

INTRODUCTION TO CHEMICAL ENGINEERING FLUID MECHANICS

Designed for undergraduate courses in fluid mechanics for chemical engineers, this textbook illustrates the fundamental concepts and analytical strategies in a rigorous and systematic, yet mathematically accessible, manner. Dimensional analysis and order-of-magnitude estimation are presented as tools to help students identify which forces are important in different settings. The friction factors for pipes and other conduits, the terminal velocities of particles, drops, and bubbles, and flow in porous media, packed beds, and fluidized beds are explained from an experimental viewpoint. The physical and mathematical distinctions among major flow regimes, including unidirectional flow, lubrication flow, creeping flow, pseudosteady flow, irrotational flow, laminar boundary layers, turbulent shear flow, and compressible flow are described. Including a full solutions manual for instructors available at www.cambridge.org/deen, this is the ideal text for a one-semester course.

William M. Deen is the Carbon P. Dubbs Professor in the Department of Chemical Engineering at MIT. He is an author of some 200 research publications in bioengineering, colloid science, membrane science, quantitative physiology, and toxicology, most involving aspects of diffusion or fluid flow. During his 40 years of teaching at MIT, he has focused on undergraduate and graduate fluid mechanics, heat transfer, and mass transfer. He is the author of *Analysis of Transport Phenomena* (2012), which is used internationally in graduate-level transport courses. Among his awards are the 2012 Bose Award for Excellence in Teaching from the MIT School of Engineering and the 2012 Warren K. Lewis Award for Contributions to Chemical Engineering Education from the AIChE.

CAMBRIDGE SERIES IN CHEMICAL ENGINEERING

Series Editor

Arvind Varma, Purdue University

Editorial Board

Christopher Bowman, *University of Colorado*Edward Cussler, *University of Minnesota*Chaitan Khosla, *Stanford University*Athanassios Z. Panagiotopoulos, *Princeton University*Gregory Stephanopoulos, *Massachusetts Institute of Technology*Jackie Ying, *Institute of Bioengineering and Nanotechnology, Singapore*

Books in Series

Baldea and Daoutidis, Dynamics and Nonlinear Control of Integrated Process Systems

Chau, Process Control: A First Course with MATLAB

Cussler, Diffusion: Mass Transfer in Fluid Systems, Third Edition

Cussler and Moggridge, Chemical Product Design, Second Edition

De Pablo and Schieber, Molecular Engineering Thermodynamics

Deen, Introduction to Chemical Engineering Fluid Mechanics

Denn, Chemical Engineering: An Introduction

Denn, Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer

Duncan and Reimer, Chemical Engineering Design and Analysis: An Introduction

Fan and Zhu, Principles of Gas-Solid Flows

Fox, Computational Models for Turbulent Reacting Flows

Franses, Thermodynamics with Chemical Engineering Applications

Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes

Lim and Shin, Fed-Batch Cultures: Principles and Applications of Semi-Batch Bioreactors

Marchisio and Fox, Computational Models for Polydisperse Particulate and Multiphase Systems

Mewis and Wagner, Colloidal Suspension Rheology

Morbidelli, Gavriilidis, and Varma, Catalyst Design: Optimal Distribution of Catalyst in Pellets, Reactors, and Membranes

Nicoud, Chromatographic Processes

Noble and Terry, Principles of Chemical Separations with Environmental Applications

Orbey and Sandler, Modeling Vapor-Liquid Equilibria: Cubic Equations of State and their Mixing Rules

Petyluk, Distillation Theory and its Applications to Optimal Design of Separation Units

Rao and Nott, An Introduction to Granular Flow

Russell, Robinson, and Wagner, Mass and Heat Transfer: Analysis of Mass Contactors and Heat Exchangers

Schobert, Chemistry of Fossil Fuels and Biofuels

Shell, Thermodynamics and Statistical Mechanics

Sirkar, Separation of Molecules, Macromolecules and Particles: Principles, Phenomena and Processes

