The Neuroscience of Addiction

This book addresses a growing need for accessible information on the neuroscience of addiction. In the past decade, neuroscientific research has greatly advanced our understanding of the brain mechanisms of addiction; however, this information remains largely confined to scientific outlets. As legislation continues to evolve and the stigma surrounding addiction persists, new findings on the impact of substances on the brain are an important public health issue. Francesca Mapua Filbey gives readers an overview of research on addiction including classic theories as well as current neuroscientific studies. A variety of textual supports – including a glossary, learning objectives and review questions – help students better reinforce their reading and make the text a ready-made complement to undergraduate and graduate courses on addiction.

Francesca Mapua Filbey is a Professor of Cognition and Neuroscience and Bert Moore Endowed Chair of BrainHealth for the School of Behavioral and Brain Sciences at the University of Texas at Dallas. She conducts research aimed at understanding the biobehavioral mechanisms of addictive disorders for the improvement of early detection and intervention.
Cambridge Fundamentals of Neuroscience in Psychology

Developed in response to a growing need to make neuroscience accessible to students and other non-specialist readers, the Cambridge Fundamentals of Neuroscience in Psychology series provides brief introductions to key areas of neuroscience research across major domains of psychology. Written by experts in cognitive, social, affective, developmental, clinical and applied neuroscience, these books will serve as ideal primers for students and other readers seeking an entry point to the challenging world of neuroscience.

Books in the Series

The Neuroscience of Expertise by Merim Bilalić
The Neuroscience of Intelligence by Richard J. Haier
Cognitive Neuroscience of Memory by Scott D. Slotnick
The Neuroscience of Adolescence by Adriana Galván
The Neuroscience of Suicidal Behavior by Kees van Heeringen
The Neuroscience of Creativity by Anna Abraham
Cognitive and Social Neuroscience of Aging by Angela Gutches
The Neuroscience of Sleep and Dreams by Patrick McNamara
The Neuroscience of Addiction by Francesca Mapua Filbey
The Neuroscience of Addiction

Francesca Mapua Filbey

University of Texas at Dallas
To David: thank you for your love and support. To Colin: thank you for nourishing my mind. To Alastair: thank you for nourishing my spirit. To Juan and Georgina Mapua: thank you for always believing in me. To Felipe and Emerita Canlas: thank you for being my example of dedication.
# Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>List of Plates</strong></td>
<td>xi</td>
</tr>
<tr>
<td><strong>List of Figures</strong></td>
<td>xii</td>
</tr>
<tr>
<td><strong>List of Tables</strong></td>
<td>xvi</td>
</tr>
<tr>
<td><strong>Preface</strong></td>
<td>xvii</td>
</tr>
<tr>
<td>1 What is Addiction?</td>
<td>1</td>
</tr>
<tr>
<td>Learning Objectives</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>The Phenomenology of Substance Use Disorders</td>
<td>4</td>
</tr>
<tr>
<td>The Demography of Addiction</td>
<td>5</td>
</tr>
<tr>
<td>The Stigma of Addiction</td>
<td>5</td>
</tr>
<tr>
<td>The Diagnosis of Addiction</td>
<td>6</td>
</tr>
<tr>
<td>A Brain Disease Model of Addiction</td>
<td>9</td>
</tr>
<tr>
<td>Non-Drug Addictions</td>
<td>12</td>
</tr>
<tr>
<td>Summary Points</td>
<td>14</td>
</tr>
<tr>
<td>Review Questions</td>
<td>14</td>
</tr>
<tr>
<td>Further Reading</td>
<td>14</td>
</tr>
<tr>
<td>Spotlight</td>
<td>15</td>
</tr>
<tr>
<td>References</td>
<td>16</td>
</tr>
<tr>
<td>2 Human Neuroscience Approaches Toward the</td>
<td>21</td>
</tr>
<tr>
<td>Understanding of Addiction</td>
<td>21</td>
</tr>
<tr>
<td>Learning Objectives</td>
<td>21</td>
</tr>
<tr>
<td>Introduction</td>
<td>21</td>
</tr>
<tr>
<td>Measuring the Brain’s Electrical Activity</td>
<td>22</td>
</tr>
<tr>
<td>Visualizing the Brain’s Structure and Function</td>
<td>24</td>
</tr>
<tr>
<td>Biochemical Imaging</td>
<td>27</td>
</tr>
<tr>
<td>Limitations of Neuroimaging Research</td>
<td>28</td>
</tr>
<tr>
<td>Summary Points</td>
<td>29</td>
</tr>
<tr>
<td>Review Questions</td>
<td>29</td>
</tr>
<tr>
<td>Further Reading</td>
<td>29</td>
</tr>
<tr>
<td>Spotlight 1</td>
<td>30</td>
</tr>
<tr>
<td>Spotlight 2</td>
<td>32</td>
</tr>
<tr>
<td>References</td>
<td>32</td>
</tr>
</tbody>
</table>
3 Brain-Behavior Theories of Addiction

