THE FUNDAMENTALS OF SOCIAL RESEARCH

This textbook provides an introduction to the scientific study of sociology and other social sciences. It offers the basic tools necessary for readers to become both critical consumers and beginning producers of scientific research on society. The authors present an integrated approach to research design and empirical analyses in which researchers can develop and test causal theories. They use examples from social science research that students will find engaging and inspiring, and that will help them to understand key concepts. The book makes technical materials accessible to students who might otherwise be intimidated by mathematical examples. This new text, with the addition of sociologist Steven A. Tuch to the author team, follows the successful format, approach, and pedagogical features in Paul M. Kellstedt and Guy D. Whitten's bestselling text, *The Fundamentals of Political Science Research*, now in its third edition. Workbooks in Stata, SPSS, and R, three of the most popular statistical analysis programs, are available as separate purchases to accompany this textbook, enabling students to connect the lessons of this book to hands-on applications of the software.

Paul M. Kellstedt is a professor of political science at Texas A&M University.

Guy D. Whitten is a professor of political science and Director of the European Union Center at Texas A&M University.

Steven A. Tuch is a professor of sociology and public policy and public administration at George Washington University.
THE FUNDAMENTALS OF
Social Research

Paul M. Kellstedt
Texas A&M University

Guy D. Whitten
Texas A&M University

Steven A. Tuch
George Washington University
To Deb Kellstedt, Christine Lipsmeyer, and Sandra Hanson

—PMK, GDW, and SAT
Brief Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Scientific Study of Society</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>The Art of Theory Building</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>Evaluating Causal Relationships</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>Research Design</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>Survey Research</td>
<td>86</td>
</tr>
<tr>
<td>6</td>
<td>Measuring Concepts of Interest</td>
<td>99</td>
</tr>
<tr>
<td>7</td>
<td>Getting to Know Your Data</td>
<td>114</td>
</tr>
<tr>
<td>8</td>
<td>Probability and Statistical Inference</td>
<td>131</td>
</tr>
<tr>
<td>9</td>
<td>Bivariate Hypothesis Testing</td>
<td>147</td>
</tr>
<tr>
<td>10</td>
<td>Two-Variable Regression Models</td>
<td>177</td>
</tr>
<tr>
<td>11</td>
<td>Multiple Regression</td>
<td>201</td>
</tr>
<tr>
<td>12</td>
<td>Putting It All Together to Produce Effective Research</td>
<td>246</td>
</tr>
</tbody>
</table>

Appendices

- Appendix A. Critical Values of Chi-Squared: 267
- Appendix B. Critical Values of t: 268
- Appendix C. The Λ Link Function for Binomial Logit Models: 269
- Appendix D. The Φ Link Function for Binomial Probit Models: 271
Brief Contents

References 273
Index 279
Contents

List of Figures page xvi
List of Tables xviii
Preface xxi
Acknowledgments xxiv

1 The Scientific Study of Society

- Overview 1
- 1.1 Social Science? 1
- 1.2 Approaching Sociology Scientifically: The Search for Causal Explanations 4
- 1.3 Thinking About the World in Terms of Variables and Causal Explanations . 8
- 1.4 Rules of the Road to Scientific Knowledge about Society 16
 - 1.5.1 Make Your Theories Causal 17
 - 1.5.2 Don’t Let Data Alone Drive Your Theories 17
 - 1.5.3 Consider Only Empirical Evidence 18
 - 1.5.4 Avoid Normative Statements 18
 - 1.5.5 Pursue Both Generality and Parsimony 19
- 1.6 The Ethics of Social Research .. 19
 - 1.6.1 Potential Harm .. 20
 - 1.6.2 Informed Consent .. 21
 - 1.6.3 Deception .. 22
 - 1.6.4 Anonymity and Confidentiality 23
- 1.7 A Quick Look Ahead 24
 - Concepts Introduced in This Chapter 25
 - Exercises ... 26