Slattery, Advanced Transport Phenomena

Varma, Morbidelli, and Wu, Parametric Sensitivity in Chemical Systems

Introduction to Chemical Engineering Fluid Mechanics

William M. Deen

Massachusetts Institute of Technology

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107123779

© W. Deen 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2016

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-12377-9 Hardback

Additional resources for this publication at www.cambridge.org/9781107123779

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To Meredith and Michael

Contents

	Prefa	ce	þage xxi
	List	of symbols	xxiv
Part	ı u	se of experimental data	
I	Prop	perties, dimensions, and scales	3
	1.1	Introduction	3
	1.2	Fluid properties	3
		Viscosity	3
		Density and kinematic viscosity	5
		Units and values	5
		Non-Newtonian liquids	7
		Surface tension	10
		Continuum approximation	11
	1.3	Scales and dimensionless groups	12
		Scales	12
		Dimensions	13
		Stress scales	13
		Dimensionless groups	14
		Example 1.3-1 Deep-water waves	16
		Example 1.3-2 Inkjet printing	16
	1.4	Dimensional analysis	17
		Pi theorem	17
		Example 1.4-1 Speed of water waves	18
		Example 1.4-2 Shear stress in pipe flow	20
		Example 1.4-3 Energy of an atomic blast	21
		Dynamic similarity	22
	1.5	Conclusion	22
		References	23
		Problems	24
		I.I Falling body	24
		I.2 Pendulum	24
		1.3 Salad dressing	24
		1.4 Heat transfer coefficient	24
		1.5 Oscillating drops	25
		I.6 Dip coating	25

ix

Contents

		1.7	Breakup of liquid jets	26
		1.8	Valve scale-up	27
		1.9	Ship scale-up	27
		1.10	Power input in a stirred tank	28
		1.11	Underwater swimming	28
2	Pip	e flow		30
	2.1	Introd	uction	30
	2.2	Shear	stress	30
			Fundamental quantities	30
			Friction factor	31
	2.3	Pressu	re drop and dynamic pressure	34
			Friction factor and pressure drop	34
			Circuit analogy	36
			Example 2.3-1 Pressure drop for water in process pipes	36
			Example 2.3-2 Pressure drop in an oil pipeline	37
			Example 2.3-3 Flow rate in an oil pipeline	38
	2.4	N1	Example 2.3-4 Capillary viscometer	38
	2.4	Nonci	rcular cross-sections Turbulent flow	39
			Laminar flow	39 40
			Example 2.4-1 Pressure drop for air in a triangular duct	41
			Example 2.4-2 Material efficiency of square and circular ducts	41
	2.5	Wall r	oughness	42
	2.5	* * * * * * * * * * * * * * * * * * * *	Example 2.5-1 Effect of roughness on water flow in a process	12
			pipe	45
			Example 2.5-2 Practical smoothness	45
	2.6	Concl	·	46
		Refere	ences	47
		Proble	ems	47
		2.1	Cavitation	47
		2.2	Bottling honey	48
		2.3	Filling a boiler	48
		2.4	Syringe pump	4 8
		2.5	Flue gases	49
		2.6	Hydraulic fracturing	49
		2.7	Drag reduction	49
		2.8	Economic pipe diameter	50
		2.9	Microfluidic device	51
		2.10	Murray's law	51
		2.11	Open-channel flow	52
3			icles, and porous media	54
	3.1		uction	54
	3.2	Drag		54
			Origins	54
			Drag coefficient	55
			Spheres	56