Learning Objectives 34
Introduction 34
The Incentive-Sensitization Theory 35
The Allostatic Model: Dysregulation in Homeostasis 36
The Impaired Response Inhibition and Salience Attribution (iRISA) Syndrome Model 38
The Future of Brain-Behavior Theories of Addiction 40
Summary Points 42
Review Questions 42
Further Reading 42
Spotlight 43
References 45

4 From the Motivation to Initiate Drug Use to Recreational Drug Use: Reward and Motivational Systems

Learning Objectives 47
Introduction 47
Reward and Motivational Systems Guide the Direction of Behavior 48
Predicting Rewards: Evidence for the Primary Role of Dopamine 51
Final Common Pathway: All Drugs Lead to One 53
Is Addiction a Reward Deficiency Syndrome? 55
Corticostriatal Circuitry and Effort–Reward Imbalance 56
Role of Memory Systems 56
Summary Points 58
Review Questions 58
Further Reading 59
Spotlight 60
References 61

5 Intoxication

Learning Objectives 64
Introduction 64
Drug Pharmacodynamics 66
Actions of Addictive Drugs 66
Brain Mechanisms of Intoxication: Evidence From Neuroimaging Pharmacological Studies 68
Modulators of Intoxication: Challenges in Human Research 73
Summary Points 75
Review Questions 76
Further Reading 76
Table of Contents

Spotlight ix
References 78

6 Withdrawal 81
Learning Objectives 81
Introduction 81
What Does Withdrawal Look Like? 82
Acute Withdrawal Symptoms and Associated Neural Mechanisms 85
Protracted Withdrawal Symptoms and Associated Neural Mechanisms 87
Electrophysiological Mechanisms of Withdrawal 88
A Model of Opposing Mechanisms: Between-System Response to Drugs 90
Summary Points 91
Review Questions 92
Further Reading 92
Spotlight 1 93
Spotlight 2 94
References 94

7 Craving 98
Learning Objectives 98
Introduction 98
 Cue-Elicited Craving Paradigms and Associated Neural Mechanisms 99
 Neurophysiological Underpinnings of Craving 101
 Contextual Cues 102
 Do Drugs Hijack the Reward Circuitry of the Brain? 103
 Greater Craving or Greater Attention? 105
 Neuromolecular Mechanisms 106
 Summary Points 107
 Review Questions 107
 Further Reading 108
 Spotlight 108
 References 110

8 Impulsivity 114
Learning Objectives 114
Introduction 114
Neuropharmacology of Impulsivity 116
Is Impulsivity Pre-existing or Drug Induced? 117
Risky Decision Making 120
x

Table of Contents

Inhibitory Control 121
Delay Discounting of Reward 123
Summary Points 125
Review Questions 125
Further Reading 126
Spotlight 127
References 128

9 Impacts of Brain-Based Discoveries on Prevention and Intervention Approaches 130
Learning Objectives 130
Introduction 130
Pharmacological Approaches 132
Behavioral Approaches 135
Combined Approaches 137
Treatment Outcomes 138
Summary Points 141
Review Questions 141
Further Reading 141
Spotlight 1 142
Spotlight 2 143
References 144

10 Conclusions 148
Learning Objectives 148
Introduction 148
Risk Factors Inform Better Prevention and Intervention 149
Addiction Endophenotypes 150
Sex Differences in Addiction 155
The Question of Causality 156
General Conclusions 157
Summary Points 159
Review Questions 159
Further Reading 160
Spotlight 1 161
Spotlight 2 162
References 162

Glossary 165
Index 173

Color plate section found between pages 172 and 173
List of Plates

1.1 A longitudinal study demonstrating neuromaturational processes from 5 to 20 years of age.

2.4 Gray matter has predominantly isotropic (soccer ball-shaped) water diffusion, while dense white matter tracks have highly anisotropic (rugby ball-shaped) diffusion of water pointing in the direction of the fiber bundle.