2 The Art of Theory Building

- Overview 29
- 2.1 Good Theories Come from Good Theory-Building Strategies 29
Contents

2.2 Promising Theories Offer Answers to Interesting Research Questions 30
2.3 Identifying Interesting Variation 30
 2.3.1 Time-Series Example 31
 2.3.2 Cross-Sectional Example 32
2.4 Learning to Use Your Knowledge 33
 2.4.1 Moving from a Specific Event to More General Theories 34
 2.4.2 Know Local, Think Global: Can You Drop the Proper Nouns? 35
2.5 Examine Previous Research 36
 2.5.1 What Did the Previous Researchers Miss? 36
 2.5.2 Can Their Theory Be Applied Elsewhere? 37
 2.5.3 If We Believe Their Findings, Are There Further Implications? 37
 2.5.4 How Might This Theory Work at Different Levels of Aggregation (Micro \(\iff \) Macro)? 38
2.6 How Do I Know If I Have a “Good” Theory? 38
 2.6.1 Does Your Theory Offer an Answer to an Interesting Research Question? 39
 2.6.2 Is Your Theory Causal? 39
 2.6.3 Can You Test Your Theory on Data That You Have Not Yet Observed? 40
 2.6.4 How General Is Your Theory? 40
 2.6.5 How Parsimonious Is Your Theory? 40
 2.6.6 How New Is Your Theory? 40
 2.6.7 How Nonobvious Is Your Theory? 41
2.7 Conclusion 41
 Concepts Introduced in This Chapter 41
 Exercises 42

3 Evaluating Causal Relationships 46
 Overview 46
 3.1 Causality and Everyday Language 46
 3.2 Four Hurdles along the Route to Establishing Causal Relationships 49
 3.2.1 Putting It All Together – Adding Up the Answers to Our Four Questions 51
 3.2.2 Identifying Causal Claims Is an Essential Thinking Skill 52
 3.2.3 What Are the Consequences of Failing to Control for Other Possible Causes? 56
 3.3 Why Is Studying Causality So Important? Three Examples from Sociology 57
 3.3.1 Intergroup Contact and Racial Tolerance 57
 3.3.2 Race and Political Participation in the U.S. 58
 3.3.3 Evaluating Whether Head Start Is Effective 60
 3.4 Wrapping Up 61
Contents

Concepts Introduced in This Chapter 62
Exercises 62

4 Research Design ... 65
Overview 65
4.1 Comparison As the Key to Establishing Causal Relationships 65
4.2 Experimental Research Designs 66
4.2.1 “Random Assignment” versus “Random Sampling” 72
4.2.2 Varieties of Experiments and Near-Experiments 73
4.2.3 Are There Drawbacks to Experimental Research Designs? 74
4.3 Observational Studies (in Two Flavors) 77
4.3.1 Datum, Data, Data Set 79
4.3.2 Cross-Sectional Observational Studies 80
4.3.3 Time-Series Observational Studies 80
4.3.4 The Major Difficulty with Observational Studies 81
4.4 Summary 82
Concepts Introduced in This Chapter 83
Exercises 84

5 Survey Research .. 86
Overview 86
5.1 Why Surveys? 86
5.2 Modes of Survey Administration 87
5.2.1 Face-to-Face In-Person Interviews 87
5.2.2 Self-Administered Questionnaires 88
5.2.3 Telephone Interviews 88
5.2.4 Web-Based Surveys 89
5.2.5 Survey-Based Experiments 90
5.3 Already Existing Survey Data Sets 92
5.3.1 General Social Survey (GSS) 92
5.3.2 American National Election Study (ANES) 93
5.3.3 International Social Survey Programme (ISSP) 93
5.3.4 World Values Survey (WVS) 94
5.4 Probability Sampling 94
5.4.1 Simple Random Samples 95
5.4.2 Systematic Random Samples 95
5.4.3 Stratified Random Sampling 96
5.4.4 Multistage Cluster Sampling 96
Concepts Introduced in This Chapter 97
Exercises 98