Contents

		Disks	57
		Cylinders	58
		Flat plates	59
		Example 3.2-1 Drag on a cylinder in water	61
		Example 3.2-2 Comparative drag on a cylinder and a flat plate	61
3	3.3	Terminal velocity	62
		Buoyancy and gravity	62
		Terminal velocities for solid spheres	62
		Example 3.3-1 Sand grain falling in air	64
		Example 3.3-2 Microfluidic cell separation	65
		Terminal velocities for fluid spheres	65
		Approach to terminal velocity	66
		Example 3.3-3 Approach to terminal velocity for large spheres	66
3	3.4	Porous media	68
		Darcy permeability	68
		Microstructural models	70
		Example 3.4-1 Air flow through a packed bed of spheres	72
		Example 3.4-2 Comparative properties of granular and fibrous	
		media	73
3	3.5	Packed beds and fluidized beds	73
		Packed beds	73
		Fluidized beds	75
_		Example 3.5-1 Fluidization at low Reynolds number	76
3		Conclusion	76
		References	77
		Problems	78
		3.1 Chain-link fence	78
		3.2 Rowing power	78
		3.3 Dispersion of pollen	78
		3.4 Downhill ski racing	78
		3.5 Homogenized milk	79
		3.6 Approach to terminal velocity for small fluid spheres	79 70
		3.7 Inhaled particles	79
		3.8 Flocculation	81
		3.9 Hydrogel disks3.10 Bypassing a packed bed	81 81
		71 9 1	82
		5 ,	02
Part I	I F	undamentals of fluid dynamics	
4 F	-luid	statics: pressure, gravity, and surface tension	85
4	ł. I	Introduction	85
4	1.2	Pressure in static fluids	85
		Properties of pressure	85
		Static pressure equation	85
		Pressure distributions	87
		Example 4.2-1 Manometer	87
		Example 4.2-2 Layered fluids	88
		Additional note: Pascal's law	89

хi

Contents

	4.3	Pressu	re forces	89	
			Stress and force vectors	89	
			Boundaries	90	
			Example 4.3-1 Rectangular tank	90	
			Example 4.3-2 Inclined planar surface	91	
			Projected areas	92	
			Immersed objects at constant pressure	93	
			Buoyancy	94	
			Example 4.3-3 Buoyancy of a sphere	95	
	4.4	Surface	e tension	96	
			Tensile forces and contact lines	96	
			Example 4.4-1 Young-Laplace equation	97	
			Example 4.4-2 Capillary rise	98	
			Interfaces with variable curvature	99	
	4.5	Conclu		101	
		Refere		101	
		Proble		101	
		4.1	Manometry for liquid pipe flow	101	
		4.2	Hydraulic lift	102	
		4.3	Static pressure variations in air	103	
		4.4	Force on Hoover Dam	103	
		4.5	Floating cup	103	
		4.6	Sedimentation in a sucrose gradient	104	
		4.7	Half-submerged cylinder	105	
		4.8	Buoyancy of a cone	105	
		4.9	Formation of small bubbles	105	
		4.10	Capillary adhesion	106	
		4.11 4.12	Capillary flotation	107	
		4.12	Plateau-Rayleigh instability	107	
5		uid kinematics			
	5. I	Introd		110	
	5.2	Contir	•	110	
			Example 5.2-1 Unknown velocity component	111	
			Example 5.2-2 Expansion of the Universe	112	
		ъ.	Example 5.2-3 Filtration in a hollow fiber	113	
	5.3	Kates	of change for moving observers	115	
			Example 5.3-1 Temperature changes sensed by a weather balloon	116	
	5.4	Rate o	f strain	116	
			Example 5.4-1 Rate of strain in simple shear flow	117	
			Example 5.4-2 Rate of strain in pure dilatation	118	
	5.5	Vortici	ity	119	
			Definition	119	
			Irrotational flow	120	
	5.6	Stream	n function	121	
			Definitions	121	
			Streamlines and streaklines	122	

