
Introduction

J. Toby Stafford

There are multiple interactions between noncommutative algebra and representation

theory on the one hand and classical algebraic geometry on the other, and the aim of

this book is to expand upon this interplay. One of the most obvious areas of interaction

is in noncommutative algebraic geometry, where the ideas and techniques of algebraic

geometry are used to study noncommutative algebra. An introduction to this material is

given in Chapter I. Many of the algebras that appear naturally in that, and other, areas of

mathematics are deformations of commutative algebras, and so in Chapter II we provide

a comprehensive introduction to that theory. One of the most interesting classes of

algebras to have appeared recently in representation theory, and discussed in Chapter III,

is that of symplectic reflection algebras. Finally, one of the strengths of these topics is

that they have applications back in the commutative universe. Illustrations of this appear

throughout the book, but one particularly important instance is that of noncommutative

(crepant) resolutions of singularities. This forms the subject of Chapter IV.

These notes have been written up as an introduction to these topics, suitable for

advanced graduate students or early postdocs. In keeping with the lectures upon which

the book is based, we have included a large number of exercises, for which we have

given partial solutions at the end of book. Some of these exercises involve computer

computations, and for these we have either included the code or indicated web sources

for that code.

We now turn to the individual topics in this book. Throughout the introduction k

will denote an algebraically closed base field and all algebras will be k-algebras.

I. Noncommutative projective geometry. This subject seeks to use the results and

intuition from algebraic geometry to understand noncommutative algebras. There

are many different versions of noncommutative algebraic geometry, but the one that

concerns us is noncommutative projective algebraic geometry, as introduced by Artin,

Tate, and Van den Bergh [9, 10].

As is true of classical projective algebraic geometry, we will be concerned with

connected graded (cg) k-algebras A. This means that (1) A=
⊕

n≥0 An with An Am ⊆
An+m for all n,m ≥ 0 and (2) A0 = k. For the rest of the introduction we will also
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2 INTRODUCTION

assume, for simplicity, that A is generated as a k-algebra by the finite-dimensional

vector space A1. Write A+ =
⊕

n>0 An for the irrelevant ideal.

The starting point to this theory appears in work of Artin and Schelter [5], who

were interested in classifying noncommutative analogues A of the polynomial ring

k[x, y, z] or, as we will describe later, noncommutative analogues of P2. So, what

should the definition be? The first basic condition is that A should have finite global

dimension gldim A = m, in the sense that every finitely generated A-module M should

have a finite projective resolution. This hypothesis is insufficient by itself; for example

the free algebra k{x, y} has global dimension one. So we also demand that A have

polynomially bounded growth in the sense that the function p(n)= dimk An is bounded

above by some polynomial function of n. This is still not enough to eliminate rings like

k{x, y}/(xy) that have rather unpleasant properties. The insight of Artin and Schelter

was to add a Gorenstein condition: ExtiA(k, A) = δi,mk, where k is the trivial (right)

A-module A/A+. In the commutative case this condition is equivalent to the ring

having finite injective dimension, hence weaker than having finite global dimension, yet

in many ways in the noncommutative setting it is a more stringent condition. Algebras

with these three properties — global dimension m, polynomially bounded growth and

the Gorenstein condition — are now called Artin–Schelter regular or AS-regular rings

of dimension m. These algebras appear throughout noncommutative algebraic geometry

and form the underlying theme for Chapter I. All references in this subsection are to

that chapter.

Artin–Schelter regular algebras of dimension 2 are easily classified; this is the

content of Theorem 2.2.1. In fact there are just two examples: the quantum plane

kq [x, y] := k{x, y]/(xy − qyx) for q ∈ k r {0} and the Jordan plane kJ [x, y] :=
k{x, y}/(xy − yx − y2). (Since we are concerned with projective rather than affine

geometry, we probably ought to call them the quantum and Jordan projective lines,

but we will stick to these more familiar names.) It is straightforward to analyse the

properties of these rings using elementary methods.

So it was the case of dimension 3 that interested Artin and Schelter, and here things

are not so simple. The Gorenstein condition enables one to obtain detailed information

about the projective resolution of the trivial module k = A/A+. In many cases this

is enough to describe the algebra in considerable detail, and in particular to give a

basis for the algebra. However there was one algebra, now called the Sklyanin algebra,

that Artin and Schelter could not completely understand (this algebra is described in

terms of generators and relations in Example 1.3.4 but its precise description is not so

important here). It was the elucidation of this and closely related algebras that required

the introduction of geometric techniques through the work of Artin, Tate, and Van den

Bergh [9, 10].

