Author Index

Agassant, J. F., 285
Albano, A. M., 270, 274
Aluru, N. R., 140, 381
Anderson, P. D., 295, 302
Anderson, T. B., 399
Anselmo, A. P., 345, 346
Archer, L. A., 353
Archibald, W. J., 193
Aris, R., 204, 409
Armstrong, R. C., 215, 219, 224, 230, 387
Atkinson, B., 140
Avenas, P., 300
Bachmat, Y., 397
Baier, R., 5
Balasubramanian, V., 94
Barlow, E. J., 325
Barnes, H. A., 211
Bataille, J., 104
Batchelor, G. K., 72, 110
Bear, J., 397
Bedeaux, D., 85, 100, 104, 247, 270, 274, 333, 426, 429, 431, 435
Bell, A. T., 359
Bers, A. N., 85, 104
Berne, B. J., 452
Bernstein, B., 334
Beskok, A., 140, 381
Biller, P., 393
Bingham, E. C., 225
Biringer, R., 312
Bixon, M., 445
Blasius, H., 154
Block, S. M., 424
Bogaards, A. C. B., 302
Boltzmann, L., 373, 374
Bonner, F. T., 354
Boon, J. P., 452
Bornhorst, W. J., 333
Boussinesq, M. J., 155
Braun, P. V., 308
Brenner, H., 110, 255, 274, 313, 318
Brochard, F., 289
Brocklebank, M. P., 140
Broer, A. W., 94
Brown, R. A., 343, 345, 346
Bugajsky, D. J., 155
Bush, R., 94
Cahill, D. G., 308
Caldwell, K. D., 198
Callen, H. B., 36, 362
Caplan, S. R., 426
Carbonell, R. G., 406
Card, C. C. H., 140
Cardinaux, F., 447
Carreau, P. J., 225, 285
Carlson, H. S., 119, 345
Casimir, H. B. G., 91
Chandrasekhar, S., 8
Chang, H.-C., 405
Chen, G., 308
Clark, D. R., 312
Clarke, D. R., 308
Córdoba, A., 440, 443, 446, 449
Crank, J., 126
Currie, P., 93
Curtiss, P. F., 426
Curtiss, C. F., 94, 112, 224, 371, 376, 387
Dahler, J. S., 73
Dai, R., 467
Damköhler, G., 178
Danckwerts, P. V., 183
Darcy, H., 413
de Gennes, P. G., 289
de Groot, S. R., 6, 81, 84, 97
de Pablo, J. J., 36
de Sénaarmont, H. H., 93
Author Index

Deal, B. E., 352
Deen, W. M., 59, 98
den Dool, J. C. F., 325
Denn, M. M., 284, 289, 295, 300, 302
Doi, M., 210, 214, 391
Duda, J. L., 334, 337
Duhamel, J. M. C., 93
Dutcher, C. S., 115
Edelen, D. G. B., 104
Edwards, B. J., 85, 104
Edwards, D. A., 255, 274
Edwards, S. F., 210, 214, 391
Einstein, A., 323
Emslie, A. G., 354
Epstein, P. S., 325
Essig, A., 426
Fan, S., 308
Faxén, H., 192
Ferry, J. D., 219
Feynman, R. P., 154
Fischer, P., 447
Flack, W. W., 459
Ford, W. K., 308
Forest, M. G., 445
Frisch, U., 154
Fujita, H., 187
Gardiner, C. W., 7, 13, 17, 18
Gert, W. A., 325
Gibbs, J. W., 244, 366
Giddings, J. C., 198
Gill, W. N., 202
Glavatskiy, K. S., 247, 270
Gleiter, H., 312
Gogos, C. G., 284, 295
Gold, S. A., 284
Goldbeter, A., 177
Goldstein, H., 36
Gong, W., 467
Goodridge, R. D., 284
Goodson, K. E., 308
Grabert, H., 441
Grad, H., 371, 380, 382
Graetz, L., 162
Green, M. S., 391
Grimel, M., 89, 104
Gross, J., 85, 100, 104
Grove, A. S., 352
Guzmán, J. D., 94
Hagen, G., 138
Hagenbach, E., 138
Hague, R. J. M., 284
Hallman, T. M., 164
Happel, J., 110, 313, 318
Hashitsume, N., 219, 224, 230, 387
Hatsopoulos, G. N., 333
Healy, J. J., 121
Hermans, J. J., 385
Hernández-Ortiz, J. P., 285
Herschelkowitz-Kaufman, M., 177
Hess, D. W., 359
Hill, T. L., 49
Hinch, E. J., 144
Hirschfelder, J. O., 371, 376
Honerkamp, J., 219, 457
Hoppe, T., 417
Hostettler, J., 221
Howell, J. R., 81
Howes, F. A., 399
Hulten, M. A., 295, 302
Hutton, J. F., 211
Iddir, H., 94
Indei, T., 318, 440, 443, 444, 446, 449
Jackson, J. D., 78
Jackson, R., 399
Jaeger, J. C., 119, 345
Jaeger, R. C., 342
Johannessen, E., 85, 100, 104
Jongschaap, R. J. J., 36
Jung, H. W., 302
Karniadakis, G. E., 140, 381
Katchalsky, A. K., 426
Kebinski, P., 308
Kemblowski, Z., 140
Kesner, L. F., 198
Kestin, J., 104
Kilgour, D. M., 410
Kim, J., 417
Kim, S. H., 302
Kimura, Y., 439
King, W. P., 308
Kirby, B. J., 140
Kjelstrup, S., 85, 100, 104, 247, 270, 274, 426, 429, 431, 435
Klappen, L. J., 445
Kloeden, P. E., 26
Knudsen, M., 401
Köhler, W., 92
Konderv, J., 415
Koornman, R. J., 325
Kramer, A. H., 435
Krestin, J., 121
Krishnamurthy, S., 202
Kubo, R., 218
Lamb, H., 110
Lamm, O., 191
Landau, L. D., 110
Langlois, W. E., 325
Author Index

Larson, R. G., 210
Laue, T. M., 187
Lee, J. S., 302
Lefever, R., 177
Leighton, R. B., 154
Lervik, A., 429
Lifshitz, E. M., 110
Lightfoot, E. N., xi, 1, 59, 65, 70, 81, 154
Ling, H.-C., 337
Liu, B., 302
Liu, D., 467
Liu, M., 88
Lodge, A. S., 391
London, A. L., 155, 169
Löwe, T., 417
Macosko, C. W., 115
Mahan, G. D., 96, 308
Majumdar, A., 308
Maris, H. J., 308
Mason, T. G., 439, 446
Matovich, M. A., 297
Maxwell, J. C., 311, 376
Mazur, P., 6, 81, 84, 97, 270
Menten, M. L., 430
Merlin, R., 308
Metttler, F., 221
Meyers, M. N., 198
Mheta, V. R., 353
Michaela, L., 430
Middelmann, S., 292, 295
Mihaljan, J. M., 122
Miller, D. G., 97
Moody, L. F., 154
Morrison, F. A., 211
Muller, S. J., 115
Myers, M. N., 198
Nan, C. W., 312
Nayfeh, A. H., 144
Nelson, E., 8
Nespreda, M., 431, 435
Newman, J., 98
Nieto Simavilla, D., 94
Noll, W., 70
Nusselt, W., 162
Oelschlaeger, C., 447
Oh, E. S., 255, 259, 276
Oldroyd, J. G., 225
Onsager, L., 91
Oswald, T. A., 285
Paquet, A., 325
Pearson, J. R. A., 297
Peck, L. G., 354
Pecora, R., 452
Peng, K.-W., 353
Petrie, C. J. S., 300
Petillo, F., 94
Petrucione, F., 393
Phillips, R., 415
Phillipot, S. R., 308
Pilyugin, E., 440, 443, 446
Pipkin, A. C., 220
Platen, E., 26
Plesses, M. S., 325
Poiseuille, J.-L., 138
Pollard, W. G., 401
Pop, E., 308
Powell, M. P., 325
Prandtl, L., 154
Prasad, V., 345, 346
Present, R. D., 401
Prigogine, I., 177
Prosperetti, A., 276
Proussvetich, A. A., 325
Purcell, T. J., 423, 424
Quintard, M., 406
Rayleigh, Lord, 262, 325
Reguera, D., 104
Reichl, L. E., 367, 374, 375
Reynolds, O., 150
Romatschke, P., 5
Römer, H., 457
Rouse, P. E., 389
Rubí, J. M., 104, 426, 431, 435
Ryan, D., 406
Sagis, L. M. C., 255, 259, 274, 276
Sahagian, D. L., 325
Sales, B., 96
Sands, M., 154
Sankarasubramanian, R., 202
Sarangi Pard, A., 295
Savin, T., 247, 270
Scheffold, F., 447
Schieber, J. D., 36, 94, 318, 440, 443, 444, 446, 449
Schlichting, H., 110, 115
Schmitzer, M. J., 424
Schopferer, M., 447
Schwarz, F. R., 219
Schweizer, M., 270
Schweizer, T., 221
Scott, G. D., 410
Scriven, L. E., 73, 337
Sergent, J. P., 285
Shah, R. K., 155, 169
Shakouri, A., 96
Sharp, J., 96
Shi, L., 308
Author Index