xii

Contents

		Example 5.6-1 Streamlines from the stream function	123
		Trajectories	124
		Example 5.6-2 Streamlines from trajectories	125
	5.7	Conclusion	125
		References	126
		Problems	126
		5.1 Flow past a bubble	126
		5.2 Channel with wavy walls	126
		5.3 Condensation on a vertical wall	127
		5.4 Flow past a solid sphere	128
		5.5 Wedge flow	128
		5.6 Flow between porous and solid disks	128
		5.7 Trajectories of sedimenting particles	129
6	Str	ess and momentum	130
	6. l	Introduction	130
	6.2	Stress vector and stress tensor	130
		Stress notation	131
		Stress at an arbitrary surface	132
	6.3	Force at a point	132
	6.4	Conservation of momentum	134
		Additional note: stress equilibrium	136
	6.5	Viscous stress	139
		Rate-of-strain tensor	139
		Example 6.5-1 Rate of strain in simple shear flow	141
		Newtonian fluids	141
		Non-Newtonian fluids	143
		Additional note: stress symmetry	145
	6.6	Governing equations	146
		Newtonian fluids with constant properties	146
		Example 6.6-1 Pressure in planar stagnation flow	147
		Fluids with varying viscosity	149
		Velocities at phase boundaries	149
		Stresses at phase boundaries	151
		Example 6.6-2 Shear-stress boundary condition with variable	
		surface tension	151
		Force calculations	152
		Example 6.6-3 General expression for the drag on	
		a sphere	153
	6.7	Conclusion	154
		References	155
		Problems	155
		6.1 Stress vector and tensor	155
		6.2 Effect of surface orientation on the stress vector	156
		6.3 Force balance for plane Couette flow	156
		6.4 Force balance for plane Poiseuille flow	156
		6.5 Normal viscous stress at a solid surface	157
		6.6 Drag on a cylinder at high Reynolds number	157

xiii

Contents

		6.7	Pressure for creeping flow past a solid sphere	158
		6.8	Pressure between porous and solid disks	158
Part	t III	Micro	oscopic analysis	
7	Uni	idirect	ional flow	161
	7. I	Intro	duction	161
	7.2	Fully	developed flow	161
		,	Example 7.2-1 Velocity and pressure for plane Poiseuille flow	161
			Example 7.2-2 Velocity and pressure for Poiseuille flow	163
			Example 7.2-3 Friction factor for laminar tube flow	164
	7.3	Movir	ng surfaces	166
			Example 7.3-1 Plane Couette flow	166
			Example 7.3-2 Rotating rod	166
			Example 7.3-3 Plate suddenly set in motion	168
	7.4	Free	surfaces	172
			Example 7.4-1 Falling film on a vertical wall	172
			Example 7.4-2 Surface of a stirred liquid	174
	7.5	Non-	Newtonian fluids	175
			Example 7.5-1 Poiseuille flow of a power-law fluid	175
			Example 7.5-2 Plane Couette flow of generalized Newtonian	
			fluids	177
	7.6	Symm	netry conditions	178
			Cylindrical symmetry	178
		_	Reflective symmetry	178
	7.7	Conc		179
			ences	179
		Probl		179
		7. l	Couette viscometer	179
		7.2	Annular conduit	180
		7.3	Triangular conduit	180
		7.4 7.5	Elliptical conduit	181 182
		7.5 7.6	Slip in tube flow	182
		7.6 7.7	Darcy permeability of a fibrous material	183
		7.7 7.8	Surface of a liquid in rigid-body rotation Layered liquids on an inclined surface	183
		7.8 7.9	Liquid film outside a vertical tube	184
		7.10	Film on an upward-moving surface	184
		7.10	Slot coating	185
		7.12	Flow in a cavity	185
		7.12	Falling-cylinder viscometer	186
		7.14	Bubble rising in a tube	187
		7.15	Paint film	188
		7.16	Temperature-dependent viscosity	188
		7.17	Blood rheology	188
8	Αp	proxim	nations for viscous flows	190
	8. I	Intro	duction	190