5.3 PET studies to determine the effects of nicotine administration.

6.3 Fast β power can be a predictor of relapse in polysubstance users during a 3-month abstinence.

S7.1 Measuring ΔFosB.

8.5 Ventromedial PFC lesions lead to risky decision making.

9.3 Following methadone-assisted therapy (MAT), long-term abstinent heroin users (mean length of abstinence, 193 days) had a greater decreased response in striatal areas compared with short-term abstinent heroin users (mean length of abstinence, 23 days) during a cue-induced craving task.

9.5 Common (a) and distinct (b) neural targets of pharmacological and cognitive-based therapeutic interventions.

10.4 Brain EEG oscillations may be useful endophenotypes for alcohol use disorders.
## List of Figures

1.1 A longitudinal study demonstrating neuromaturational processes from 5 to 20 years of age.  

2. A patient going through a magnetic resonance imaging machine.  

3.1 Diagram describing the addiction cycle – preoccupation/anticipation (“craving”), binge/intoxication and withdrawal/negative affect – with the different criteria for substance dependence incorporated from the *Diagnostic and Statistical Manual of Mental Disorders*, 4th edn.  

4. The iRISA model depicting the interactions between the PFC and subcortical regions in drug users and non-users.  

5. Daily smoking, risky alcohol consumption and illicit drug use by people with the lowest and highest socioeconomic status (SES), in Australians aged 14 years or older, in 2013.  

6. The modern opioid epidemic.  

7. Lever press (a) and intracranial self-stimulation (ICSS) (b) are two examples of experimental paradigms used to study reward and motivation in animals.  

- **List of Figures**
  - 1.1 A longitudinal study demonstrating neuromaturational processes from 5 to 20 years of age.  
  - 1.2 Animal behavioral paradigms in addiction studies.  
  - 1.3 Sites of action of various drugs on the mesocorticollimbic reward system.  
  - S1.1 Magic mushrooms.  
  - 2.1 Magnetoencephalography scanner with patient.  
  - 2.2 Mechanisms of MRI.  
  - 2.3 A patient going through a magnetic resonance imaging machine.  
  - 2.4 Gray matter has predominantly isotropic (soccer ball-shaped) water diffusion, while dense white matter tracks have highly anisotropic (rugby ball-shaped) diffusion of water pointing in the direction of the fiber bundle.  
  - 2.5 MRS image of a 34-year-old man with human immunodeficiency virus (HIV) infection and alcohol dependence.  
  - S2.1 What does 45 years of love look like in the brain?  
  - S2.2 Associating the brain with behavior began with the field of phrenology.  
  - 3.1 Diagram describing the addiction cycle – preoccupation/anticipation (“craving”), binge/intoxication and withdrawal/negative affect – with the different criteria for substance dependence incorporated from the *Diagnostic and Statistical Manual of Mental Disorders*, 4th edn.  
  - 3.2 The iRISA model depicting the interactions between the PFC and subcortical regions in drug users and non-users.  
  - 3.3 Daily smoking, risky alcohol consumption and illicit drug use by people with the lowest and highest socioeconomic status (SES), in Australians aged 14 years or older, in 2013.  
  - S3.1 The modern opioid epidemic.  
  - 4.1 Lever press (a) and intracranial self-stimulation (ICSS) (b) are two examples of experimental paradigms used to study reward and motivation in animals.
4.2 The brain’s reward system lies in the mesocorticolimbic pathway, which is regulated by dopamine. 49

4.3 Camera lucida drawings of medium spiny neurons in the shell (top) and core (bottom) regions of the nucleus accumbens of saline- and amphetamine-pretreated rats. 50

4.4 The release of dopamine signals reward. 52

4.5 According to Kalivas and Volkow (2005), the projection from the PFC to the nucleus accumbens core to the ventral pallidum is a final common pathway for drug seeking by increases in dopamine release (via stress, a drug-associated cue or the drug itself) in the PFC. 54

4.6 Experiments on the effects of dopamine depletion on effort. 57

S4.1 (a) Sensation and novelty seeking are characteristic of adolescence. (b) Schematic of the monetary incentive delay task. 61

5.1 Alcohol intoxication may impact sensorimotor skills. 65

5.2 Mechanisms of drug action. 67

5.3 PET studies to determine the effects of nicotine administration. 70

5.4 Example of a virtual reality driving simulator device. 72

5.5 (a) Position of the amygdala (arrow). (b) Response in brain regions to emotional faces during alcohol intoxication. 73

