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Introduction

This monograph is about Ridge Functions. A ridge function is any multivariate
real-valued function

F : Rn → R

of the form

F (x1, . . . , xn) = f(a1x1 + · · ·+ anxn) = f(a · x),
where x = (x1, . . . , xn) ∈ R

n are the variables, f is a univariate real-valued
function, i.e., f : R → R, and a = (a1, . . . , an) ∈ R

n\{0} is a fixed vector.
This vector a ∈ R

n\{0} is generally called the direction. In other words, a ridge
function is a multivariate function constant on the parallel hyperplanes a · x = c,
c ∈ R. It is one of the simpler multivariate functions. Namely, it is a superposition
of a univariate function with one of the simplest multivariate functions, the inner
product.
More generally, we can and will consider, for given d, 1 ≤ d ≤ n−1, functions

F of the form

F (x) = f(Ax),

where A is a fixed d × n real matrix, and f : Rd → R. We call such functions
Generalized Ridge Functions. For d = 1, this reduces to a ridge function.

1.1 Motivation
We see specific ridge functions in numerous multivariate settings without consid-
ering them of interest in and of themselves. We find them, for example, as kernels
in integral formulæ. They appear in the Fourier transform

F (w) =

∫
Rn

e−i(w·x)f(x) dx,
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2 Introduction

and its inverse. We see them in the n-dimensional Radon transform

(Raf)(t) =

∫
a·x=t

f(x) dσ(x),

and its inverse. Here the integral is taken with respect to the natural hypersurface
measure dσ. It is possible to generalize the Radon transform still further by in-
tegrating over (n − d)-dimensional affine subspaces of Rn. In addition, we find
them in the Hermite–Genocchi formula for divided differences

f [x0, x1, . . . , xn] =

∫
Σn

f (n)(t · x)dt,

where Σn is the n-simplex in R
n+1
+ , i.e., Σn = {t = (t0, t1, . . . , tn) : ti ≥

0,
∑n
i=0 ti = 1}. See, for example, de Boor [2005] for a discussion and history of

this formula. They appear in multivariate Fourier series where the basic functions
are of the form ei(n·x), for n ∈ Z

n. And also in partial differential equations
where, for example, if P is a constant coefficient polynomial in n variables, then

P

(
∂

∂x1
, . . . ,

∂

∂xn

)
f = 0

has a solution of the form f(x) = ea·x if and only if P (a) = 0.
Classes of ridge functions also play a fundamental role in various subjects. The

term ridge function is rather recent. However, these functions had been considered
for many years under the name of plane waves. See, for example, the well-known
book of John [1955]. In that book are considered representations of multivariate
functions using integrals whose kernels are specific “plane waves” and applica-
tions thereof to partial differential equations. Plane waves are also discussed by
Courant and Hilbert [1962]. In general, linear combinations of ridge functions
with fixed directions occur in the study of hyperbolic constant coefficient partial
differential equations. As an example, assume that the (ai, bi) are pairwise lin-
early independent vectors in R2. Then the general “solution” to the homogeneous
partial differential equation

r∏
i=1

(
bi
∂

∂x
− ai

∂

∂y

)
F = 0,

where the derivatives are understood in the sense of distributions, are all functions
of the form

F (x, y) =
r∑
i=1

fi(aix+ biy),

for (almost) arbitrary univariate functions fi.
The term ridge function was coined in the 1975 paper by Logan and Shepp
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1.1 Motivation 3

[1975]. Seemingly, they were unaware of the previous terminology, and the term
“ridge function” has now been fairly universally adopted. This was a seminal
paper in computerized tomography. In tomography, or at least in tomography as
the theory was initially constructed in the early 1980s, ridge functions were basic.
The idea there was to try to reconstruct a given, but unknown, functionG(x) from
the values of its integrals along certain parallel planes or lines. Logan and Shepp
considered functions in the unit disk in R2 with given line integrals along parallel
lines and a finite number of equally spaced directions. More generally, consider
some nice domain K in Rn, and a function G belonging to L2(K). Assume that
for some fixed directions {ai}ri=1 we are given the values∫