xiv

Contents

8.2	Lubrication approxin	nation	190
		I Tapered channel	191
		2 Permeable tube	194
	•	3 Slider bearing	195
8.3	Creeping flow	_	198
	Stokes' equat	ion	198
	-	I Flow between porous and solid disks	200
	Example 8.3-	2 Flow past a sphere	201
		3 Stokes' law	205
	Porous media	a e e e e e e e e e e e e e e e e e e e	206
8.4	Pseudosteady flow		207
	Example 8.4-	Parallel-plate channel with a decaying pressure	
	drop		207
	Example 8.4-	2 Squeeze flow	208
8.5	Anticipating approxim	mations	209
	Order-of-mag	gnitude estimation	210
	Example 8.5-	I Order-of-magnitude analysis for a tapered	
	channel		211
	•	2 Order-of-magnitude analysis for Stokes flow past	
	a sphere		212
		pproximation	212
		w approximation	213
		approximation	213
		3 Order-of-magnitude analysis for squeeze flow	214
	•	4 Force on a slider bearing	215
8.6	Conclusion		216
	References		217
	Problems		217
		rallel-plate channel	217
		osed-end tube	218
		lriven flow in a microchannel	218
	8.4 Candy manuf	•	219
	8.5 Blade coating		219
		rotating sphere	220
		pressure for flow past a bubble	220
		ocity of a small bubble	220
	•	stationary disks	221
		ate viscometer	221
	8.11 Growing mer		222
	,	linder at low Reynolds number	222
	8.13 Darcy flow in		223
	8.14 Washburn's l		224
	8.15 Injection mol	_	225
	8.16 Capillary pun	np	225
Lan	ninar flow with iner	tia	227
9.1	Introduction		227
9.2	Inviscid and irrotatio	nal flow	227

X۷

9

Contents

		Inviscid flow	227
		Vorticity transport	228
		Irrotational flow	229
		Example 9.2-1 Velocity for potential flow past a cylinder	230
		Example 9.2-2 Pressure and drag for inviscid and irrotational	
		flow past a cylinder	232
		Example 9.2-3 Water waves	233
9.3	Bound	dary layers: differential analysis	236
7.5	Douin	Boundary-layer approximation	236
		Joining the regions	238
		Example 9.3-1 Blasius solution for a flat plate	239
		Wedge flows	242
		Internal boundary layers	243
		Example 9.3-2 Planar jet	243
9.4	Paun	·	243
7.4	bound	dary layers: integral analysis	
		Integral momentum equation	244
		Example 9.4-1 Integral solution for a flat plate	246
		Boundary-layer separation	247
۰.	<u></u>	Example 9.4-2 Integral solution for a cylinder	248
9.5	Conc		252
	Refer		252
	Probl		253
	9.1	Potential flow past a sphere	253
	9.2	Lift on a half-cylinder	253
	9.3	Axisymmetric stagnation flow	253
	9.4	Opposed circular jets	254
	9.5	Added mass for a sphere	254
	9.6	Spin coating	254
	9.7	Bubble growing in a liquid	255
	9.8	Entrance length	256
	9.9	Axisymmetric jet	256
	9.10	Boundary layers in power-law fluids	257
	9.11	Normal velocity component for a flat plate	257
	9.12	Rotating disk	257
	9.13	Flat plate with suction	259
	9.14	Terminal velocity of a large bubble	259
	9.15	Planar stagnation flow	260
	9.16	Flow past a right-angle wedge	260
Tur	bulent	: flow	261
10.1	Intro	duction	261
10.2	Chara	acteristics and scales	261
		Basic features	261
		Wall variables	263
		Kolmogorov scales	264
		Example 10.2-1 Turbulence scales for air flow in a pipe	265
10.3	Reyno	olds averaging	266
	-,	Time-smoothed variables	266

xvi

10

Part

П

Cambridge University Press & Assessment 978-1-107-12377-9 — Introduction to Chemical Engineering Fluid Mechanics William M. Deen Frontmatter More Information