S5.1 Law enforcement challenges during changes in cannabis legislation. 77

6.1 The severity of cannabis withdrawal symptoms across time. 84

6.2 Change in CBF in the thalamus from baseline to overnight abstinence and subjective withdrawal from nicotine as measured by the Minnesota withdrawal score from baseline to withdrawal. 87

6.3 Fast β power can be a predictor of relapse in polysubstance users during a 3-month abstinence. 89

6.4 Neuroadaptations between the reward and stress systems during withdrawal. 91

S6.1 Babies have to be weaned from opiates when born from opiate-using mothers. 93

S6.2 Can Facebook be addictive? 94

7.1 Cue-elicited craving paradigm using tactile cannabis cue paraphernalia, a neutral object (pencil) and appetitive non-drug reward cues (fruit, not shown). 101

7.2 Cue-elicited craving paradigm. 104
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Representative trial from the backward-masked cue task.</td>
</tr>
<tr>
<td>7.4</td>
<td>Regulation of the dendritic structure by drugs of abuse.</td>
</tr>
<tr>
<td>S7.1</td>
<td>Measuring ΔFosB.</td>
</tr>
<tr>
<td>8.1</td>
<td>Impulsivity leads to risky behavior.</td>
</tr>
<tr>
<td>8.2</td>
<td>Corticostriatal pathways.</td>
</tr>
<tr>
<td>8.3</td>
<td>Study in stimulant-dependent individuals, their non-using siblings and non-using controls demonstrating that impulsivity traits (but not sensation seeking) may be a predisposing factor for stimulant dependence.</td>
</tr>
<tr>
<td>8.4</td>
<td>Illustration of a go/no go test.</td>
</tr>
<tr>
<td>8.5</td>
<td>Ventromedial PFC lesions lead to risky decision making.</td>
</tr>
<tr>
<td>8.6</td>
<td>Schematic of the stop circuit.</td>
</tr>
<tr>
<td>8.7</td>
<td>Illustration of a delay discounting task.</td>
</tr>
<tr>
<td>8.8</td>
<td>Schematic of the wait circuit.</td>
</tr>
<tr>
<td>S8.1</td>
<td>Adolescence is a critical neurodevelopmental period.</td>
</tr>
<tr>
<td>9.1</td>
<td>Relapse rates for drug-addicted patients compared with those suffering from diabetes, hypertension and asthma.</td>
</tr>
<tr>
<td>9.2</td>
<td>Components of comprehensive drug addiction treatment.</td>
</tr>
<tr>
<td>9.3</td>
<td>Following methadone-assisted therapy (MAT), long-term abstinent heroin users (mean length of abstinence, 193 days) had a greater decreased response in striatal areas compared with short-term abstinent heroin users (mean length of abstinence, 23 days) during a cue-induced craving task.</td>
</tr>
<tr>
<td>9.4</td>
<td>Proposed model illustrating synergistic mechanisms between behavioral and pharmacological treatment approaches for addiction.</td>
</tr>
<tr>
<td>9.5</td>
<td>Common (a) and distinct (b) neural targets of pharmacological and cognitive-based therapeutic interventions.</td>
</tr>
<tr>
<td>S9.1</td>
<td>Peer addiction recovery specialists bring different perspective to treatment.</td>
</tr>
<tr>
<td>10.1</td>
<td>Heritability ($h^2$; weighted means and ranges) of ten addictions based on a large survey of adult twins.</td>
</tr>
<tr>
<td>10.2</td>
<td>Integration of complementary technologies can be used to reveal the neurobiology of individual differences in complex behavioral traits.</td>
</tr>
<tr>
<td>10.3</td>
<td>The concept of endophenotypes is that they lie in the causal pathway between the genetic mechanisms and observable behavior.</td>
</tr>
<tr>
<td>10.4</td>
<td>Brain EEG oscillations may be useful endophenotypes for alcohol use disorders.</td>
</tr>
</tbody>
</table>
List of Figures

10.5 Changes in brain volume may be an endophenotype for cannabis use disorder. 155
10.6 (a) Birth cohort design. (b) The prospective study included initiation alcohol and drug use. (c) Using a prospective, longitudinal design on a birth cohort, the Dunedin Study found changes in full-scale IQ (in standard deviation units) from childhood to adulthood. 157
S10.1 Post-traumatic stress disorder (PTSD). 161
List of Tables