<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieder, E. N.</td>
<td>169</td>
</tr>
<tr>
<td>Siegel, R.</td>
<td>81, 164</td>
</tr>
<tr>
<td>Skalak, R.</td>
<td>140</td>
</tr>
<tr>
<td>Slattery, J. C.</td>
<td>59, 194, 255, 259, 276, 353, 397, 399</td>
</tr>
<tr>
<td>Smith, J. M.</td>
<td>140</td>
</tr>
<tr>
<td>Smith, N. O.</td>
<td>117</td>
</tr>
<tr>
<td>Smoukov, S.</td>
<td>94</td>
</tr>
<tr>
<td>Soong, D. S.</td>
<td>359</td>
</tr>
<tr>
<td>Sparrow, E. M.</td>
<td>164</td>
</tr>
<tr>
<td>Spiegel, E. A.</td>
<td>122</td>
</tr>
<tr>
<td>Spudich, J. A.</td>
<td>423, 424</td>
</tr>
<tr>
<td>Squires, T. M.</td>
<td>439</td>
</tr>
<tr>
<td>Srinivasan, R. S.</td>
<td>325</td>
</tr>
<tr>
<td>Stafford III, W. F.</td>
<td>187</td>
</tr>
<tr>
<td>Stewart, W. E.</td>
<td>xi, 1, 59, 65, 70, 81, 154</td>
</tr>
<tr>
<td>Straumann, H.</td>
<td>320</td>
</tr>
<tr>
<td>Strong, R.</td>
<td>284</td>
</tr>
<tr>
<td>Struchtrup, H.</td>
<td>88, 381</td>
</tr>
<tr>
<td>Subramanian, R. S.</td>
<td>202</td>
</tr>
<tr>
<td>Sutera, S. P.</td>
<td>140</td>
</tr>
<tr>
<td>Sweeney, H. L.</td>
<td>423, 424</td>
</tr>
<tr>
<td>Szedlmayer, Z.</td>
<td>284, 295</td>
</tr>
<tr>
<td>Tanner, R.</td>
<td>288</td>
</tr>
<tr>
<td>Tate, G. E.</td>
<td>169</td>
</tr>
<tr>
<td>Taylor, G. I.</td>
<td>115, 204</td>
</tr>
<tr>
<td>Theriot, J.</td>
<td>415</td>
</tr>
<tr>
<td>Thiele, E. W.</td>
<td>403</td>
</tr>
<tr>
<td>Thomas-Alyea, K. E.</td>
<td>98</td>
</tr>
<tr>
<td>Tobolsky, A. V.</td>
<td>391</td>
</tr>
<tr>
<td>Toda, M.</td>
<td>218</td>
</tr>
<tr>
<td>Truesdell, C.</td>
<td>70</td>
</tr>
<tr>
<td>Tschoegl, N. W.</td>
<td>219</td>
</tr>
<tr>
<td>Tuck, C. J.</td>
<td>284</td>
</tr>
<tr>
<td>Tucker, C. L.</td>
<td>285</td>
</tr>
<tr>
<td>Turing, A. M.</td>
<td>177</td>
</tr>
<tr>
<td>Turner, B. N.</td>
<td>284</td>
</tr>
<tr>
<td>van den Brule, B. H. A. A.</td>
<td>94</td>
</tr>
<tr>
<td>van der Walt, C.</td>
<td>302</td>
</tr>
<tr>
<td>Van Dyke, M.</td>
<td>144</td>
</tr>
<tr>
<td>van Kampen, N. G.</td>
<td>419</td>
</tr>
<tr>
<td>Venerus, D. C.</td>
<td>94, 146, 155, 255, 333, 334</td>
</tr>
<tr>
<td>Veronis, G.</td>
<td>122</td>
</tr>
<tr>
<td>Vilar, J. M. G.</td>
<td>104</td>
</tr>
<tr>
<td>Visscher, K.</td>
<td>424</td>
</tr>
<tr>
<td>Ventas, C. M.</td>
<td>194, 337</td>
</tr>
<tr>
<td>Ventas, J. S.</td>
<td>194, 334, 337</td>
</tr>
<tr>
<td>Waigh, T. A.</td>
<td>439</td>
</tr>
<tr>
<td>Waldmann, L.</td>
<td>270</td>
</tr>
<tr>
<td>Walters, K.</td>
<td>211</td>
</tr>
<tr>
<td>Wang, L.-C.</td>
<td>353</td>
</tr>
<tr>
<td>Wasan, D. T.</td>
<td>255, 274</td>
</tr>
<tr>
<td>Weese, J.</td>
<td>219</td>
</tr>
<tr>
<td>Weinberg, S.</td>
<td>2</td>
</tr>
<tr>
<td>Weitz, D. A.</td>
<td>439, 446</td>
</tr>
<tr>
<td>Whitaker, S.</td>
<td>397, 399, 406, 411, 413</td>
</tr>
<tr>
<td>Wiedemann, U. A.</td>
<td>5</td>
</tr>
<tr>
<td>Wiegand, S.</td>
<td>92</td>
</tr>
<tr>
<td>Willenbacher, N.</td>
<td>447</td>
</tr>
<tr>
<td>Winter, H. H.</td>
<td>219, 289</td>
</tr>
<tr>
<td>Xu, J.</td>
<td>467</td>
</tr>
<tr>
<td>Xu, K.</td>
<td>445</td>
</tr>
<tr>
<td>Yala, N.</td>
<td>334</td>
</tr>
<tr>
<td>Yang, F. J.</td>
<td>198</td>
</tr>
<tr>
<td>Yip, S.</td>
<td>452</td>
</tr>
<tr>
<td>Zhang, H.</td>
<td>345, 346</td>
</tr>
<tr>
<td>Zwanzig, R.</td>
<td>445</td>
</tr>
</tbody>
</table>
Subject Index