Contents

		Continuity equation	267
		Navier-Stokes equation	268
		Closure problem	268
		Reynolds stress	268
10.4	Closui	re schemes	269
		Eddy diffusivities	270
		Other approaches	272
10.5	Unidir	ectional flow	272
		Example 10.5-1 Velocity profile near a wall	272
		Complete velocity profile for tube flow	275
		Example 10.5-2 Prandtl-Kármán equation	276
10.6	Bound	lary layers	277
		Example 10.6-1 Flat plate	277
		Example 10.6-2 Axisymmetric jet	279
		Limitations of mixing-length concept	281
107	Concl	· ·	281
	Refere		282
	Proble		283
	10.1	Turbulence scales for water flow in a pipe	283
	10.2	Cell damage in turbulent flow	283
	10.2	Jet velocity from a photograph	283
	10.3	Reynolds-stress data	284
	10.5	Eddy diffusivity from near-wall velocity data	285
	10.5	Mixing length in tube flow	285
	10.5	• •	285
	10.7	Power-law velocity profile and Blasius friction factor	285
	10.8	Improved velocity profile for tube flow	205 286
		•	286
		Effects of tube roughness	
		Planar jet	287
	10.12	Eddy diffusivity in a circular jet	287
IV	Macro	oscopic analysis	
	•	oic balances for mass, momentum, and energy	291
	Introd		291
11.2	Conse	ervation of mass	291
		General control volume	291
		Discrete openings	292
		Example 11.2-1 Fluid displacement from a cavity	293
		Example 11.2-2 Draining of a tank through a	
		horizontal pipe	293
		Integration of the continuity equation	295
11.3	Conse	rvation of momentum	295
		General control volume	295
		Discrete openings	296
		Example 11.3-1 Force on a return bend	298
		Example 11.3-2 Acceleration of a force-free	
		rocket	299

xvii

Contents

	11.4 Mech	anical energy balances	300
		General control volume	300
		Discrete openings	301
		Example 11.4-1 Viscous loss in pipe flow	303
		Example 11.4-2 Venturi flow meter	304
		Example 11.4-3 Hydroelectric power	305
		Additional note: mechanical energy derivations	306
	II.5 Syster	ms with free surfaces	308
	, , , ,	Example 11.5-1 Capillary jet	308
		Example 11.5-2 Hydraulic jump	309
		Example 11.5-3 Liquid jet striking an inclined plate	311
	II.6 Conc		313
	Refer		314
	Proble		314
	11.1		314
		Water clock	314
		Forces on nozzles	315
		Drag on a flat plate calculated from the wake velocity	315
		Drag on a cylinder calculated from the wake velocity	316
		Jet ejector	317
		Wave tank	317
		Force in a syringe pump	317
		Plate suspended by a water jet	318
		Viscous losses in laminar pipe flow	319
			319
		Hydroelectric power Pitot tube	319
		Siphon	317
		Sump pump	320
			321
	11.13	Drainage pipe	321
12	Pipe flow:	entrance effects, fittings, and compressibility	322
	12.1 Introd	duction	322
	12.2 Entra	nce effects	322
		Entrance length	322
		Excess pressure drop in entrance regions	323
		Example 12.2-1 Entrance correction for a process pipe	325
		Example 12.2-2 Entrance correction for a capillary	
		viscometer	325
	12.3 Fitting	gs, valves, and pumps	325
		Loss coefficients	325
		Pump characteristics	327
		Example 12.3-1 Force on a return bend (revisited)	328
		Example 12.3-2 Borda-Carnot equation	329
		Example 12.3-3 Pressure increase at a diverging	
		branch	330
		Example 12.3-4 Draining of one tank into another	332
		Additional note: pseudosteady approximation for tank	
		filling or emptying	334
		· · · · · · · · · · · · · · · · · · ·	

xviii

Contents

12.4	Comp	ressible flow in long pipes	335
		Engineering Bernoulli equation for variable density	336
		Isothermal pipe flow	337
		Example 12.4-1 Natural-gas pipeline	339
12.5	Comp	ressible flow near the speed of sound	341
		Adiabatic pipe flow	341
		Choked flow	344
		Example 12.5-1 Absence of choking in a natural-gas pipeline	345
		Example 12.5-2 Choked air flow	345
		Varying cross-section: nozzles and diffusers	346
		Example 12.5-3 Converging nozzle	348
12.6	Conclu	usion	349
	Refere	nces	350
	Proble		350
		Entrance effects with air flow	350
	12.2	Entrance-region model	351
		Nozzle with diffuser	351
		Water siphon	352
		Pumping from a lower to a higher reservoir	352
	12.6	Water transfer from a higher to a lower reservoir	352
		Home plumbing	353
	12.8	Membrane hydraulic permeability	353
		Design of distribution manifolds	354
		Tubular reactors in parallel	355
		Pumping between tanks	356
		Pumps in series or parallel	356
		Conical diffuser	357
		Balloon inflation	357
		Discharge of a compressed-air tank	358
		Automobile tire inflation	358
		Comparison of isothermal and adiabatic pipe flow	358
		Gas-cylinder hazard	358
		Speed of sound	359
	12.20	Transonic flow	360
Annendi	v Voct	ors, tensors, and coordinate systems	362
		• • • • • • • • • • • • • • • • • • •	
	Introd	uction on and fundamentals	362 362
A.2	Notati		362
		Representation of vectors and tensors Basic operations	363
		•	364
ΛЭ	Voctor	Coordinate independence and tensor products	364
۸.3	46C101	Vector dot product	364
		Vector cross product	366
		Dyadic product	367
		Tensor products	367
		Identity tensor	368
		identity tensor	300