The idea is as follows. Given a commutative cg domain A the (closed) points

of the corresponding projective variety Proj(A) can be identified with the maximal

nonirrelevant graded prime ideals; under our hypotheses these are the graded ideals P

such that A/P ∼= k[x] is a polynomial ring in one variable. In the noncommutative case,

this is too restrictive — for example if q is not a root of unity, then kq [x, y] has just two

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-12954-2 - Noncommutative Algebraic Geometry
Gwyn Bellamy, Daniel Rogalski, Travis Schedler, J. Toby Stafford and Michael Wemyss
Excerpt
More information

http://www.cambridge.org/9781107129542
http://www.cambridge.org
http://www.cambridge.org


INTRODUCTION 3

such ideals; (x) and (y). Instead one works module-theoretically and defines a point

module to be a right A-module M =
⊕

n≥0 Mn such that M = M0 A and dimk Mn = 1

for all n ≥ 0. Of course, when A is commutative, these are the factor rings we just

mentioned, but they are more subtle in the noncommutative setting and are discussed

in detail in Sections 3 and 4. The gist is as follows. Let A be an AS regular algebra

of dimension 3. Then the point modules for A are in one-to-one correspondence with

(indeed, parametrised by) a scheme E , known naturally enough as the point scheme

of A. This scheme further comes equipped with the extra data of an automorphism

σ and a line bundle L. From these data one can construct an algebra, known as the

twisted homogeneous coordinate ring B = B(E,L, σ ) of E . If A = k[x0, x1, x2] were

a commutative polynomial ring in three variables, then E = P2 and B would simply

be A. In the noncommutative case E will either be a surface (indeed either P2 or

P1×P1) in which case A = B or, more interestingly, E could be a curve inside one of

those surfaces. The interesting case is when E is an elliptic curve, as is the case for

the Sklyanin algebra we mentioned before. This also helps explain why the Sklyanin

algebra caused such a problem in the original work of Artin and Schelter: elliptic curves

are not so easily approached by the sorts of essentially linear calculations that were

integral to their work.

The beauty of this theory is that the geometry of the point scheme E can be used

to describe the twisted homogeneous coordinate ring B = B(E,L, σ ) and its modules

in great detail. Moreover, for an AS regular algebra A of dimension 3, the ring B

is a factor B = A/g A of A, and the pleasant properties of B lift to give a detailed

description of A and ultimately to classify the AS-regular algebras of dimension 3.

This process is outlined in Section 3.2. An important and surprising consequence is

that these algebras A are all noetherian domains; thus every right (or left) ideal of A is

finitely generated.

We study twisted homogeneous coordinate rings in some detail since they are one

of the basic notions in the subject, with numerous applications. A number of these

applications are given in Section 5. For example, if A is a domain for which dimk An

grows linearly, then, up to a finite-dimensional vector space, A is a twisted homogeneous

coordinate ring (see Theorem 5.1.1 for the details). One consequence of this is that the

module structure of the algebra A is essentially that of a commutative ring. To explain

the module theory we need some more notation.

If A is a commutative cg algebra then one ignores the irrelevant ideal A+ in con-

structing the projective variety Proj(A). This means we should ignore finite-dimensional

modules when relating that geometry to the module structure of A. This holds in the

noncommutative case as well. Assume that A is noetherian, which is the case that

interests us, and let gr A denote the category of finitely generated graded A-modules

M =
⊕

n∈Z Mi (thus Mi A j ⊆ Mi+ j for all i and j ). The category qgr(A) is defined to

be the quotient category of gr A by the finite-dimensional modules; see Definition 4.0.7

for more details. A surprisingly powerful intuition is to regard qgr(A) as the category

of coherent sheaves on the (nonexistent) space Proj(A). Similarly, there are strong
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4 INTRODUCTION

arguments for saying that the AS regular algebras A of dimension 3 (or at least those

for which dimk A1 = 3) are the coordinate rings of the noncommutative P2’s.