- Actin filaments, 416, 417
- Activation energy, 176, 433, 436
- Activity coefficient, 53
- Additive manufacturing, 284
- Additive noise, 27
- Adenosine triphosphate, 422
- Adhesives, 210
- Adsorptions, gauge-invariant, 270–272
- Angular momentum, 71
- density, 71
- Angular velocity, 110, 187, 292
- matrix, 190, 197
- Angular velocity, 110, 187, 292
- matrix, 190, 197
- Anisotropic transport coefficients, 93, 348
- Area average, 398
- Arrhenius’ law, 103, 104, 176, 436
- ATP hydrolysis, 416–418, 428, 433
- energy of, 418
- Attenuation coefficient, 464
- Autocorrelation function, 18, 453, 454, 459, 465, 466
- ensemble average, 455
- Average, 9, 13, 24, 25, 27, 29, 361
- area, 398
- ensemble, 441, 454
- evolution equation for, 9, 11, 20, 25, 27
- flat, see Chemical potential
- in space and time, 361
- of displacement, 420
- of fluctuating quantity, 452
- speed, 373, 374
- volume, 398
- Balance equation, 4, 58, see also Interfacial balance equation
- for angular momentum, 73
- for electric charge, 78
- for internal energy, 75, 76, 80
- for kinetic energy, 75, 76, 80
- for mass, 61
- for mechanical energy, 75
- for momentum, 69, 80
- for potential energy, 75
- for species mass, 63–65, 67, 401, 432
- Basset force, 445, 446
- Bead–spring–chain model, 389, 390
- Bernoulli equation, 76, 157
- Bessel function, 112, 119, 345
- modified, 231, 349
- Bingham fluid, 225
- Biological functions, 2
- Biological systems, 4, 209
- Biomedical devices, 284
- Biot number, 339, 346, 348
- Blasius formula, 154
- Blood flow, 2
- Boltzmann factor, 15, 103, 363
- Boltzmann’s constant, 365, 385
- Boltzmann’s kinetic equation, 371, 377–382, see also Grad limit, H theorem, Maxwellian velocity distribution
- gain and loss contributions, 378
- Boundary condition, 3, 4, 18, 28, 32, 255, see also Jump balance
- absorbing, 18, 28
- constitutive, 276
- for chemical reaction, 351, 402
- for concentration, 331, 332
- for temperature, 275, 277, 278, 307, 344
- for velocity, 275, 277, 314, 356
- impenetrable, 28, 31
- impermeable, 31
- no mass transfer condition, 258, 277, 296, 308, 314, 345, 355
- reflecting, 18, 28, 31
- repelling, 31
Boundary layer
for heat transfer, 166
for mass transfer, 337, 340
Boussinesq approximation, 123
Boussinesq interfacial fluid model, 274
Boyle and Mariotte
law of, 372
Bragg condition, 456
Breakup of liquid jets, 262
Brillouin doublet, 466
Brinkman number, 132, 161
Brownian dynamics, 4, 23, 25, 29, 31, 33, 34, 384
combined with finite element method, 390
with creation and destruction terms, 393
Brownian motion, 7, 8, 13, 19, 385, 439, 440, 445, 452
Bubble growth and collapse, 325, 328
diffusion-controlled, 336, 337
diffusion-induced, 325, 332, 334, 335
hydrodynamically controlled, 325, 330
Bulk phases as reservoirs for interfaces, 242, 248
Calcium-ion pump, 428, 431
efficiency of, 430
tight versus slipping, 429, 431
Canonical ensemble, 363, 366, see also
Boltzmann factor
Casimir symmetry, 91
Catalyst particle, 407, 409
design of, 409
effectiveness factor, 409, 413
Catalytic reactor, 408
Causality, 219, 441
Cell, 241, 242, 416, 426
Cell membrane, 415, 426
Central limit theorem, 13, 26
Centrifugal force, 113, 114, 188, 190, 356, 357
Centrifuge, see Ultracentrifuge
Chapman–Enskog expansion, 382
Chemical plant, 3
Chemical potential, 38, 279
differences in, 51
condition for coexistence, 271, 279
continuity of, 281, 333
difference, 275, 280, 331
flat average, 278, 279, 331, 428
interfacial, 269–271
per mass, 49
per mole, 40
species, 40
Chemical reaction, 51, 53, 102, 103, 172, 263, 281, see also Mass action law
affinity, 55, 103, 281
and internal energy, 102
as a relaxation process, 102, 104
as an activated process, 104
catalytic, 396, 401
effective rate constant, 408
endothermic, 56
equilibrium constant, 56
exothermic, 56
exponential nonlinearity, 103
heterogeneous, 263, 265, 281, 349, 401, 402
homogeneous, 63, 102, 173
in terms of chemical potentials, 281
interfacial, 281, 426, 431
irreversible, 103, 173, 402
multiple, 67, 103
product, 103, 281
rate, 104
rate constant, 105, 173, 281, 350, 397, 402
reactant, 103, 281
reversible, 103, 177
thermodynamic approaches, 104
thermodynamic irreversibility of, 103
velocity, 65
Chemical reactor
continuous stirred tank, 184
packed bed, 409, 411–413
plug–flow, 68
residence time, 68, 184, 412
Clapeyron equation, 47
Clausius–Clapeyron equation, 47
Clapeyron-type equations, 246–249
Climate prediction, 2
Coarse graining, 361
versus reduction strategy, 407
Collision frequency, 373, 377
Colloids, 198, 210, 468
Comoving reference frame, 234, 236, 237
Complete thermodynamic information
for bulk phases, 247
for interfaces, 247
Completeness relation, 18
Complex admittance, 218
Complex fluids, 5, 209–212, 221–223, 226, 232, 233, 236, 239
universality of equations, 384, 393
Complex modulus, 213, 216, 218, 438
Complex system, 3, 4
Complex viscosity, 213, 216, 218
Compressibility
isentropic, 46, 77
isothermal, 51, 108
Compressible flow, 77, 142, 156
Computer simulations, 23
Conformation space, 384, 387, 392
for polymers, 384
Conformation tensor, 229
Conservative force, 71
Constitutive equation, 4, 58, 90, 269, see also
Force–flux relation
Contact angle, 252, 253
Continuity equation, 61, 107, 142, 328
 molar form, 65, 174
 relativistic, 234, 236
 species mass, 63, 64, 107, 189, 199
 species molar, 66, 67, 349
Contraction
 double, 19
 single, 19
Convection
 in bulk phases, 63–65, 75
 in the interface, 257, 263
 of a scalar, 20
 of a scalar density, 20
Convoluted, 32, 179, 445
Coordinate system
 inertial, 188
 non-inertial, 189, 194–197
 rotating, 188
 transformation, 189, 194, 339, 351, 353
Coriolis force, 190, 356
Correlation function, 18
Correspondence theorem, 445
Cosmetics, 210
Covariance matrix, 21
 for fluctuations, 368
Creek experiments, 215
Creeping flow, 132, 136, 150, 152, 287, 312, 313, 320, 413, 444, 445
Cross effects, 89, 90, 92, 96, 97, 274, 279, 282, 427, 429, 435
Crosslinks, 214
Crude oil, 1, 2
Curie principle, 93, 426
 at interface, 273
Current density, 78
Curvature, 250, 251
Curved interface, see Interface
Cytoplasm, 241, 242
Czochralski crystal growth, 343–348
Damköhler number, 178, 408
Darcy’s law, 413
Deborah number, 220, 221
Detergents, 210
Die flow, 284, 286–288
Differential cross section, 456, 458
Diffuse wave spectroscopy, 447
Diffusion
 hindered, 407
 multi-component, 99
 with chemical reaction, 173, 177, 183, 397, 407, 412
Diffusion coefficient, 10–14, 16, 19, 92, 107, 177, 389, 420, 436, 439, see also Kinetic theory of gases, Self-diffusion and relaxation time, 389
 effective, 397, 405
 for a particle, 320, 324
 for diffusion along contour, 394
 for ideal mixture, 94
 interfacial, 282
 Maxwell–Stefan, 101, 102, 175
 thermal, 92, 95, 200
Diffusion equation, 7–9, 11–21, 23, 25, 26, 28, 31–33, 94, 111, 119, 124, 327, 385, 387, 390, 405, 423, 432, 439, 461, 469
 in polymer kinetic theory, 384, 387
 multivariate, 19
 steady-state solution, 14, 33
Diffusion tensor, 19, 20, 405, 406
Diffusion term, 11, 21
Diffusive energy flux, 75, 87, 98, see also Fourier’s law
 interfacial, 263
 modified, 92
Diffusive mass flux, 63, 65, 67, 90, 98, 175, 327, see also Fick’s law
 driven by pressure gradient, 191
 interfacial, 263
 not allowed in one-component systems, 88, 257
Diffusivity, 99, 132, see also Diffusion coefficient
 mass, 107, 123
 momentum, 112
 thermal, 119, 461
Dilute mixture, 175, 192, 199, 401, 429
Dimensional analysis, 128, 129, 131, 135, 142, 160, 177
 n–m procedure, 129, 192, 202, 313, 334
 normalization, 128, 334
 scaling, 130, 132, 161, 178, 292, 350, 356
Dimensionless groups, 130–132
Discontinuous systems, 97
Dispersion, 204–207
 coefficient, 205
 equation, 204, 207
 in a channel, 204
 in a tube, 207
 in porous media, 411
 Taylor, 204
Dispersion relation, 262, 425
Displacement vector, 216
Dissipation, 6
 from flow, 320, 322
 from relaxation, 233
Dissipative fluxes, 88
Dissipative structures, 177
Subject Index