6 Measuring Concepts of Interest 99
Overview 99
6.1 Getting to Know Your Data: Evaluating Measurement 99
Contents

6.2 Social Science Measurement: The Varying Challenges of Quantifying Humanity

6.3 Problems in Measuring Concepts of Interest
6.3.1 Conceptual Clarity
6.3.2 Reliability
6.3.3 Measurement Bias and Reliability
6.3.4 Validity
6.3.5 The Relationship between Validity and Reliability
6.4 Controversy: Measuring Racial Tolerance
6.5 Are There Consequences to Poor Measurement?
6.6 Conclusions

Concepts Introduced in This Chapter
Exercises

Chapter 7: Getting to Know Your Data

- Overview
- 7.1 Getting to Know Your Data Statistically
- 7.2 What Is the Variable’s Measurement Metric?
- 7.2.1 Categorical Variables
- 7.2.2 Ordinal Variables
- 7.2.3 Continuous Variables
- 7.2.4 Variable Types and Statistical Analyses
- 7.3 Describing Categorical Variables
- 7.4 Describing Continuous Variables
- 7.4.1 Rank Statistics
- 7.4.2 Moments
- 7.5 Limitations of Descriptive Statistics and Graphs

Concepts Introduced in This Chapter
Exercises

Chapter 8: Probability and Statistical Inference

- Overview
- 8.1 Populations and Samples
- 8.2 Some Basics of Probability Theory
- 8.3 Learning about the Population from a Sample: The Central Limit Theorem
- 8.3.1 The Normal Distribution
- 8.4 Example: Presidential Approval Ratings
- 8.4.1 What Kind of Sample Was That?
- 8.4.2 A Note on the Effects of Sample Size
- 8.5 A Look Ahead: Examining Relationships between Variables

Concepts Introduced in This Chapter
Exercises

Chapter 9: Bivariate Hypothesis Testing

- Overview

© in this web service Cambridge University Press & Assessment
www.cambridge.org
Contents

9.1 Bivariate Hypothesis Tests and Establishing Causal Relationships 147
9.2 Choosing the Right Bivariate Hypothesis Test 148
9.3 All Roads Lead to \(p \)
 9.3.1 The Logic of \(p \)-Values 149
 9.3.2 The Limitations of \(p \)-Values 150
 9.3.3 From \(p \)-Values to Statistical Significance 151
 9.3.4 The Null Hypothesis and \(p \)-Values 152
9.4 Four Bivariate Hypothesis Tests 152
 9.4.1 Example 1: Tabular Analysis 152
 9.4.2 Example 2: Difference of Means 159
 9.4.3 Example 3: Correlation Coefficient 162
 9.4.4 Example 4: Analysis of Variance 168
9.5 Multiple Comparisons 171
9.6 Wrapping Up
 Concepts Introduced in This Chapter 172
 Exercises 173

10 Two-Variable Regression Models 177
 Overview 177
 10.1 Two-Variable Regression 177
 10.2 Fitting a Line: Population ↔ Sample 178
 10.3 Which Line Fits Best? Estimating the Regression Line 180
 10.4 Measuring Our Uncertainty about the OLS Regression Line 184
 10.4.1 Goodness-of-Fit: Root Mean-Squared Error 185
 10.4.2 Goodness-of-Fit: \(R^2 \)-Squared Statistic 185
 10.4.3 Is That a “Good” Goodness-of-Fit? 187
 10.4.4 Uncertainty about Individual Components of the Sample Regression Model 187
 10.4.5 Confidence Intervals about Parameter Estimates 189
 10.4.6 Two-Tailed Hypothesis Tests 190
 10.4.7 The Relationship between Confidence Intervals and Two-Tailed Hypothesis Tests 192
 10.4.8 One-Tailed Hypothesis Tests 192
 10.5 Assumptions, More Assumptions, and Minimal Mathematical Requirements 194
 10.5.1 Assumptions about the Population Stochastic Component 194
 10.5.2 Assumptions about Our Model Specification 197
 10.5.3 Minimal Mathematical Requirements 198
 10.5.4 How Can We Make All of These Assumptions? 198
 Concepts Introduced in This Chapter 198
 Exercises 199