The fundamental result relating algebraic geometry to twisted homogeneous coordi-

nate rings is the following theorem of Artin and Van den Bergh [11], which is itself a

generalisation of a result of Serre [198]: under a condition called σ -ampleness of the

sheaf L, the category qgr B(E,L, σ ) is equivalent to the category of coherent sheaves

on E . In particular, if A is a domain for which dimk An grows linearly with n, as was

the case two paragraphs ago, then qgr A will be equivalent to the category of coherent

sheaves on a projective curve: sometimes this is phrased as saying that noncommutative

curves are commutative!

Structure of Chapter I. The main aim of this chapter is to give the reader a firm

understanding of the mathematics behind the above outline, and we have kept the

geometric prerequisites to a minimum. Thus, in Section 1 we emphasise techniques for

calculating the basis (or more generally the Hilbert series) of a graded algebra given by

generators and relations. Section 2 introduces the Artin–Schelter regular algebras and,

again, we emphasise how to use the Gorenstein condition to understand some of the

basic examples. Of course this does not work everywhere, so Section 3 introduces point

modules, the corresponding point scheme and shows how to compute this in explicit

examples. Section 4 then describes the corresponding twisted homogeneous coordinate

rings, while Section 5 outlines the applications of these techniques to the classifications

of noncommutative curves and particular classes of noncommutative surfaces.

II. Deformations of algebras in noncommutative geometry. For simplicity, in dis-

cussing Chapter II we will assume that the base field k has characteristic zero. A great

many algebras appearing in noncommutative algebra, and certainly most of the ones

described in this book, are deformations of commutative algebras. For example, if

kq [x, y] = k{x, y}/(xy−qyx) is the quantum plane mentioned above then it is easy to

see that this algebra has basis {x i y j }. Thus, as q passes from 1 to a general element

of k, it is natural to regard this algebra as deforming the multiplication of the algebra

k[x, y]. In fact there are many different ways of deforming algebras and some very

deep results about when this is possible. This is the topic of Chapter II. Once again, all

references in this subsection are to that chapter.

Here are a couple of illustrative examples. Given a finite-dimensional Lie algebra

g over the field k, with Lie bracket {−,−}, its enveloping algebra Ug is defined to

be the factor of the tensor algebra Tg on g modulo the relations xy− yx −{x, y} for

x, y ∈ g. One can also form the symmetric algebra Sym g on g, which is nothing

more than the polynomial ring in dimk g variables. Perhaps the most basic theorem

on enveloping algebras is the PBW or Poincaré–Birkhoff–Witt Theorem: if one filters

Ug=
⋃

n≥03≤n by assigning g+k to 3≤1, then Sym g is isomorphic to the associated

graded ring gr Ug=
⊕
3≤n/3≤(n−1). We interpret this as saying that Ug is a filtered

deformation of Sym g. A similar phenomenon occurs with the Weyl algebra, or ring of

linear differential operators on Cn . This is the ring with generators {xi , ∂i : 1≤ i ≤ n}
with relations ∂i xi − xi∂i = 1 and all other generators commuting. Again one can filter
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INTRODUCTION 5

this algebra by putting the xi and ∂ j into degree one and its associated graded ring is

then the polynomial ring C[x1, . . . , yn] in 2n variables. As is indicated in Section 1,

there are numerous other examples of filtered deformations of commutative algebras,

including more general rings of differential operators and even some of the algebras

from Chapter III.

The commutative rings B that arise as the associated graded rings B = gr A =⊕
3≤n/3≤(n−1) of filtered rings A =

⋃
3≤n automatically have the extra structure

of a Poisson algebra. Indeed, given non-zero elements ā ∈ 3≤n/3≤(n−1) and b̄ ∈
3≤m/3≤(m−1), with preimages a, b ∈ A then we define a new bracket {ā, b̄} = ab−ba

mod3≤(m+n−1). It is routine to see that this is actually a Poisson bracket in the sense

that it is a Lie bracket satisfying the Leibniz identity {ab, c} = a{b, c}+ b{a, c}. The

algebra gr A is then called a Poisson algebra.

One can ask if the reverse procedure holds: Given a commutative Poisson algebra B,

can one deform it to a noncommutative algebra A in such a way that the Poisson

structure on B is induced from the multiplication in A? This is better phrased in terms

of infinitesimal and formal deformations, but see Corollary 2.6.6 for the connection.