Dividing interface, 243–248, 252, 256, 269–272, 274, 275
Dividing surface, 243
Drift term, 10–15, 17, 19–21, 405, 422, 461 modified, 15, 28
Drug release, 19
Dufour effect, 90, 200
Dwell time, 420, 421, 425
Dynamic light scattering, 447, 451, 455, 458, 464, 466–468, see also Scattering
Dynamic structure factor, 460
Dynamic viscosity, 218, 438
Effective medium theory, 309–312
Eigenfunction method, 16–19, 112, 125, 463, see also Separation of variables
Eigenvalue, 463, 464
Eigenvector, 463, 464
Einstein, 319
expression for effective viscosity, 323
expression for particle diffusivity, 323
summation convention, 321
Einstein’s fluctuation theory, 45, 367
and thermodynamic material properties, 368
for density, 369
for extensive quantities, 368
for intensive quantities, 368
for temperature, 368, 369
independent fluctuations of temperature and density, 369, 460, 464
Elastic collision, 378
Elastic solid, 216
Electric charge
conservation of, 78
density, 78
elementary, 77
neutrality, 98
per unit mass, 77
Electric conductivity
isothermal, 97
Electric current, 78, 96, 97, 117
Electric field, 78
Electric power grid, 1, 2
Electrochemical potential, 98
Electromagnetic energy transfer, 81
Electromagnetic field, 77, 79–81
Electromagnetic wave, 82, 455–457
Electroosmosis, 98
Electrophoresis, 98
Elongational flows, 217, 230, 390
equibiaxial, 217
simple, 217, 229, 298
start-up of, 217
Elongational rate, 217
Emulsions, 210
Energy
conservation of, 74
density, 74
internal, 38
kinetic, 39
macroscopic forms, 75
total, 39
Energy-momentum balance, 235, 237
Energy-momentum tensor, 235, 236, 238, 239
symmetry, 239
Entangled polymer melts, 214
Entanglements, 214, 391–393
creation and destruction of, 392
density of, 392, 393
strands between, 391
Enthalpy, 44
difference for phase change, 266, 347
of mixing, 51
of reaction, 51, 56, 174
Entrance length
for fully-developed flow, 140
thermal, 162
Entropy, 39, 40, 379, see also H theorem
conformational, 229
density, 49
molar, 48
relative, 16
specific, 49
Entropy balance, 86, 87, 106, 236, 238, 239, 432
conformational, 229
due to chemical reaction, 102
due to mass diffusion, 99
for flow in a heated tube, 166, 171
within and at interface, 272–275, 278–282, 426, 432
Equation of motion, 70, 287, 296, 327, 328, see also Momentum balance
for beads, 385, 386, 391
for Newtonian fluid, 107, 109, 142
Equation of state, 41, 43, 45
derivatives of, 46
hard-sphere gas, 52
ideal gas, 42
Equidimensional equation, 307, 315
Equilibrium, see also Local equilibrium
isotropic second-moment tensor, 387
thermodynamic, 37
Equilibrium probability density, 15, 18, 21, 34
Ergodicity, 361, 455
Error bar, 29
Error function, 14, 231
Euler equation, 42, 48, 49, 237
for interfaces, 246–248, 271
with kinetic energy, 271
Euler scheme, 25, 27
explicit, 24, 27
implicit, 27
Subject Index

Euler’s equation, 71, 131
Euler–Maruyama scheme, 26
stability, 27
Evaporation, 267
Evolution equation for excess density, see Interfacial balance equation
Excess density, 244, 247, 256, see also Interfacial balance equation
internal energy, 245
mass, 245, 247
species mass, 244, 245
Excluded-volume force, 389
Extent of reaction, 54
External force, 71, 76, 79, 377, 381
Extracellular fluid, 241, 426
Extrude, 286
swell, 286, 289
Extruder, 291, 294
design, 295
operating point, 294
Extrusion, 284, 291, 292, 294
FENE model, 389
Fiber spinning, 284, 295–298, 300–303
approximation, 298
draw-down ratio, 295, 301
inertial effects, 303
stability, 302
take-up force, 295, 299, 301
temperature, 303
Fick’s law, 84, 94, 107, 402
for interfaces, 286
pseudo-binary approximation, 176, 177
Field theory, 5
idealizations, 5
limits, 5
Field-flow fractionation, 198–202, 205–207
electric, 198, 207
elution curve, 198, 206
retention ratio, 207
thermal, 198, 202, 205
Filament, 295
Fin approximation, 347, 348
Finite deformation tensor, 390, 391
Finite difference method, 4, 353
Finite element method, 4
First law of thermodynamics, 38
Fluctuation–dissipation relation, 16, 441, 442
Fluctuations, 5, 6, 210, 364, 439, 450, 452, see also Einstein’s fluctuation theory around equilibrium state, 460
Gaussian distribution, 368
hydrodynamic, 452
inequivalence of ensembles, 364
inversely proportional to system size, 369
of concentration, 468
of density, 459–461, 465
Fluid dynamics, 1
Fluids with microstructure, see Complex fluids
Flux, see also Diffusive fluxes
convective, 63, 65, 69, 75, 81
diffusive, 63, 65, 67, 75, 78
molecular expression, 382
of electric charge, 78
of electromagnetic momentum, 81
of entropy, 87, 89, 92, 94, 97, 272
of internal energy, 75
of mass, 58
of momentum, 68
of species mass, 63
of species moles, 65, 350
Foams, 210, 305, 325
Fokker–Planck equation, 7, 26, 61, 64, 94, see also Diffusion equation
Food packaging, 284
Food technology, 209, 210
Force–flux pair, 88, 90, 96, 102
interfacial, 269, 273, 274, 279, 282
inverted relations, 100
mixed relations, 100
Four-tensor, 236
Four-vector, 233–236, 238
Fourier transform, 17, 215, 442, 443, 445, 454, 458, 462, 463
one-sided, 442
Fourier’s law, 84, 87, 88, 90, 93, 107, 166, 176, 279, 308, 400
for interfaces, 274
Friction coefficient, 16, 95, 323, 386, 394, 439, 445
Friction factor, 152–156
Frictional force, 386
Froude number, 113, 261, 359
Fuel additives, 210
Fugacity, coefficient, 53
Fundamental equation, 40
hard-sphere gas, 52
ideal gas, 42
intensive, 48
Fundamental form, 39, 49, 50, see also Gibb’s fundamental form
for interfaces, 271, 278
Fundamental solution, 12
Galaxy formation, 232
Galilean invariance, 194, 196, 259
Galilean transformation, 234
Gas absorption, 172
Gauge condition, 247–249, 263, 272
Gauge degree of freedom, 246, 270
and Gibbs phase rule, 246, 270
Subject Index