K∩{ai·x=λ}
G(x) dσ(x)

for each λ and i = 1, . . . , r, where dσ(x) is the natural measure on the hyper-
planes {x : ai·x = λ}. They (mis-)termed these values the projections ofG along
the hyperplanes K ∩ {ai · x = λ}. Assume that we are given these values for
each λ and i = 1, . . . , r. What is a good method of reconstructing G based only
on this information? It easily transpires, from basic orthogonality considerations,
that the unique best L2(K) approximation

f∗(x) =
r∑
i=1

f∗i (a
i · x)

to G from the linear subspace

M(a1, . . . ,ar) =

{
r∑
i=1

fi(a
i · x) : fi vary

}
,

if such a best approximation exists, necessarily satisfies∫
K∩{ai·x=λ}

G(x) dσ(x) =

∫
K∩{ai·x=λ}

f∗(x) dσ(x)

for each λ and i = 1, . . . , r. That is, it has the same projections as G. Further-
more, since it is a best approximation from a linear subspace in a Hilbert space,
its norm is strictly less than the norm of G, unless f∗ = G. Thus, among all
functions with the same data (projections) as G, this specific linear combination
of ridge functions is the one of minimal L2(K) norm. In the unit disk in R

2

with equally spaced directions, Logan and Shepp also give a more closed-form
expression for f∗.
Ridge functions and ridge function approximations are also studied in statis-

tics in the analysis of large multivariate data sets. There they often go under
the name of projection pursuit, see, for example, Friedman and Stuetzle [1981],

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-12439-4 - Ridge Functions
Allan Pinkus
Excerpt
More information

http://www.cambridge.org/9781107124394
http://www.cambridge.org
http://www.cambridge.org


4 Introduction

Huber [1985] and Donoho and Johnstone [1989]. Projection pursuit algorithms
approximate a function G of n variables by functions of the form

r∑
i=1

fi(a
i · x),

where both the directions ai and the univariate functions fi are variables. The
idea here is to “reduce dimension” and thus bypass the “curse of dimensionality”.
Each ai · x is considered as a projection of x. The directions ai are chosen
to “pick out the salient features”. The method of approximation, introduced by
Friedman and Stuetzle [1981] and called projection pursuit regression (PPR), is
essentially a stepwise greedy algorithm that, at its kth step, looks for a best (or
good) approximation of the form fk(ak ·x) to the functionG(x)−

∑k−1
i=1 fi(a

i·x),
as we vary over both the univariate function fk and the direction ak.
Ridge functions appear in many neural network models. One of the popular

models in the theory of neural nets is that of a multilayer feedforward percep-
tron (MLP) neural net with input, hidden and output layers. The simplest case
(which is that of one hidden layer, r processing units and one output) considers,
in mathematical terms, functions of the form

r∑
i=1

αiσ(w
i · x+ θi),

where σ : R → R is some given fixed univariate function, θi ∈ R, and wi ∈
R
n\{0}. In this model, which is just one of many, we are in general permitted to
vary over the wi and θi, in order to approximate an unknown function. Note that
for each w and θ the function

σ(w · x+ θ)

is a ridge function. Thus, a lower bound on the degree of approximation by such
functions is given by the degree of approximation by linear combinations of ridge
functions. See, for example, Pinkus [1999] and references therein for more on
this problem.
Motivated by the previous two topics, and other considerations, Candès in his

thesis Candès [1998], see also Candès [1999], introduced the theory of ridgelets.
In essence, the set

{σ(w · x+ θ) : w ∈ R
n, θ ∈ R}

is called the set of ridgelets generated by σ. Ridgelets generated by a σ are a
subset of ridge functions. For a class of σ, Candès [1998], [1999], provides an
integral representation for functions with an associated ridgelet kernel. He then
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1.1 Motivation 5

discretizes this representation with an eye towards obtaining approximations that
are constructive, qualitative and stable.
Even the restriction of ridge functions to polynomials leads to interesting ques-

tions. Waring’s Problem asks whether every positive integer can be expressed as a
sum of at most h(m)mth powers of positive integers, where h(m) depends only
upon m. This problem was solved in the affirmative by Hilbert [1909]. The key
result in his proof was the following: for given m and n, and N =