xix

Contents

	Example A.3-1 Repeated dot products of a vector with	
	an antisymmetric tensor	369
	Example A.3-2 Scalar triple products	369
A.4	Differential and integral identities	370
	Gradient	370
	Divergence	370
	Curl	370
	Laplacian	370
	Differential identities	371
	Example A.4-1 Proof of a differential identity	371
	Example A.4-2 Proof of a differential identity	372
	Example A.4-3 Proof of a differential identity	372
	Example A.4-4 Proof of a differential identity	373
	Integral transformations	374
	Unit normal and unit tangent vectors	374
	Example A.4-5 Integration of a unit normal over a surface	375
A.5	Orthogonal curvilinear coordinates	376
	Base vectors	376
	Position vectors and scale factors	376
	Volumes and surface areas	377
	Gradient	378
	Scale-factor identities	378
	Divergence	379
	Curl	379
	Laplacian	380
	Cartesian coordinates	380
	Cylindrical coordinates	380
	Spherical coordinates	382
	References	384
Auth	nor index	385
Subject index		

Preface

WHAT IS CHEMICAL ENGINEERING FLUID MECHANICS?

Quantitative experimentation with fluids began in antiquity, and the foundations for the mathematical analysis of fluid flow were well established by the mid 1800s. Although a mature subject, fluid mechanics remains a very active area of research in engineering, applied mathematics, and physics. As befits a field that is both fascinating and useful, it has been the subject of innumerable introductory textbooks. However, only a few have focused on the aspects of fluid mechanics that are most vital in chemical engineering.

Certain results that stem from conservation of mass and momentum in fluids cut across all fields. However, the kinds of flow that are of greatest interest differ considerably among the various branches of engineering. One thing that distinguishes fluid mechanics in chemical engineering from that in, say, aeronautical or civil engineering, is the central importance of viscosity. Viscous stresses are at the heart of predicting flow rates in pipes, which has always been the main application of fluid mechanics in process design. Moreover, chemical engineering encompasses many technologies that involve bubbles, drops, particles, porous media, or liquid films, where small length scales amplify the effects of viscosity. Surface tension, usually not a concern in other engineering disciplines, also can be important at such length scales. In addition, in chemical engineering applications even gases usually can be idealized as incompressible. Another feature of chemical engineering fluid mechanics is an emphasis on microscopic analysis to calculate velocity fields. Determining velocities and pressures, and finding the resulting forces or torques, is often not an end in itself. Detailed velocity fields are needed to predict concentration and temperature distributions, which in turn are essential for the analysis and design of reactors and separation devices. Of lesser concern than in some other disciplines are the fluid dynamics of rotating machinery, flow in open channels, and flow at near-sonic velocities (where gas compressibility is important). Thus, chemical engineering fluid mechanics is characterized by a heightened interest in the microscopic analysis of incompressible viscous flows. Biomedical and mechanical engineers share some of the same concerns.

PURPOSE AND ORGANIZATION

This book is designed mainly as a text for chemical engineering undergraduates. The intention is to present fundamental concepts in a rigorous but mathematically accessible manner. A recurring theme is how to identify what is important physically in a novel situation and how to use such insights in modeling. That is illustrated by examples both within and outside the traditional domain of chemical engineering. The end-of-chapter problems tend to be challenging. They are intended not just to provide practice in certain

xxi

Preface

kinds of calculations, but to build confidence in analyzing physical systems and to help develop engineering judgment.