11 Multiple Regression 201
 Overview 201
 11.1 Modeling Multivariate Reality 201
Contents

11.2 Adding a Z Variable to a Bivariate Tabular Analysis 202
11.3 The Population Regression Function 205
11.4 From Two-Variable to Multiple Regression 205
11.5 Interpreting Multiple Regression 210
11.6 Which Effect Is “Biggest”? 213
11.7 Statistical and Substantive Significance 214
11.8 What Happens When We Fail to Control for Z
11.8.1 An Additional Minimal Mathematical Requirement in Multiple Regression 220
11.9 Being Smart with Dummy Independent Variables in OLS
11.9.1 Using Dummy Variables to Test Hypotheses about a Categorical Independent Variable with Only Two Values 221
11.9.2 Using Dummy Variables to Test Hypotheses about a Categorical Independent Variable with More Than Two Values 225
11.9.3 Using Dummy Variables to Test Hypotheses about Multiple Independent Variables 228
11.10 Testing Interactive Hypotheses with Dummy Variables 229
11.11 Dummy Dependent Variables
11.11.1 The Linear Probability Model 232
11.11.2 Binomial Logit and Binomial Probit 235
11.11.3 Goodness-of-Fit with Dummy Dependent Variables 238
11.12 Implications
Concepts Introduced in This Chapter 241
Exercises 242

12 Putting It All Together to Produce Effective Research 246

Overview 246
12.1 Two Routes Toward a New Scientific Project 246
12.1.1 Project Type 1: A New Y (and Some X) 247
12.1.2 Project Type 2: An Existing Y and a New X 249
12.1.3 Variants on the Two Project Types 250
12.2 Using the Literature Without Getting Buried in It
12.2.1 Identifying the Important Work on a Subject – Using Citation Counts 251
12.2.2 Oh No! Someone Else Has Already Done What I Was Planning to Do. What Do I Do Now? 252
12.2.3 Dissecting the Research by Other Scholars 252
12.2.4 Read Effectively to Write Effectively 253
12.3 Writing Effectively about Your Research 255
12.3.1 Write Early, Write Often (Because Writing is Thinking) 255
12.3.2 Document Your Code – Writing and Thinking While You Compute 255
12.3.3 Divide and Conquer – a Section-by-Section Strategy for Building Your Project 256
12.3.4 Proofread, Proofread, and then Proofread Again 259
Contents

12.4 Making Effective Use of Tables and Figures 260
 12.4.1 Constructing Regression Tables 260
 12.4.2 Writing about Regression Tables 264
 12.4.3 Other Types of Tables and Figures 265
 Exercises 266

Appendix A. Critical Values of Chi-Squared 267

Appendix B. Critical Values of t 268

Appendix C. The Λ Link Function for Binomial Logit Models 269

Appendix D. The Φ Link Function for Binomial Probit Models 271

References 273

Index 279
Figures

1.1 The road to scientific knowledge
1.2 From theory to hypothesis
1.3 What would you expect to see based on the theory of economic threat?
1.4 What would you expect to see based on the theory of economic threat? Two hypothetical cases
1.5 What would you expect to see based on the theory of economic threat?
1.6 What would you expect to see based on the theory of economic threat? Two hypothetical cases
2.1 Presidential approval, 1995–2005
2.2 Gini coefficients in 2013
3.1 The path to evaluating a causal relationship
4.1 The possibly confounding effects of interest in the legislative process–bill support relationship
6.1 Reliability, validity, and hypothesis testing
7.1 Pie graph of “Religious Identification,” GSS 2014
7.2 Bar graph of “Religious Identification,” GSS 2014
7.3 Rank statistics and statistical moments from SPSS’s “frequencies” procedure
7.4 Box–whisker plot of African American homeownership, 1985–2014
7.5 Histogram of African American homeownership, 1985–2014
7.6 Histograms of African American homeownership, 1985–2014, depicted with two and six blocks
7.7 Kernel density plot of African American homeownership, 1985–2014
7.8 Combination histogram and kernel density plot of African American homeownership, 1985–2014
8.1 The normal probability distribution