(
n−1+2m
n−1

)
,

there exist ai ∈ Z
n, i = 1, . . . , N+1, and λi positive rationals, i = 1, . . . , N+1,

such that

(x21 + · · ·+ x2n)
m =

N+1∑
i=1

λi(a
i · x)2m,

see also Stridsberg [1912]. A lucid exposition of Waring’s Problem, and elemen-
tary proof of this result may be found in Ellison [1971]. Waring’s Problem has
various generalizations. One of them, for example, is the following. Can each
homogeneous polynomial of degree m in n variables be written as a linear com-
bination of mth powers of r linear homogeneous polynomials, where r depends
only on n andm, i.e., linear combinations of (a · x)m, where a ∈ R

n\{0}? And
if it can, what is then the minimal number h(m,n) such that each homogeneous
polynomial of degree m in n variables can be written as a linear combination of
mth powers of h(m,n) linear homogeneous polynomials? And what about the
same question for general algebraic polynomials of degree at most m in n vari-
ables? That is, we wish to express each algebraic polynomial of degree at most
m in n variables in the form

p(x) =

r∑
i=1

qi(a
i · x),

where the qi are univariate algebraic polynomials, and r is minimal. There is a
rich literature, mainly in number theory, on this and related issues.
Ridge functions are also of interest to researchers and students of approxima-

tion theory. The basic goal in approximation theory is straightforward and funda-
mental. Approximate complicated objects by simpler objects. Recent years have
witnessed a flurry of interest in approximation from different classes of multivari-
ate functions. We have, for example, multivariate spline functions, wavelets, ra-
dial basis functions, and many other such classes. Among the class of multivariate
functions, linear combinations of ridge functions are a class of simpler functions.
The questions one asks are the fundamental questions of approximation theory.
Can one approximate arbitrarily well (density)? How well can one approximate
(degree of approximation)? How does one approximate (algorithms)?
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6 Introduction

In this monograph we review much of what is today known about ridge func-
tions. We hope this whets the reader’s appetite, as much still remains unknown.

1.2 Organization
These notes are organized as follows. In Chapters 2–4 we consider some of the
very basic properties of finite linear combinations of ridge and generalized ridge
functions. In Chapter 2 we ask what can be said about the smoothness of each
ridge function component if a finite linear combination of them is smooth. For
example, assume

F (x) =
r∑
i=1

fi(a
i · x) (1.1)

and F ∈ Ck(Rn). What, if anything, does this imply with regard to the smooth-
ness of the fi? In Chapter 3 we consider to what extent the representation of a
function as a finite linear combination of ridge functions is unique. That is, how
many fundamentally different ways are there to represent an F of the form (1.1)
as a linear combination of a finite number of ridge functions? In Chapter 4 we
study an inverse problem. Namely, given an F of the form (1.1) with known or
unknown directions and unknown functions, is it possible to identify associated
unknown directions and functions in the finite sum based on our knowledge of F ?
Definitive answers to all these questions are not known.
Algebraic and homogeneous polynomials are important in the study of ridge

functions. In Chapter 5 we consider ridge functions that are polynomials and
discuss a wide variety of associated problems. In particular, we study questions of
linear independence, interpolation and spanning by linear combinations of (a·x)m
in the space of homogeneous polynomials of degree m, as we vary over a subset
of directions, ask similar questions for algebraic polynomials of degree m, and
discuss Waring’s Problem for real homogeneous and algebraic polynomials.
In Chapter 6 we consider various questions associated with the density of linear

combinations of ridge functions with fixed and variable directions in the set of
continuous functions on Rn, in the topology of uniform convergence on compact
subsets of Rn.
Chapter 7 contains a discussion of the closure properties of finite linear combi-