To describe these deformations, pick an augmented base commutative ring R with

augmentation ideal R+, which for us means either R = k[[h]] or R = k[h]/(hn) with

R+ = h R. Then a (flat) deformation of B over R is (up to some technicalities) an

R-algebra A, isomorphic to B ⊗k R as an R-module, such that A⊗R R/R+ = B as

k-algebras. In other words, a deformation of B over R is an algebra (B⊗k R, · ) such

that a · b = ab mod R+. An infinitesimal deformation of B is a flat deformation over

R = k[h]/(h2), while a formal deformation is the case when R = k[[h]]. In both cases

the multiplication on A induces a Poisson structure on B by {ā, b̄} = h−1(ab− ba)

(which does make sense in the infinitesimal case) and we require that this is the given

Poisson structure on B. Remarkably, these concepts are indeed equivalent: Poisson

structures on the coordinate ring B of a smooth affine variety X correspond bijectively

to formal deformations of B. However it takes much more work to make this precise

(in particular one needs to work with appropriate equivalence classes on the two sides)

and much of Sections 3 and 4 is concerned with setting this up. The original result

here is Kontsevich’s famous formality theorem, which was first proved at the level of

Rn or more generally C∞ manifolds. Kontsevich also outlined how to extend this to

smooth affine (and some nonaffine) algebraic varieties, while a thorough study in the

global algebraic setting was accomplished by Yekutieli and others; see Section 4.6 for

the details.

The starting point to deformation theory is that deformations are encoded in Hoch-

schild cohomology. To be a little more precise, let B be a k-algebra with opposite ring

Bop and set Be = B⊗k Bop. The infinitesimal deformations of B are encoded by the

second Hochschild cohomology group HH2(B)= Ext2
Be (B, B), while the obstructions

to extending these deformations to higher-order ones (i.e., those where R= k[h]/(h2) is

replaced by some R= k[h]/(hn)) are contained within the third Hochschild cohomology

group HH3. This is made precise in Section 3 and put into a more general context in

Section 4.
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6 INTRODUCTION

One disadvantage of formal deformation theorems like Kontsevich’s is that the

multiplication on the deformation is very complicated to describe, yet in many concrete

examples (like enveloping algebras) there is actually quite a simple formula for that

multiplication. The possible deformations also have a range of different properties, and

can often be “smoother” than the original commutative algebra. A illustrative example

is given by the fixed ring C[x, y]G where the generator σ of G = Z/(2) acts by −1 on

x and y. This has many interesting deformations, including the factor U =U (sl2)/(�)

of the enveloping algebra of sl2 by its Casimir element. (Here U is smooth in the

sense that, for instance, it has finite global dimension, whereas the global dimension of

C[x, y]G is infinite.) The ring U in turn has many different interpretations; for example,

as the ring of global differential operators on the projective line (see Theorems 1.8.2

and (1.J)) or as a spherical subalgebra of a Cherednik algebra in Chapter III.

This example can be further generalised to the notion of a Calabi–Yau algebra. These

algebras are ubiquitous in this book. The formal definition is given in Definition 3.7.9

but here we simply note that connected graded Calabi–Yau algebras are a special case

of AS regular algebras (see Section 5.5.3 of Chapter I). In particular the polynomial ring

C[x1, . . . , xn] is Calabi–Yau, as are many of its deformations, including Weyl algebras

and many enveloping algebras. Further examples are provided by U (sl2)/(�) and the

symplectic reflection algebras of Chapter III, as well as various noncommutative resolu-

tions of Chapter IV. As these examples suggest, Calabi–Yau algebras can frequently

be written as deformations of commutative rings or at least of rings that are “close” to

commutative. This is discussed in Section 5 and has important applications to both

commutative and noncommutative algebras, as is explained in the next two subsections.

Structure of Chapter II. The aim of the chapter is to give an introduction to deformation

theory. Numerous motivating examples appear in Section 1, including enveloping alge-

bras, rings of differential operators and Poisson algebras. The basic concepts of formal

deformation theory and Hochschild (co)homology appear in Section 2, while the rela-

tionship between these concepts is examined in greater depth in Section 3. These ideas

are considerably generalised in Section 4, in order to give the appropriate context for

Kontsevich’s formality theorem. The ramifications of this result and a hint to its proof are

also given there. Finally, Section 5 discusses Calabi–Yau algebras and their applications

to deformation theory, such as to quantizations of isolated hypersurface singularities.

