination of Thermally Stressed Thin Film on a	•
		Thick Substrate	260
	17.4	Benchmark: Penetrating Crack in a Homogeneous Specimen Subject to Three-Point Bending	262
	175	Recommended Numerical Practices	
	17.5	Recommended Numerical Practices	263
	Appe	ndix: Asymptotic Crack Tip Displacement Fields for an Interface Crack	269
	Refer	ences	271
	Index	•	277

Acknowledgements

This book would not have been possible without the extensive contributions of others, on many levels.

At the most fundamental level, Tony Evans and Zhigang Suo were responsible for much of the scientific foundation utilized in this book, not to mention countless inspirational applications, examples and key insights. Simply put, this book would not exist without their pioneering efforts.

Those pioneering efforts were made possible to a significant degree by the National Science Foundation and Office of Naval Research, who deserve special recognition for supporting the underlying research of the material in this book – not only the authors themselves, but also the entire community working on thin films and coatings.

Cedric and Lily Xia deserve special recognition for the ancestral codes that inspired those in this book; while their original codes have been supplanted, they played in important role in forming the vision for the codes accompanying this book.

R. Wesley Jackson was an early adopter of the codes and made significant contributions to their utility, as well many, many insightful analyses on thermal barrier coatings. It would be difficult to overestimate the practical contributions of Ryan Latture, whose edits sped up the codes by orders of magnitude, and Foucault de Franqueville, who did critical work in validating the codes by conducting an estimated 10⁴ analyses. The authors are also deeply indebted to J. William Pro and Stephen Sehr for their help in data management and vetting the codes. Dr. Tyler Ray was a huge help with typesetting the book.

M. R. Begley would also like to acknowledge Carlos Levi, Bob McMeeking, Tresa Pollock and Frank Zok; my wonderful colleagues at UCSB provided encouragement at critical times and covered numerous obligations for me while I was 'in the bunker' writing the book. My appreciation for their direct and indirect support cannot be overstated.

Notation

The list below refers to the most common usage:

$\Lambda_U, \Lambda_B, \Lambda_o$	strain energy per unit area in thin strips
α	coefficient of thermal expansion
$\epsilon_{ij},\sigma_{ij}$	strain and stress tensors, respectively
E, v	elastic modulus and Poisson's ratio
$\bar{E} = E/(1 - v^2)$	plane strain modulus
E_*	effective interface modulus, eqn. (3.14)
$\eta_x, \eta_y, \eta_{xy}$	large strain definitions
$lpha_D$	first Dundurs' parameter, eqn. (3.9)
eta_D	second Dundurs' parameter, eqn. (3.9)
ϵ	mismatch parameter when $\beta_D \neq 0$
θ	stress-free misfit strain, such as thermal expansion
\bar{c}	coefficient of misfit strain defined by geometry constraint
u(x), w(x)	axial and transverse displacements, respectively
κ	curvature (second derivative of transverse displacement)
ϵ_o	axial stretch of the reference axis
σ_o,σ_c	residual stress and critical stress for buckling
N, M	axial force and bending moment resultants, respectively
a_{ij}, b_j	coefficients in multilayer equations to find ϵ_o and κ
G	energy release rate
K_I, K_{II}	isotropic stress intensity factors
K_1, K_2	interface stress intensity factors
Γ_I,Γ_{II}	interface toughness in mode I and mode II
η	dimensionless stress parameter for kinking/deflection
λ	fitting parameter that dictates mode II toughness
ψ	phase angle that defines mode-mix
ω	phase factor used to compute mode-mix
ΔT	temperature change from stress-free reference state
q	heat flux
k	thermal conductivity