nations of ridge functions with given directions in different norms and domains,
while Chapter 8 is concerned with the existence and characterization of best ap-
proximations from these same subspaces.
In Chapter 9 we survey approximation algorithms for finding best approxima-

tions from spaces of linear combinations of ridge functions. We consider ap-
proximations in the cases of both fixed and variable directions. The algorithms
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1.2 Organization 7

considered are all predicated on the notion that it is possible to find a best approx-
imation from each of its component subspaces, i.e., sets of ridge functions with
one direction.
In Chapter 10 we look at integral representations of functions where the ker-

nel is a ridge function. In particular we consider an integral representation using
an orthogonal decomposition in terms of Gegenbauer polynomials (from Petru-
shev [1998]), and an integral representation based upon ridgelets (as presented by
Candès [1998]).
Chapters 11 and 12 are concerned with the problem of interpolation by finite

linear combinations of ridge functions. In Chapter 11 we look at point interpo-
lation, while in Chapter 12 we consider interpolation to data given on straight
lines.
In most of the chapters we also consider the extent to which the results reported

on can extend to generalized ridge functions.
Finally, the reference section is divided into two parts. The first section contains

all works that are actually referenced in the text. In a futile attempt to provide the
interested researcher with a complete overview of the subject we have included a
supplemental list of references on ridge functions.
There are topics related to ridge functions that are not presented here. The

most glaring omission is that of degree of approximation, i.e., estimates on the
error of approximation when using linear combinations of ridge functions, and
the understanding of which classes of functions are well approximated by linear
combinations of ridge functions, and which classes are not well approximated by
linear combinations of ridge functions. Different papers are devoted to various as-
pects of this problem. We wish to mention Oskolkov [1997], [1999a], Petrushev
[1998], Maiorov [1999], Maiorov, Meir and Ratsaby [1999], Maiorov, Oskolkov
and Temlyakov [2002] and Maiorov [2010a]. Most known error estimates for ap-
proximating by linear combinations of ridge functions do not provide for bounds
that are better than those provided by the full space of algebraic polynomials they
contain. That is, inRn there are many choices ofm directions for which the space
of linear combinations of ridge functions with these directions are easily seen to
contain all algebraic polynomials of degree cnm1/(n−1), with a constant cn inde-
pendent of m. The error estimates for many different classical function spaces,
when approximating by either linear combinations of m ridge functions or the
algebraic polynomials they contain, are comparable. As this is the case, then why
bother approximating by ridge functions? Ridge functions are undoubtedly better
approximants for certain classes of functions. But for which classes of functions?
An interesting example is due to Oskolkov [1999a]. He proved therein that, for
harmonic functions in R

2, approximation by ridge functions gives significantly
better bounds than those provided by the associated algebraic polynomials. In ad-
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8 Introduction

dition, as has been pointed out by Candès and Donoho, see, for example, Candès
and Donoho [1999], ridge functions with varying directions are well-adapted to
handle singularities along (n− 1)-dimensional hyperplanes. Nevertheless the full
theory, in the opinion of the author, is still very much lacking. This is unfortunate
as the problems are both interesting and important.

1.3 Notation
In this section we review some of the notation that will be used repeatedly in
these notes. A direction is any non-zero vector in R

n. For a given direction
a = (a1, . . . , an), set

M(a) := {f(a · x) : f : R → R},
where x = (x1, . . . , xn) ∈ R

n are the variables and

a · x =

n∑
i=1

aixi

is the standard inner product on Rn. Note thatM(a) is an infinite-dimensional
linear subspace, and since we are varying over all univariate functions f it imme-
diately follows that

M(a) = M(b)

for directions a and b if and only if a = λb for some λ ∈ R, λ 	= 0. Thus we
could assume that the directions a are chosen to be of norm 1 and also identify a
with −a. But there seems to be no particular advantage in such an assumption.
Given directions ai, i = 1, . . . , r, we set

M(a1, . . . ,ar) := M(a1) + · · ·+M(ar)

=

{
r∑
i=1

fi(a
i · x) : fi : R → R, i = 1, . . . , r

}
.