III. Symplectic reflection algebras. A fascinating class of algebras that have only

recently been discovered (the first serious treatment appears in the seminal paper of

Etingof and Ginzburg [99] from 2002) are the symplectic reflection algebras, also known

in a special case as rational Cherednik algebras. They have many interactions with,

and applications to, other parts of mathematics and are also related to deformation

theory, noncommutative algebraic geometry and noncommutative resolutions. As such,

they form a natural class of algebras to study in depth in this book, and we do so in

Chapter III. Once again, all references in this subsection are to that chapter.

We first describe these algebras as deformations. Let G be a finite subgroup of GL(V )

for a finite-dimensional vector space V , say over C for simplicity. Then G acts naturally
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INTRODUCTION 7

on the coordinate ring C[V ] and a classic theorem of Chevalley–Shephard–Todd says

that the quotient variety V/G = SpecC[V ]G is smooth if and only if G is a complex

reflection group (see Section 1 for the definitions). There is a symplectic analogue of

reflection groups, where V is now symplectic and G ⊂ Sp(V ). (The simplest case, of

type An−1, is when G = Sn is the symmetric group acting naturally on Cn ⊕ (Cn)∗

by simultaneous permutations of the coordinates.) The variety V/G will not now

be smooth; for example in the A1 case V/G is the surface xy = z2. However there

are some very natural noncommutative deformations of C[V/G] := C[V ]G ; notably

Uλ =U (sl2)/(�−λ), where � is again the Casimir element and λ∈C. For all but one

choice of λ, the ring Uλ has finite global dimension and can be regarded as a smooth

noncommutative deformation of C[V/G].
This generalises to any symplectic reflection group. Given such a group G ⊂ Sp(V ),

one can form the invariant ring C[V ]G and the skew group ring C[V ]⋊G; this is the

same abelian group as the ordinary group ring C[V ]G, except that the multiplication is

twisted: g f = f gg for f ∈ C[V ] and g ∈ G. Then Etingof and Ginzburg [99] showed

that one can deform C[V ]⋊G into a noncommutative algebra, called the symplectic

reflection algebra Ht,c(G), depending on two parameters t and c. The trivial idempotent

e =
∑

g∈G g|G|−1 still lives in this ring and the spherical subalgebra eHt,c(G)e is

then a deformation of C[V ]G . Crucially, these algebras are filtered deformations in the

sense of Chapter II and so, under a natural filtration, one has an analogue of the PBW

Theorem: gr Ht,c(G)= C[V ]⋊G and gr eHt,c(G)e = C[V ]G .

The parameter t can always be scaled and so can be chosen to be either 0 or 1. These

cases are very different. For most of the chapter we will work in the case t = 1 and

write Hc(G)= H1,c(G).

The rings Hc(G) are typically defined in terms of generators and relations, which

are not easy to unravel (see Definition 1.2.1 and Equation 1.C). However, in the A1

case, eHc(G)e =Uλ for some λ ∈ C, and all such λ occur. In general the properties

of the spherical subalgebras eHt,c(G)e are reminiscent of those of a factor ring of an

enveloping algebra of a semisimple Lie algebra, and this analogy will guide much of

the exposition.

This similarity is most apparent in the special case of Cherednik algebras. Here

one takes a complex reflection group W ⊆ GL(h) for a complex vector space h. Then

W acts naturally on V = h × h∗ and defines a symplectic reflection group. The

rational Cherednik algebra is then the corresponding symplectic reflection algebra

Ht,c(W ). Inside Ht,c(W ), one has copies of C[h] and C[h∗] as well as the group

ring CW and the PBW Theorem can be refined to give a triangular decomposition

Ht,c(G)∼= C[h]⊗C CW ⊗C C[h∗] as vector spaces.

The Cherednik algebra Ht,c(W ) can also regarded as a deformation of the skew

group ring An ⋊W of the Weyl algebra; in this case the spherical subalgebra eHt,c(W )e

becomes a deformation of the fixed ring AW
n . This is most readily seen through the Dunkl

embedding of Hc(W ) into a localisation D(hreg)⋊ W of An ⋊ W (see Subsection 1.8

for the details). However, in many ways the intuition from Lie theory is more fruitful;
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8 INTRODUCTION

for example, Hc(W ) can have finite-dimensional representations, whereas An ⋊ W is

always simple and so cannot have any such representations.