page 5
10
12
13
14
14
32
33
53
70
109
120
120
121
123
125
126
127
127
136
List of Figures

8.2 The 68–95–99 rule 137
8.3 Frequency distribution of 600 rolls of a die 138
9.1 Box–whisker plot of highest year of school completed for non-Hispanic whites and non-Hispanic blacks 159
9.2 Scatter plot of unemployment rate and percentage of support for government assistance to the poor, selected years 1975–2014 163
9.3 Scatter plot of unemployment rate and percentage support for government assistance to the poor with mean-delimited quadrants, selected years 1975–2014 165
9.4 What is wrong with this table? 174
10.1 Scatter plot of unemployment rate and support for government assistance to the poor, selected years 1975–2014 180
10.2 Freehand regression line 181
10.3 OLS regression line through scatter plot with mean-delimited quadrants 183
10.4 Results for two-variable regression model between support for government assistance and unemployment rate; support = α + β × unemployment 184
10.5 Venn diagram of variance and covariance for X and Y 186
11.1 Venn diagram in which X, Y, and Z are correlated 219
11.2 Venn diagram in which X and Z are correlated with Y, but not with each other 220
11.3 SPSS output when we include both gender dummy variables in our model 222
11.4 Regression lines from the model with a dummy variable for gender 225
11.5 Regression lines from the interactive model 231
11.6 Three different models of Bush vote 238
Tables

2.1 The fifty most downloaded articles from American Sociological Association journals in 2018 page 42
7.1 Frequency table for “Religious Identification” in the 2014 GSS 119
7.2 Values of African American homeownership ranked from smallest to largest 122
7.3 Median incomes of the fifty states, 2004–05 130
9.1 Variable types and appropriate bivariate hypothesis tests 149
9.2 Union households and political party affiliation, 2014 GSS 153
9.3 Gender and empathy, 2012 and 2014 GSS 154
9.4 Gender and empathy: expectations for hypothetical scenario if there were no relationship 155
9.5 Gender and empathy: raw number of respondents in marginal cells 155
9.6 Gender and empathy: calculating the expected cell values if gender and empathy are unrelated 156
9.7 Gender and empathy: actual number of respondents 156
9.8 Gender and empathy: observed and expected cell frequencies 156
9.9 Race and educational attainment 161
9.10 Contributions of individual election years to the covariance calculation 166
9.11 Covariance table for unemployment and support for government assistance to the poor, 1975–2014 166
9.12 ANOVA of educational attainment by racial identification 170
9.13 Scheffe multiple comparison test of race/ethnic differences in education 171
11.1 Gender and empathy, 2012 and 2014 GSS 203
11.2 Gender and empathy, controlling on religiosity, 2012 and 2014 GSS 204
List of Tables