We will sometimes also use the following notation. For a set Ω ⊆ R
n we let

M(Ω) := span{f(a · x) : f : R → R, a ∈ Ω}.
These are all linear spaces.
Similarly, for a given d, 1 ≤ d ≤ n− 1, and d× n matrices A1, . . . , Ar, we let

M(A1, . . . , Ar) :=

{
r∑
i=1

fi(A
ix) : fi : R

d → R, i = 1, . . . , r

}
.
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1.3 Notation 9

Sometimes we will also let Ωd denote a subset of d× n real matrices, and set

M(Ωd) := span{f(Ax) : A ∈ Ωd, f : Rd → R}.
In Rn we let Bn and Sn−1 denote the unit ball and unit sphere, respectively.

That is,

Bn := {x : ‖x‖2 ≤ 1}
and

Sn−1 := {x : ‖x‖2 = 1},
where ‖ · ‖2 is the usual Euclidean (�2) norm on Rn.
We recall some standard multi-index notation. For k = (k1, . . . , kn) ∈ Z

n
+, let

|k| = k1 + · · ·+ kn and k! = k1! · · · kn!. We have that(|k|
k

)
:=

|k|!
k!

=
(k1 + · · ·+ kn)!

k1! · · · kn!
are the usual multinomial coefficients. Given x ∈ R

n and k ∈ Z
n
+, we set

xk := xk11 · · ·xknn .

Let Hn
m denote the set of real homogeneous polynomials of degree m in n

variables, i.e.,

Hn
m :=

⎧⎨⎩ ∑|k|=m bkxk : bk ∈ R

⎫⎬⎭ .

It is well-known that dimHn
m =

(
n−1+m
n−1

)
. In addition, let Πnm denote the set of

all real algebraic polynomials of total degree at mostm in n variables, i.e.,

Πnm :=

⎧⎨⎩ ∑|k|≤m bkxk : bk ∈ R

⎫⎬⎭
or

Πnm =
m⊕
r=0

Hn
r .

It is easily verified that dimΠnm = dimHn+1
m =

(
n+m
n

)
. ByΠn we denote the set

of all algebraic polynomials of n variables, and byHn the set of all homogeneous
polynomials of n variables, i.e.,

Hn =

∞⋃
k=0

Hn
k .
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10 Introduction

For k ∈ Z
n
+, set

Dk :=
∂|k|

∂xk11 · · · ∂xknn
.

For any polynomial q of the form

q(x) =
∑
k

akx
k,

where ak ∈ R, we let
q(D) =

∑
k

akD
k

denote the associated constant coefficient partial differential operator. A simple
calculation shows that, for k ∈ Z

n
+, |k| = m, we have

Dk(a · x)� =
{

0, m > �
�!

(�−m)!a
k(a · x)�−m, m ≤ �.

Thus, if q ∈ Hn
m, then

q(D)(a · x)� =
{

0, m > �
�!

(�−m)!q(a)(a · x)�−m, m ≤ �
(1.2)

and, in particular, for q ∈ Hn
m we have

q(D)(a · x)m = m! q(a). (1.3)

Furthermore, for k, j ∈ Z
n
+, |k| = |j| = m, we also have

Dkxj = δk,jk!, (1.4)

where δ denotes the usual Dirac delta function. Finally, for c ∈ R
n, c =

(c1, . . . , cn), let

Dc :=

n∑
k=1

ck
∂

∂xk

denote differentiation in the direction c. For any univariate function f ∈ C1(R)

we have
Dcf(a · x) = (a · c)f ′(a · x). (1.5)

Notation is often a compromise and is not necessarily unconditionally exact.
For example, in this monograph we will use ai for vectors and Ai for matrices.
The former is in boldface, while the latter is in italics. In addition the i is here
an index and in neither case does it indicate a power. (The Ai are also not square
matrices.) We also do not always differentiate between a function and its value at
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