1.1 2017 Schedule of Drugs according to the US Drug Enforcement Administration (DEA).  page 3
1.2 Modifications to addiction diagnosis from DSM-IV to DSM-5.  7
1.3 Outline of overlapping behavioral symptoms between SUDs and compulsive overeating (Volkow & O’Brien, 2007).  13
6.1 Drug specificity and timing of acute withdrawal symptoms.  83
Preface

The concerted effort by the US government to determine underlying brain mechanisms for diseases during the “Decade of the Brain” in the 1990s has led to greater attention on the role of the brain in addiction. Neuroscience research has made significant progress toward our understanding of the antecedents as well as the consequences of addiction, which, in turn, has helped de-stigmatize addiction and get help to those who need it. However, to date, this information remains largely confined to scientific outlets resulting in a lag in dissemination to students and the general community. This may contribute to the lack of emphasis on addiction in most training programs, including clinical programs, despite the prevalence of addiction and its high co-morbidity with other diseases and disorders. The need for this book is further highlighted by the recent public health issues surrounding two substances: cannabis and opioids. Hence, there is a growing need for accessible information on the neuroscience of addiction that caters to both students and the general public.

Approach

This book has been written to fill a void in the areas of behavioral neuroscience and neuropsychopharmacology. To date, the single most relevant textbook on this topic is one focused on the use of neuroimaging tools to study addiction, rather than to explain it. It is also written for a scientific audience, not undergraduate students or lay people. As scientific inquiry and public interest in the addicted brain have grown, so too has the need for a comprehensive and accessible textbook that communicates extant neuroscience research on this topic. This book will serve as an educational tool for neuroscience and pre-med students and trainees at all levels. Undergraduate students in upper-division courses, graduate students and educated lay people are the target audience for this book. It is written at a level appropriate for individuals with minimal to no background in neuroscience so as to be accessible for scientists in other disciplines, including public policy, public health and developmental psychology, with interest in the adolescent brain. This book can serve as a supplemental textbook in upper-level college/university courses such as Brain and Behavior, Psychopharmacology, Neuropsychology, Behavioral Neuroscience and as a trade book for educated lay people.
(as it has been written in an accessible style), and/or as a main textbook in a college/university course or seminar at the advanced undergraduate level or the graduate level (along with supplemental scientific articles). It is written in language that is accessible to students, non-specialists and educated lay people alike.

This book is included in the *Cambridge Fundamentals of Neuroscience in Psychology* series published by Cambridge University Press. The goal of this series is to introduce readers to the use of neuroscience methods and research to inform psychological questions.

**Coverage and Organization**

This book has been written and organized to cover the neuroscientific research that supports the most widely reported stages of addiction. I wrote the first three chapters to lay the groundwork for the more in-depth topics covered in the later chapters. The introductory chapter serves to provide a general foundation for the clinical and behavioral features of addiction. This is followed by a chapter that then describes the approaches used by neuroscience research, which are also consequently referred to throughout the rest of the book. This chapter, then, should provide a very basic familiarity with current scientific techniques as used to study addiction. The last of the foundational chapters describes the various theories that stimulate the investigative research described in subsequent chapters. The goal of these foundational chapters is to broadly set out the current thinking in the field as well as provide the necessary background knowledge to be able to integrate information from the subsequent chapters.

The later chapters starting with Chapter 4 each focus on the important constructs related to addiction and are organized to follow a somewhat ecological order of the progression of addiction stemming from acute intoxication and rewarding effects of substance use to withdrawal symptoms and addiction interventions. These chapters cover the basic research that supports the understanding of these constructs as well as issues related to the understanding of these constructs.

The concluding chapter discusses auxiliary topics relevant to these processes such as individual variability. It then provides a cohesive overview of the neuroscience of addiction zeitgeist.

**Features**

Each chapter contains comprehensive figures that best illustrate concepts or challenging topics. Each figure is referred to in the
Preface

corresponding text. Summary Points are provided at the end each chapter to help focus the reader on the most important points and to reinforce the gist of each chapter. Review Questions are also provided to challenge the reader’s understanding of each chapter. These questions are related to the important points of the chapter. The chapters also have a Further Reading section that directs readers to supplemental materials that could facilitate further learning. The Spotlight sections take current issues and integrate these timely topics with constructs from the chapter. These spotlights help put constructs into a real-world perspective that is aimed to stimulate critical thinking in readers.