11.3 Three regression models of public support for government assistance to the poor 210
11.4 Two models of the effects of gender and education on income 223
11.5 Racial/ethnic identification in the 2016 GSS 226
11.6 The same model of race/ethnicity and education effects on income with different reference categories 227
11.7 Model with two continuous independent variables and two dummy independent variables 228
11.8 Two overlapping dummy variables in models from the 2016 GSS 229
11.9 The effects of gender and education on income 231
11.10 The effects of partisanship and performance evaluations on votes for Bush in 2004 233
11.11 The effects of partisanship and performance evaluations on votes for Bush in 2004: three different types of models 237
11.12 Classification table from LPM of the effects of partisanship and performance evaluations on votes for Bush in 2004 239
11.13 Bias in $\hat{\beta}_1$ when the true population model is $Y_i = \alpha + \beta_1 X_i + \beta_2 Z_i + u_i$ but we leave out Z_i 242
11.14 Three regression models of teacher salaries in the U.S. states and the District of Columbia 243
11.15 Classification table from a BNP of the effects of partisanship and prospective expectations on votes for Obama in 2008 244
12.1 Estimates for the regression of negative and positive attitudes toward physicians on socio-demographic characteristics, self-reported health status, and medical insurance status, 1976 Access to Medical Care in the U.S. and 1998 General Social Survey 263
12.2 Alternative presentation of the effects of gender and education on income 264
Preface

Our goals in *The Fundamentals of Social Research* are twofold: first, to provide students with a rigorous introduction to the scientific study of society and, in the process, to equip them with the methodological skills necessary to be both critical consumers and beginning producers of scholarly, observational, primarily quantitative social research; and second, to highlight the connection between research design and causal inference in conceptualizing and doing social research.

The first section of the book, consisting of Chapters 1 through 3, sets the groundwork for accomplishing these goals by discussing what it means to adopt a scientific approach to the study of society. At its core, such an approach requires the development and testing of causal theories. Because there is no magical formula by which such theories are developed, we present several strategies for doing so, and develop an integrated approach to research design and empirical analysis that allows students to determine the plausibility of their causal theories. Section two of the book, Chapters 4 and 5, presents the details of research design and of one especially common type of observational design, the sample survey. The third section of the book, Chapters 6 through 11, is devoted to the statistical methods social scientists typically use in testing their causal theories. In the book’s final chapter, Chapter 12, we provide fledgling researchers with a practical, step-by-step guide on how to produce an original research project that synthesizes materials from the preceding chapters.

The text’s accessible presentation of mathematical concepts is a key component of our strategy, along with the integration of examples from sociology, political science, and other social sciences, to help students grasp key concepts. In every section of the book – indeed, in every chapter – we emphasize the linkage between design and causal inference in the construction and testing of causal theories.

If these goals appear to be a bit different than those of typical social science statistics textbooks, it’s because they *are* a bit different. It is
Preface

common practice in many social science departments, especially sociology departments, to separate undergraduate instruction in methodology and statistics into a two-course, year-long sequence, typically with research design taught in the first semester and statistics in the second. There are sound justifications for this practice, but in our experience an unintended consequence of a two-tiered approach is that many students come away from the sequence thinking that research design, on the one hand, and data analysis, on the other, are two separate, unrelated components of the research process. In this textbook we emphasize just the opposite – that the design of research and the analysis of data are two sides of a single methodological coin, and that one without the other yields fewer, and less useful, insights about the social world. Of course, this criticism of analysis that is untethered to causal theory testing is not unique to us. Rather, it is our contention that these two mutually reinforcing components of the research process, though universally agreed upon, are not often accorded the attention they deserve in either methodology or (especially) social science statistics textbooks. We aim to help fill this gap.

The book can be flexibly adapted to different courses and instructor preferences, but, as the discussion above implies, it is ideally suited to a semester-length course that covers both research design and statistics. It is useful in many other teaching contexts, though. In those courses that focus primarily on research design, it could be used as a supplement. Chapters 1–6 cover the core issues of social science methodology – the process by which scientific knowledge is produced, the ethics of doing research, criteria for establishing cause-and-effect relationships among variables, theory building, research design, measurement, and sampling. All or parts of Chapters 7–11, which introduce students to the varied quantitative toolkit that social scientists have at their disposal to examine causal relationships, could be included as time and instructor inclination permit. In courses that focus on statistics, Chapters 1–6 would provide a review of key background issues while Chapters 7–11 would constitute the primary core content. Chapter 12 is relevant to both research design and statistics courses alike.