The triangular decomposition is particularly useful for representation theory, since

one has natural analogues of the Verma modules and Category O, which are so powerful

in the representation theory of semisimple Lie algebras (see, for example [83]). For

Cherednik algebras, Category O consists of the full subcategory of finitely generated

Hc(W )-modules on which C[h∗] acts locally nilpotently. The most obvious such

modules are the standard modules 1(λ)= Hc(W )⊗C[h∗] λ, where λ is an irreducible

representation of W on which C[h∗] is given a trivial action. The structure of these

modules is very similar to that of Verma modules; for example, each 1λ has a unique

simple factor module and these define all the simple objects in Category O. The general

theory of Category O-modules is given in Section 2. In Type An−1, when W is the

symmetric group Sn , one can get a much more complete description of these modules,

as is explained in Section 3. For example, it is known exactly when Hc(Sn) has a

finite-dimensional simple module (curiously, Hc(Sn) can never have more than one

such module). Moreover, the composition factors of the 1(λ) and character formulae

for the simple modules in Category O are known. The answers are given in terms

of some beautiful combinatorics relating two fundamental bases of representations of

certain quantum groups (more precisely, the level-one Fock spaces for quantum affine

Lie algebras of Type A).

Section 4 deals with the Knizhnik–Zamolodchikov (KZ) functor. This remarkable

functor allows one to relate Category O to modules over yet another important algebra,

in this case the cyclotomic Hecke algebra Hq(W ) related to W . At its heart the KZ

functor is quite easy to describe. Recall that the Dunkl embedding identifies Hc(W )

with a subalgebra of D(hreg)⋊ W , and in fact D(hreg)⋊ W is then a localisation of

Hc(W ). The key idea behind the KZ functor is that one can also localise the given

module to obtain a (D(hreg)⋊ W )-module. At this point powerful results from the

theory of D-modules can be applied and these results ultimately lead to modules over

the Hecke algebra.

When we first defined the symplectic reflection algebras Ht,c(G) there was the

second parameter t and the representation-theoretic results we have described so far

have all been concerned with the case t 6= 0. The case t = 0, which is the topic of the

final Section 5, has a rather different flavour. The reason is that H0,t (G) is now a finite

module over its centre Zc(G)= Z(H0,c(G)).

We again give a thorough description of the representation theory of H0,t (G) although

this has a much more geometric flavour with a strong connection to Poisson and even

symplectic geometry. The Poisson structure on Spec Zc(G) comes from the fact that

the parameter t gives a quantization of Zc(G)! A key observation here is that the

simple H0,t (G)-modules are finite-dimensional, of dimension bounded by |G| (see

Theorem 5.1.4). Moreover they have maximal dimension precisely when their central

annihilator is a smooth point of Spec Zc(G). So, the geometry of that space and the

representations of H0,c(G) are intimately connected.
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INTRODUCTION 9

The final topic in this chapter relates to Chapter IV and concerns applications of

H0,c(G) back to algebraic geometry. An important geometric question is to understand

resolutions of singularities π : X̃ → X of a singular space X (thus X̃ should be

nonsingular and the birational map π should be an isomorphism outside the singular

subset of X ). Here we are interested in the case X = Y = V/G. In this setting, the

smooth locus of Y is even symplectic, and so one would further like the resolution

π : Ỹ → Y to be a symplectic resolution in the sense that Ỹ is symplectic and π is an

isomorphism of symplectic spaces away from the singular set. Remarkably the question

of when this happens has been determined using H0,c(G)— it happens if and only if

Spec Zc(G) is smooth for some value of c. This can be made more precise. Recall

that the spherical subalgebra eH0,c(G)e is a deformation of C[Y ] = C[V ]G . Indeed,

eH0,c(G)e∼= Zc(G) is even commutative and so is a commutative deformation of C[Y ].
Thus Y has a symplectic resolution if and only if eH0,c(G)e is a smooth deformation

of C[Y ] (see Theorem 5.8.3). Completing this circle of ideas we note that symplectic

reflection algebas have even been used to determine the groups G for which Y = V/G

has a symplectic resolution of singularities.