Gauge invariance, 244, 246, 248, 257, 270, 276, 279
 of Euler equation, 271
 of local-equilibrium assumption, 272
Gauge transformation, 79, 245, 248, 249, 270, 271
 by small displacement of dividing interface, 244
 for curved interface, 251
 for planar interface, 245, 248
Gauss's divergence theorem, 20, 60, 66, 69
Gaussian probability density, 12–14, 20, 24, 32, 380, 393, see also Maxwellian velocity distribution
 for fluctuations, 368
 multivariate, 21
 velocity distribution, 373
Gaussian random numbers, 26
Gaussian random variable, 23, 386, 387
Gels, 210
Generalized hydrodynamics, 380, 381
 Carreau model, 225
 power-law model, 225, 287
Gibbs adsorption isotherm, 271
Gibbs free energy, 44, 55
 of reaction, 56
Gibbs phase rule, 46, 246, 248, 271
Gibbs' fundamental form, 39, 40, 432, see also Euler equation, Gibbs–Duhem equation
 including interfaces, 245
Gibbs' paradox, 366
Gibbs–Duhem equation
 for interfaces, 246
 for interfaces, 246–248, 271
Good solvent, 389
Grad limit, 371, 374
Grand canonical ensemble, 365
Gravitational force, 69
H theorem, 379, 380
Hagen–Poiseuille equation, 140, 286
Hamiltonian structure, 236
Heat, 38
 capacity, 46, 376
 constant pressure, 52, 117
 constant volume, 46, 51, 117
 per area of interface, 276
 ratio, 107, 460
Heat exchanger, 159, 160
 design, 169, 170
Heat transfer, 1
 coefficient, 166, 169, 303, 338, 345, 348, see also Mass transfer coefficient
 versus Kapitza resistance, 275
Heavy-ion collisions, 5, 232
Helmholtz decomposition, 462
Helmholtz free energy, 43, 366, 367
 ideal gas, 47
Henry's law, 53, 332
Heterogeneous systems, 305
Histogram, 29, 30
Hooke's law, 216
Hookean dumbbell model, 385, 388, 389, 392
 and Maxwell model, 388
 and Oldroyd B model, 389
 pressure tensor, 388
 second-moment equation, 390, 391, 393
 solution of, 391
 steady shear flow, 390
 stress growth, 391
Hookean solid, 227
Hookean spring, 385, 386, 389, 392
 and Gaussian statistics, 385
 entropic effects, 385
 spring constant, 385, 393
Hydrodynamic equations, 107, 108, see also
 Generalized hydrodynamics
 covariant, 232
 dimensionless form, 131, 132
 from kinetic theory, 370, 381
 in non-inertial frame, 196, 198
 linearized, 460, 461, 468, 469
Hydrodynamic fields, 5, 58, 381, 382
Hydrodynamic interaction, 389

Ideal fluid, 71, 74, 95
Ideal gas, 42, 44, 328, 332, see also Kinetic theory of gases
 in microcanonical ensemble, 365
Ideal mixture, 52, 94, 173, 175, 191, 199, 402, 434, 469
Ill-posed problem, 219
Incompressible flow, 72, 110, 131, 138, 140, 286, 292, 313, 321, see also Pseudo-pressure
Independence, stochastic, 23–25, 27
Indistinguishability, 365, 366
Inertial force, 130, 189, 317, 356, 446, 449, see also Centrifugal force
 negligible for Brownian particles, 386
Information theory, 363
Integrability condition, 45, 61
Interface, 245, see also Dividing interface
 Interfacial region
 active, 264
 curved, 249–251
 diffuse, 243
 passive, 264
 planar, 243, 248, 250
 sharp, 243
 smooth, 243
 Interface partial time derivative, 259
Subject Index

Interfacial balance equation, 255, 256, 263, 264
for energy, 264
for entropy, 272
for internal energy, 264, 265
for species mass, 263, 282
passive, 264, 330
structure of, 265
Interfacial region, 243, 256, 270
structure of, 247, 270
thickness of, 243, 250, 256
Interfacial resistance to mass transfer, 280, 331
Interfacial temperature, 270, 273, 274
evolution equation for, 276, 282
Interfacial tension, 245, 246, 250, 262, 269, 273, 277, 329, 355
as thermodynamic potential, 248
as thermometer, 270
Interfacial velocity, see Velocity of interface
Internal energy, 38, 40
density, 49, 59, 75, 238
molar, 48
specific, 49, 76
Ion pump, 242
Irreversibility
emergence of, 6
Irreversible dynamics, 236, 379
Irrotational flow, 73, 321, 327
Itô calculus, 27
Joint distribution, 18, 24
Jump balance, 257, 258, 261, 264, 265
for energy, 265, 266, 308, 345, 347
for mass, 258, 260, 329, 347, 355
for momentum, 258, 261, 277, 297, 314, 329, 355
for species mass, 264, 265, 330, 350, 402, 427
Jump ratios, 246, 247
Kapitza resistance, 275, 308, 309
versus heat transfer coefficient, 275
Kelvin equation, 252
Kinesins, 416
Kinetic energy
density, 75
Kinetic theory, 28, 423
active transport, 431
Kinetic theory of gases, see also Boltzmann’s kinetic equation. Mean free path
diffusion coefficient, 375
elementary theory, 374, 377
flux of any molecular property, 375
molecular expressions for fluxes, 382
more rigorous, 376, 377
prefactors, 377
thermal conductivity, 376, 382
transport coefficients, 374
viscosity, 375–377, 382
Kinetic theory of polymeric liquids, 384, see also FENE model, Hookean dumbbell model, reptation model, Rouse model, Temporary network model
concentrated solutions, 391
dilute solutions, 385, 388, 389, 393
melts, 391, 393
solvent, 385, 389
Knudsen diffusion, 401
Knudsen number, 401
Kolmogorov’s forward equation, 7
Kramers–Kronig relations, 219, 220
Lagrange multiplier, 72, 363, 380
Laminar flow, 140
around a sphere, 312, 318, 322, 444, 445
in a channel, 170
in a liquid film, 174
in a tapered tube, 152
in a tube, 138–141, 153, 160, 167
Lamm equation, 191
Landau–Placzek ratio, 466
Langenvin equation, 440, 443
generalized, 440, 441
Laplace transform, 32, 119, 179, 183, 231
inverse, 32–34, 179, 231
Lattice Boltzmann method, 4
Legendre polynomials, 307
Legendre transformation, 43, 248, 363
Lewis number, 132, 178, 200
Lie derivative, 236
Linear growth conditions, 26
Linear irreversible thermodynamics, 84, 90, 92
Linear stability analysis, 262
Linear viscoelasticity, 211, 216–220, 445
fundamental equation of, 212, 215
Lipschitz continuity conditions, 26
Liquid crystals, 210
Liquid crystals, 210
Liquid film, 172
gravity-driven flow, 173, 174
Local equilibrium, 85, 86, 235, 269
for interfaces, 241, 248, 269–272, 276
validity of, 271
Lodge model, 392
Lorentz factor, 79, 81
Lorentz force, 79, 81
Lorentz transformation, 234
Lorentzian, 466
Loss modulus, 213, 214, 218
Lubricants, 210
Lubrication approximation, 150–152, 292
Mach number, 131, 143, 327
Macroscopic balance equation
for energy, 166, 170
for entropy, 170
for mass, 156
for mechanical energy, 157
for momentum, 153, 156
for species mass, 184
Magnetic field, 78
Marangoni stress, 277
Mass
conservation of, 60
of particle, 52
Mass action law, 55, 103–105, 173, 350, 402, 436
Mass density, 49, 58, 59, 234
species, 49
Mass fraction of species, 49, 63
constraint on, 50
evolution equation for, 107, 124, 132, 327
Mass transfer, 1
Mass transfer coefficient, 183, 413, see also Heat transfer coefficient
Massieu function, 44
Master equation, 419, 423, 425
Material derivative, 64, 226
Materials, see also Adhesives, Colloids, Complex fluids, Emulsions, Polymer melts, Polymer solutions, Soft matter, Surfactants
biological, 211, 325
catalytic, 396
composite, 305, 312
neo-Hookean, 394
packing, 210
polymeric, 284, 305
porous, 396
responsive, 211
self-healing, 211
semiconductor, 341
smart, 211
structural, 210
Maxwell relation, 44, 45, 51, 56, 368
Maxwell’s electromagnetic stress tensor, 80, 82
Maxwell’s equations, 78–81, 457
Maxwell-like relation, 247
Maxwell–Stefan equations, 101, 102, 175, 177
independent of reference velocity, 101
Maxwellian velocity distribution, 379, 380
Mean, 12, 20, 21
Mean free path, 5, 371, 373, 374, 376
and transport coefficients, 371
under normal conditions, 374
Mean-square displacement, 439, 441, 443, 446, 449
Membrane, 241
Memory function, 216, 440, 444, 445
Meniscus
height, 253
shape, 252
Michaelis–Menten model, 430
Microbead rheology, 439, 446
active, 439
passive, 439, 441, 447, 449
Microcanonical ensemble, 362–364, 366, 367
entropy, 365
equally probable microstates, 362
ideal gas, 365
inconvenience for practical calculations, 363
number of microstates, 362
role of time-reversal symmetry, 362
Microelectronic devices, 284, 341, 342
Microluidics, 140, 381
Microfluidics, 438
Microscopic degrees of freedom
large number of, 361
reduction in the number of, 361
Microtubes, 416
Minkowski tensor, 234, 235
Modulus, see also Relaxation modulus
experimental results, 394
molecular expression, 388, 393
Molar density, 65
species, 64
Molar mass
mixture, 49
of reactants and products, 54
species, 49
Mole fraction of species, 48
constraint on, 48
evolution equation for, 174–177
Mole number
density, 271
species, 38, 40
total, 48
Molecular motor, 415, 418–422, 425
polymerization, 416
processivity, 416
protein, 417, 418, 420
randomness parameter, 422, 423
rotational, 416
sacromere, 417
stall force, 421
translational, 416, 418
Molecular weight, see Molar mass
Moments, 10
first moment, 10, 11, 16, 23, 26
second moment, 10, 11, 16, 24, 26
Momentum, 39
conservation of, 68, 81
Momentum balance, 230, see also Energy-momentum balance, Equation of motion
for Newtonian fluid, 107
in non-inertial frame, 189, 356
Momentum density, 58, 59, 68, 69
electromagnetic, 81
Moody chart, 154
Moving boundary problem, 125, 333, 339, 342, 351
Subject Index