For several reasons, the book will have strong appeal to instructors and students in advanced undergraduate and beginning graduate level social science statistics courses, though, as we just noted, it could also be used as a supplement in just about any methodology course. We give multivariate analytic techniques special attention, focusing considerable effort throughout the text on preparing students to understand these concepts. Moreover, we connect multivariate regression back to the central goal of causal inference and research design, and emphasize how regression helps us to accomplish the critical task of controlling for the effects of other
possible causes of the dependent variable. Armed with nothing more than their abilities in algebra, students are capable of seeing, mathematically, how multivariate regression is connected to the central issues of research design. We know this because of our combined decades-long experience teaching this very important material, and having had students repeatedly ask us why the material isn’t also in their textbooks.

In our view, today’s sociology and other social science students are able to handle the statistical components of social science research methodology. Still, the book does not require students to know any mathematical material beyond high-school algebra – and we fully recognize that, in many cases, even those algebra skills will be quite rusty. In our classroom experiences, we have found a three-pronged approach of presenting technical subject matter to be very effective. This approach presents such concepts in closely integrated packages of textual explanations, graphical illustrations, and mathematical formulae. By addressing formulae head-on and explaining the meaning of each component of these formulae, we have found that students develop a much more intuitive understanding of the underlying logic of statistical hypothesis testing. These lessons are then applied in end-of-chapter exercises which are designed to bring home critical technical concepts.

The general section of the webpage for our text (www.cambridge.org/fsr) provides the data sets used throughout the book, and the instructor-only section provides PowerPoint slides for each chapter, a test-bank, and answer keys for the exercises. Finally, in parallel to this text, there are companion software books – one for SPSS, one for Stata, and one for R – that are being published.
Acknowledgments

The idea for this book emerged from discussions first proposed by Robert Dreesen, Publisher for Economics and Political Science at Cambridge University Press. The second edition of the highly regarded The Fundamentals of Political Science Research by Paul Kellstedt and Guy Whitten had just been published by Cambridge, and Robert was mulling over the idea of a book that mirrored the approach to methodology championed by Paul and Guy but that was accessible to a broader audience of sociology and other social science students. The Fundamentals of Social Research is the product of those discussions. We are indebted to Robert for initiating our collaboration, for his unwavering support and encouragement throughout the writing process, and for being a pleasure to work with. Without him this book would not have been written.

Together, we have several decades of combined methodology teaching experience at Brown University; the University of California, Los Angeles; the University of Essex; George Washington University; the University of Minnesota; and Texas A&M University. We thank our students for helping us refine our ability to convey both the excitement and the complications of studying society in a scientifically rigorous way.

We also thank Camille Sola, who provided excellent research assistance on the project while a PhD student in Public Policy and Public Administration at George Washington University.

We are indebted to the reviewers of our manuscript for sharing their expertise as well as their own experiences teaching methodology to students across a broad range of social science disciplines. Their suggestions have measurably improved the book. In particular, Steven Tuch thanks Myron Schwartz for his insights.

We owe much to the many mentors who shaped our approach to thinking about and teaching methodology. In particular, Paul Kellstedt wishes to thank Al Reynolds and Bob Terbog of Calvin College; Michael Lewis-Beck, Vicki Hesli, and Jack Wright at the University of Iowa; and Jim
Acknowledgments

Stimson and John Freeman at the University of Minnesota. Guy Whitten thanks the following, all from his days at the University of Rochester: Larry M. Bartels, Richard Niemi, G. Bingham Powell, Lynda Powell, William H. Riker, and David Weimer. Steven Tuch thanks Clifford C. Clogg, Marylee C. Taylor, Rex Warland, and James Rosenberger of Pennsylvania State University; and Martin L. Levin and S. Mitra of Emory University.

Finally, we thank our families for their endless support and for providing us with the time and space to bring this project to completion. We owe a special debt of gratitude to our spouses, to whom we dedicate the book.

Of course, we are solely responsible for any deficiencies that remain.