Structure of Chapter III. The aim of the chapter is to give an introduction to the con-

struction and representation theory of symplectic reflection algebras Ht,c(G). The basic

definitions and structure theorems, including the PBW Theorem and deformation theory,

are given in Section 1. In Section 2 the representation theory of the Cherednik algebra

Hc(W )= H1,c(W ) is discussed, with emphasis on Category O-modules. In particular,

Category O is shown to be highest weight category. These results can be considerably

refined when W = Sn is a symmetric group, and this case is studied in detail in Sec-

tion 3. Here one can completely describe the characters of simple O-modules and the

composition factors of the standard modules. This is achieved by relating Hc(Sn) to

certain Schur and quantum algebras. The KZ functor is described in Section 4 and again

relates the representation theory of Hc(W ) to other subjects: in this case the theory of

D-modules and, ultimately, to cyclotomic Hecke algebras Hq(W ). This allows one to

prove subtle and nontrivial results about both the Cherednik and Hecke algebras. The

final Section 5 studies the representation theory of the symplectic reflection algebras

H0,c(G), with particular reference to their Poisson geometry and symplectic leaves.

The application of these algebras to the theory of symplectic resolutions of quotient

singularities is discussed briefly.

IV. Noncommutative resolutions. As we have just remarked, a fundamental problem

in algebraic geometry is to understand the resolution of singularities π : X̃ → X of a

singular space X = Spec R. Even for nonsymplectic singularities, one can sometimes

resolve the singularity by means of a noncommutative space and this can provide more

information about the commutative resolutions. This theory is described in Chapter IV.

The resolution π is obtained by blowing up an ideal I of R related in some way to

the singular subspace of Y . Unfortunately, the ideal I is not unique and even among

rings R of (Krull) dimension three there are standard examples where different ideals

I ′, I ′′ give rise to nonisomorphic resolutions of singularities. However, through work of
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Bridgeland [42] and Bridgeland–King–Reid [44], these resolutions are closely related

(more precisely, derived equivalent). The motivation for this chapter comes from work

of Van den Bergh who, in [230, 231], abstracted Bridgeland’s work by showing that

one can find a noncommutative ring A that is actually derived equivalent to both these

resolutions. Thus it is reasonable to think of A (or perhaps its category of modules) as

a noncommutative resolution of singularities of Y . The purpose of this chapter is to

explain how to construct such a ring A, to outline some of the methods that are used to

extract the geometry, and to discuss the geometric applications.

For the rest of this introduction fix a commutative Gorenstein algebra R and set X =
Spec R (in fact much of the theory works for Cohen–Macaulay rather than Gorenstein

rings, but the theory is more easily explained in the Gorenstein case, and this also fits

naturally with the other parts of the book). For simplicity, we assume throughout this

introduction that R is also a normal, local domain. Then a noncommutative crepant

resolution or NCCR for X (or R) is a ring A satisfying

(1) A = EndR(M) for some reflexive R-module M ,

(2) A is a Cohen–Macaulay (CM) R-module, and

(3) gldim A = dim X .

Before discussing this definition, here is a simple but still very important example:

let G ⊂ SL(2,C) be a finite subgroup acting naturally on S = C[x, y] and set R =
SG . Then it is easy to show that the skew group ring A = S ⋊ G, in the sense of

Chapter III, is isomorphic to EndR(S), and it follows that A is a NCCR for the quotient

singularity X = Spec(R)= C2/G. This construction can be considerably generalised

(to a polynomial ring in n ≥ 2 variables, in particular), but the present case provides a

rich supply of examples that we use throughout the chapter, not least because the finite

subgroups of SL(2,C) are classified and easy to manipulate. See Sections 1 and 5 in

particular.

Let us now explain some aspects of the definition of a NCCR; further details can be

found in Section 2. First, the hypothesis that A be CM corresponds to the geometric

property of crepancy (which is one reason these are called NC Crepant Resolutions).

The definition of crepancy is harder to motivate, and is discussed in Section 4, but for

symplectic singularities like the variety Y = V/G from the last subsection, crepancy

is equivalent to the resolution being symplectic. Since we want to obtain a smooth

resolution of the given singular space it is very natural to require that gldim A <∞.

Unfortunately, as also occurred in Chapter I, this is too weak an assumption in a

noncommutative setting and so we require the stronger hypothesis (3). This is actually

the same as demanding that all the simple A-modules have the same homological

dimension and is in turn equivalent to demanding that A satisfy a nongraded version

of the Artin–Schelter condition from Chapter I (see Corollary 4.6.3 for the details).

So, once again, the definition is quite natural given the general philosophy of the book.

Although NCCRs are not unique, they are at least Morita equivalent in dimension 2

(meaning that the categories of modules are equivalent) and derived equivalent in
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