Multi-component diffusion, 100
Multi-component systems, 62, 64, 174, 177, 248, 249
Multiphase systems, 241
Multiplicative noise, 27
Multiscale models, 396
Muscle contraction, 241, 416, 425, 428
Myosins, 416
Natural convection, 118, 122, 135, 345, 346
Navier–Stokes equation, 110, 131, 135, 292, 313
Neo-Hookean material, 394
Nernst–Einstein equation, 95, 99, 323, 386, 443
Nernst–Planck equation, 98, 207
Network model, see Temporary network model
Newton’s law of cooling, 167, 345, 346, 348, see also Heat transfer coefficient
Newton’s law of viscosity, 84, 87, 88, see also Newtonian fluid
Newtonian fluid, 107, 212, 216, 222, 231, 292, 312, 326, 328
No-slip condition, 111, 139, 143, 275, 315, 354, 444
Noether’s theorem, 36
Nonequilibrium thermodynamics, 6, 84, 85, 210, 253
and force–flux relations, 84 and pressure tensor, 387
for interfaces, 269
Nonideal mixture, 53
Nonlinear equations, 4
as a consequence of convection, 5
Nonlinear rheological behavior, 211, 221, 222, 224, 225, 227, 228
Nonlocality, 6
Nonnegative entropy production, 87, 89, 90, 93, 102, 104, 274, 275, 280, 281, see also Second law of thermodynamics
Normal vector, 250, 251, 260, 296
Normal velocities, 256–258, 263, 264
for passive interfaces, 264
Normal-parallel splitting, 259, 260
Normal-stress coefficient first, 223, 224, 228
second, 223, 229
Normal-stress difference, 223, 224, 229
first, 222, 223, 289
second, 223
Number density, 378
Numerical integration scheme, 25, 26, 31, see also Euler scheme, Euler–Maruyama scheme
anticipating, 27
greater-order scheme, 26
implicit, 26
nonanticipating, 27

semi-implicit, 26
time-step extrapolation, 30
Nusselt number, 167, 169, 170
Ohm’s law, 97
Oil refinery, 3
Oldroyd B model, 229
from kinetic theory, 389
Onsager matrix, see Phenomenological coefficients
Onsager reciprocal relations, see Onsager symmetry
Onsager regression hypothesis, 465
Onsager symmetry, 91, 96, 97, 99, 100, 280, 433
experimental tests, 97
from time-reversal properties, 91
nonlinear generalization, 103
Optical trap, 439, 441
Oscillatory flow, 213, 215
Péclet number
for energy, 132, 161
for mass, 132, 202
Paints, 210
Partial differential equations, 26
coupled, 4
nonlinear, 4
second-order, 7, 8, 21
Partial specific property, 50, 52
enthalpy, 51
entropy, 52
volume, 51, 108, 191
Partition sum, 363, 366
Peltier effect, 97
Periodic domain, 111
Permeability, 413
Perturbation method, 144–147, 149, 337, 339, 353
Perturbation parameter, 144, 145, 149
Pharmaceuticals, 210
Phase change, 4, 264, 266, 338, 343, 346
Phase-space trajectory, 454
Phenomenological coefficients, 87, 97, 101
for interfaces, 280, 428
matrix of, 91, 93, 99–102, 104, 280, 428, 429, 433, 435
Phospholipid bilayer, 426
Pipeline, 1
Drushba, 1
Trans-Alaska, 2, 3, 138, 156, 157
Pipkin diagram, 220, 221
Planar interface, see Interface
Poiseuille flow, 138, see also Pressure-driven flow
Poisson bracket, 227
Poisson distribution, 420
Polymer melts, 284, 286, 291, 384, 391, 393
Subject Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer processing</td>
<td>3, 209, 284, 285</td>
</tr>
<tr>
<td>Polymer solutions</td>
<td>198, 468</td>
</tr>
<tr>
<td>concentrated</td>
<td>391</td>
</tr>
<tr>
<td>dilute</td>
<td>384</td>
</tr>
<tr>
<td>oriented molecules</td>
<td>385</td>
</tr>
<tr>
<td>stretched molecules</td>
<td>385</td>
</tr>
<tr>
<td>Polystyrene melts</td>
<td>213, 214, 221, 222</td>
</tr>
<tr>
<td>Porosity</td>
<td>398, 408</td>
</tr>
<tr>
<td>Porous media</td>
<td>396, 408</td>
</tr>
<tr>
<td>flow in</td>
<td>413</td>
</tr>
<tr>
<td>Positive definiteness</td>
<td>229</td>
</tr>
<tr>
<td>Positive semidefiniteness</td>
<td>19, 21, 90, 93, 100, 280, 429, 433</td>
</tr>
<tr>
<td>Potential energy density</td>
<td>75</td>
</tr>
<tr>
<td>Potential field</td>
<td>electric, 78 gravitational, 71</td>
</tr>
<tr>
<td>Potential flow</td>
<td>73, 74, see Irrotational flow</td>
</tr>
<tr>
<td>Poynning vector</td>
<td>81</td>
</tr>
<tr>
<td>Prandtl formula</td>
<td>154</td>
</tr>
<tr>
<td>Prandtl number</td>
<td>132, 161, 376, 377</td>
</tr>
<tr>
<td>Pressure</td>
<td>38, 40</td>
</tr>
<tr>
<td>for rarefied gas</td>
<td>372</td>
</tr>
<tr>
<td>modified, 73, 110, 446</td>
<td></td>
</tr>
<tr>
<td>pseudo-, 72, 73, 113, 139, 313</td>
<td></td>
</tr>
<tr>
<td>Pressure drop</td>
<td>140, 148, 156, 286, 290</td>
</tr>
<tr>
<td>Pressure jump</td>
<td>250</td>
</tr>
<tr>
<td>Pressure tensor</td>
<td>68, 70, 215, 223, 239, see also Rheological constitutive equations, Flux of momentum</td>
</tr>
<tr>
<td>as a structural variable</td>
<td>226</td>
</tr>
<tr>
<td>decomposition of</td>
<td>87</td>
</tr>
<tr>
<td>evolution equation</td>
<td>388</td>
</tr>
<tr>
<td>excess</td>
<td>273</td>
</tr>
<tr>
<td>extra, 87, 287</td>
<td></td>
</tr>
<tr>
<td>for Hookean dumbbell model</td>
<td>388</td>
</tr>
<tr>
<td>surface, 273</td>
<td></td>
</tr>
<tr>
<td>symmetry of</td>
<td>71, 73, 87</td>
</tr>
<tr>
<td>transverse</td>
<td>273</td>
</tr>
<tr>
<td>Pressure-driven flow</td>
<td>138, 144, 292, see also Poiseuille flow</td>
</tr>
<tr>
<td>channel</td>
<td>141, 198</td>
</tr>
<tr>
<td>tube, 138, 142</td>
<td></td>
</tr>
<tr>
<td>Probability density</td>
<td>8, 9, 11–13, 15, 16, 20, 377, 418, 431, 439, see also Gaussian probability density, Single-particle distribution function</td>
</tr>
<tr>
<td>normalizability</td>
<td>15</td>
</tr>
<tr>
<td>triangular</td>
<td>13, 14</td>
</tr>
<tr>
<td>Probability flux</td>
<td>9, 10, 14–16, 20, 21</td>
</tr>
<tr>
<td>Propagation speed</td>
<td>232, 233</td>
</tr>
<tr>
<td>Pseudo-pressure</td>
<td>223, see also Pressure, Incompressible flow</td>
</tr>
<tr>
<td>Pseudo-binary approximation</td>
<td>176, 177, 206, 402</td>
</tr>
<tr>
<td>Pumping station</td>
<td>2, 3</td>
</tr>
<tr>
<td>Quantum mechanics</td>
<td>361, 362, 366</td>
</tr>
<tr>
<td>Quark–gluon plasmas</td>
<td>5</td>
</tr>
<tr>
<td>Quasi-steady-state approximation</td>
<td>122, 134, 338, 344, 352, 356</td>
</tr>
<tr>
<td>Rabinowitsch correction</td>
<td>289</td>
</tr>
<tr>
<td>Radial average</td>
<td>121, 297–299</td>
</tr>
<tr>
<td>Radiative heat transfer</td>
<td>81</td>
</tr>
<tr>
<td>Radius of curvature</td>
<td>250, 251</td>
</tr>
<tr>
<td>Random numbers</td>
<td>24, 26</td>
</tr>
<tr>
<td>Rarefied gas</td>
<td>371, 381, see also Kinetic theory of gases mechanical model, 371</td>
</tr>
<tr>
<td>point particles</td>
<td>371</td>
</tr>
<tr>
<td>pressure calculation</td>
<td>372</td>
</tr>
<tr>
<td>transport coefficients</td>
<td>376</td>
</tr>
<tr>
<td>Rayleigh line</td>
<td>466</td>
</tr>
<tr>
<td>Rayleigh number</td>
<td>135</td>
</tr>
<tr>
<td>Rayleigh problem</td>
<td>230</td>
</tr>
<tr>
<td>Rayleigh–Brillouin spectrum</td>
<td>466, 467, 469</td>
</tr>
<tr>
<td>Rayleigh–Plateau instability</td>
<td>262</td>
</tr>
<tr>
<td>Rayleigh–Plesset equation</td>
<td>330</td>
</tr>
<tr>
<td>Reaction coordinate</td>
<td>431–434</td>
</tr>
<tr>
<td>Reaction rate constant</td>
<td>103</td>
</tr>
<tr>
<td>Recoil experiments</td>
<td>215</td>
</tr>
<tr>
<td>Relativistic hydrodynamics</td>
<td>232, 233, 239</td>
</tr>
<tr>
<td>Relaxation</td>
<td>102, 226, 227</td>
</tr>
<tr>
<td>anisotropic</td>
<td>229</td>
</tr>
<tr>
<td>slow, 209, 210</td>
<td></td>
</tr>
<tr>
<td>Relaxation function</td>
<td>218</td>
</tr>
<tr>
<td>Relaxation modulus</td>
<td>212, 215, 216, 218, 219, 224, 228, see also Modulus for Newtonian fluid</td>
</tr>
<tr>
<td>for Newonian fluid</td>
<td>216</td>
</tr>
<tr>
<td>Relaxation spectrum</td>
<td>217–219, 221</td>
</tr>
<tr>
<td>Relaxation time</td>
<td>218–220, 227, 299, 389, 394</td>
</tr>
<tr>
<td>and diffusion coefficient</td>
<td>389</td>
</tr>
<tr>
<td>depending on stress</td>
<td>228</td>
</tr>
<tr>
<td>from reptation model</td>
<td>394</td>
</tr>
<tr>
<td>large, 224</td>
<td></td>
</tr>
<tr>
<td>longest, 214, 220</td>
<td>mean, 224</td>
</tr>
<tr>
<td>molecular expression</td>
<td>388, 393</td>
</tr>
<tr>
<td>molecular-weight dependence</td>
<td>389, 390</td>
</tr>
<tr>
<td>origin of enormous values</td>
<td>394</td>
</tr>
<tr>
<td>Reptation model</td>
<td>391, 394, see also Entanglements calculation of relaxation time, 394</td>
</tr>
<tr>
<td>Response function</td>
<td>218</td>
</tr>
<tr>
<td>Retardation spectrum</td>
<td>218</td>
</tr>
<tr>
<td>Retarded motion expansion</td>
<td>230</td>
</tr>
<tr>
<td>Reversible dynamics</td>
<td>227, 236</td>
</tr>
<tr>
<td>Reynolds equation</td>
<td>151, see also Lubrication approximation</td>
</tr>
<tr>
<td>Reynolds number</td>
<td>115, 131, 140, 153, 317, 356</td>
</tr>
</tbody>
</table>
Rheological constitutive equations, 219, see also FENE model, Hookean dumbbell model, Reptation model, Rouse model, Temporary network model

Boussinesq interfacial fluid, 225
Maxwell fluid, 227, 299, 446
Oldroyd B fluid, 229, 230
quasilinear models, 227
second-order fluid, 230

Rheology, 115, 211, 220, 224, 438
Rotation matrix, 189, 194
Rouse model, 389, 390

Scales, large range of, 4

Scattering, 455, see also Dynamic light scattering
angle, 456
light, 451, 455, 457
neutron, 451
quasi-elastic, 456, 458
vector, 456
X-ray, 451
Schmidt number, 132, 327, 376, 377
Schrödinger equation, 16, 18

Second law of thermodynamics, 39, 87, 100, 102, see also Nonnegative entropy production

Sedimentation coefficient, 191, 198
Seebeck effect, 97, 98
Self-diffusion, 375
Self-organization, 210

Semiconductor processing, 341, 342
crystal growth, 343
lithography, 342
oxidation, 342, 349
spin coating, 342, 353

Separation of variables, 112, 164, 306, 345
Separation process, 172, 186, 198, 206
Shannon entropy, 363

Shear flows, 221–224, 228
homogeneous, 211, 227, 230
start-up of, 212, 213, 228
steady, 212, 222, 223
Shear rate, 211, 212, 221, 222, 228, 286
Shear stress, 212, 222, 287
Shear thinning, 222, 224
exponent, 222
power-law decay, 222
Shear waves, 444
Siegert relation, 459
Silicon oxidation, 349–353
Similarity transform, 133, 337, 339
Simulation program, 29
MATLAB, 29, 30

Single-particle distribution function, 377, 378, 380–382
Slip law for velocity, 275, 290, 314, 315
Slip phenomena, 91
Smoluchowski equation, 7
Soft matter, 5, 209–211, see also Complex fluids
relevant fluctuations, 210
Solid angle, 378
Solidification, 266
Soret coefficient, 92
Soret effect, 90, 199, 200
Sorption experiment, 123, 125–127, 267
Source term
in angular momentum balance, 73
in excess species mass balance, 263
in interfacial balance equation, 257
in internal energy balance, 76
in momentum balance, 69
in species mass balance, 63, 405
Spatial average theorem, 399
Spatial position vector, 58
Spatial projector, 235
Special relativity, 233
Spectral density, 454, 459
Spectrum of relaxation times, 17, 18, 389, 393
Speed of light, 78, 233, 458
Speed of sound, 77, 461
isentropic, 77, 460, 467
isothermal, 131, 328
Spin coating, 353, 355–359
Squeezing flow, 152, 414

Statistical ensemble, 361, see also Canonical ensemble, Grand canonical ensemble, Microcanonical ensemble

Stefan equation, 152
Stefan number, 266, 338, 339, 348
Stefan problem, 351
Stochastic difference equation, 23–25, 29, 30, 441
Stochastic differential equation, 25, 25–28, 386, 387, 391, 441
continuous trajectories, 26
existence and uniqueness of solutions, 26
in polymer kinetic theory, 385, 387
non-differentiable trajectories, 26
Stochastic process, 24, 419, 420, 451, 452
Stochastic coefficient, 54, 65, 67, 103, 281
for interfacial reaction, 265
Stokes’ law, 317, 318, 323, 439, 444
Stokes’ paradox, 317
Stokes–Einstein relation, 323, 440, 468
generalized, 446, 447
Storage modulus, 213, 214, 218
Stoßzahlansatz, 378
Subject Index

507

Strain tensor, 216
Stratonovich calculus, 27
Stream function, 62, 66, 74, 116, 144, 313, 314, 357, 359, 444, 446
Streamline, 62, 66, 77
Stress principle of Cauchy, 70
Stress tensor, see Pressure tensor
Stress vector, 70
Stress-decay coefficient, 218
Stress-growth coefficient, 212, 218
Stress-growth experiment, 212
Stripping, 172
Structural variables, 209, 210, 225, 226, 233, 238, 239
tensor, 235
vector, 235
Structure factor
dynamic, 459, 466, 468
static, 459, 465
Subsonic flow, 143
Sum rule, 215
Superficial density, 244
Surface area, 245
Surface of discontinuity, 243
Surfactants, 210
Svedberg relation, 192
Symmetry breaking, 279

Tangential projector, 250
Taylor dispersion, see Dispersion
Temperature, 39, 40, 258
continuity of, 275, 345
discontinuity of, 308, 309
flow-average, 167
interfacial, 269, 270, 276
local, 85, 86
radial-average, 121
Temperature jump, 273–275
Temporary network model, 391–394
affine deformation, 392
conformation-dependent rate parameter, 394
creation and destruction of strands, 392
density of strands, 393, 394
generalizations, 393
Lodge model, 392
non-affine deformation, 393
pressure tensor, 393
second-moment equation, 393, 394
spectrum of relaxation times, 393

Thermal conductivity, 87, 107, 116, see also
Kinetic theory of gases
anisotropic, 93, 94, 348
effective, 310–312, 396, 401
in the absence of electric current, 97
interfacial, 274, 282
modified, 92
tensor, 93
Thermal expansion coefficient
isobaric, 51, 108, 460
Thermodynamic driving forces, 88
Thermodynamic potentials, 43, 360
enthalpy, 44
from statistical mechanics, 364
Gibbs free energy, 44
Helmholtz free energy, 43
internal energy, 40
Thermodynamic variable
extensive, 42
intensive, 42, 48
state, 38
Thermodynamics, 36
adiabatic process, 39, 165, 166, 295
closed system, 37
efficiency, 429
equation of state, 41, 43, 50
first law of, 38
framework, 37
isolated system, 37
material properties, 44
postulates, 37, 38, 40
potentials, 43
quasi-static process, 38, 39
second law of, 39
second-order derivatives, 44, 50
small systems, 48
stability criteria, 45, 46
system, 42
Thermoelectric devices, 98
Thermoelectric effects, 95–97
Thermometer for interfacial temperature, 270
Thiele number, 403, 409
Thin-boundary-layer approximation, 339, 340
Third law of thermodynamics
from statistical mechanics, 367
Time-ordered exponential, 20, 21, 390
Time–temperature-superposition principle, 220
Torque, 114
Couette viscometer, 114
parallel-disk viscometer, 135
Tracer particles, 375
Transient hot-wire method, 117, 119–122
Transition probability density, 13, 18, 21
Transition rates
for two-particle collisions, 378, 382
molecular motor, 417, 418
Transport
against a gradient, 241, 242
convective, 61, 63, 65, 68, 75, 81, 337
diffusive, 63, 65, 75, 78, 344
dissipative, 17
irreversible, 64
of energy, 1
Subject Index

Transport (cont.)
of mass, 1
of momentum, 1
of probability, 7
reversible, 64

Transport coefficients, 106, 209, 451
anisotropic, 93
atomistic approach, 360
effective, 305, 320
from Boltzmann’s kinetic equation, 380, 381
ratios of, 376

Transverse mobility tensor, 275
Transverse wave, 82
Turbulent flow, 153, 169
Turing patterns, 177

Ultracentrifuge, 186–194
analytic, 187

Unit vector
tangent, 62

Universe, transport in, 2, 232

Van der Waals forces, 5

Variance, 12, 20, 24, 387
of displacement, 420
of fluctuations, 368

Velocity, see also Velocity of interface
as an intensive thermodynamic variable, 39
concept, 10, 26, 59, 64, 65, 70, 195
constraint on, 72, 108, 296, 299, 296, 313, 356
mass-average, 63, 67, 174
molar-average, 65, 67, 174
no-slip condition, 275
potential, 74
reference, 67, 191
root-mean-square, 373
slip law, 275, 290
superficial-average, 413
vector, 39, 58
volume-average, 67, 191

Velocity gradient tensor, 321
symmetrized, 215, 217, 286
transposed, 226, 386

Velocity of interface, 248, 257, 329
deformalional, 259
splitting, 259, 260
tangential, 259
translational, 259, 260

Viscoelastic fluid, see Viscoelasticity

Viscoelasticity, 209, 223–225, 228, 230, 231, 334, 438, 444, see also Linear
viscoelasticity
nonlinear, 285

Viscometer, 109, 136
capillary, 289
cone and plate, 224
Couette, 110, 112–115, 149
falling ball, 318
torsional flow, 135

Viscometric functions, 224, 228, 230

Viscosity, 84, 109, 212, 299, see also Complex viscosity, Kinetic theory of gases
bulk, 88, 93, 107, 467
dilatational, 88
effective, 320
interfacial, 274
kinematic, 112, 113
longitudinal kinematic, 460
origin of enormous values, 394
shear, 87, 93, 107
shear-rate dependence, 221, 223, 224, 287

Volume, 38, 40
molar, 48
specific, 49

Volume average, 310
intrinsic, 398
superficial, 398

Volume averaging, 397–400, 402, 410
closure problem, 403–405
spatial-average theorem, 399
spatial decomposition, 399, 403
spatial filter, 400

Vorticity, 73, 109, 116, 327, 461, 462
fluctuations, 461
transport equation, 116, 141

Wave vector, 82, 455

Weather forecast, 2
Weber number, 261, 359
Weissenberg number, 220, 221
Wire coating, 290

Work, 38
done by flow, 320, 324
shaft, 157

Yield stress fluid, 225, 334
Young’s equation, 252
Young-Laplace equation, 250, 252, 258, 330
nonequilibrium generalization, 271

Z-disks, 417
Zakian’s method, 33