The essential prerequisites are introductory mechanics, multivariable calculus, and ordinary differential equations. The information on vectors and tensors that is needed to understand certain derivations is summarized in an appendix, thereby making that part of the mathematics self-contained. Familiarity with a few numerical methods (e.g., solving first-order differential equations) is helpful but not necessary. No prior experience with partial differential equations is assumed; solution methods are explained as the need arises. A basic background in thermodynamics is presumed only in the last chapter.

The book has four parts. Part I, "Use of Experimental Data" (Chapters 1–3), discusses fluid properties, representative magnitudes of velocities and forces, and certain kinds of design. The information in these chapters is largely empirical. After surveying gas and liquid properties, Chapter 1 introduces dimensional analysis and the several uses of dimensionless groups, with an emphasis on groups that indicate the relative importance of different kinds of forces. Chapter 2 focuses on pressure—flow relationships in long pipes or other conduits. Chapter 3 discusses drag forces, terminal velocities of particles, porous media, packed beds, and fluidized beds. While presenting various experimental results and explaining certain engineering calculations, Chapters 2 and 3 introduce phenomena and relationships that are revisited later from more fundamental viewpoints.

Part II, "Fundamentals of Fluid Dynamics" (Chapters 4–6), lays the groundwork for predictive modeling. Chapter 4, on static fluids, explains the interactions among pressure, gravity, and surface tension and begins to make force calculations more precise. Chapter 5 introduces the continuity equation (the differential equation that embodies conservation of mass), the concept of rate of strain, and other aspects of kinematics, the description of fluid motion. Chapter 6 provides a general description of viscous stresses and combines that with conservation of linear momentum. The main result is the Navier–Stokes equation, the differential equation that ordinarily governs momentum changes within fluids. As aspects of vectors, tensors, and analytical geometry become relevant, the reader is referred to specific sections of the Appendix.

Part III, "Microscopic Analysis" (Chapters 7–10), illustrates how to use the governing equations of Chapter 6 to predict velocity and pressure fields, and how then to calculate fluid forces and torques. Chapter 7 is devoted to unidirectional flow, the simplest set of applications. Chapter 8 discusses how to anticipate and justify simplifications of the Navier–Stokes equation when viscous stresses are much more important than the inertia of the fluid. Introduced there are the lubrication, creeping flow, and pseudosteady approximations. Chapter 9 extends the discussion of approximations to laminar flows where inertia is prominent, as in boundary layers. Concepts unique to turbulent flow (Kolmogorov scales, time-smoothing, Reynolds stress, and mixing lengths) are presented in Chapter 10. Numerous connections are made between results derived in Part III and the experimental observations in Part I.

Part IV, "Macroscopic Analysis" (Chapters 11–12), focuses on flow problems that are too complex for the approaches in Part III, but where a less detailed kind of analysis is useful. Integral forms of the conservation equations are derived in Chapter 11 and simplified to algebraic equations that are practical for applications, such as the engineering Bernoulli equation. Key assumptions are justified by referring to the microscopic results of Part III. The simplified macroscopic balances are applied to a variety of systems in Chapter 11. Chapter 12 revisits pipe flow, including now resistances due to entrance regions and pipe fittings. It concludes with an introduction to compressible flow.

xxii

Preface

Although proofs of all key theoretical results are provided, some derivations are put in "additional notes" at the ends of sections. Any subsection so labeled can be skipped without loss of continuity. In contrast, all the examples illustrate core material and merit study. Many of the end-of-chapter problems present additional theoretical or experimental results or describe new kinds of applications. It is recommended that all the problem statements be read as part of the chapter, even if solutions are not to be worked out.

In manuscript form, the book has been used successfully as the text in a one-semester course for chemical engineering undergraduates. In a fast-paced course with four contact hours per week over 14 weeks, approximately 80% of the material was covered. Overall, the content provides a reasonable foundation for practicing chemical engineers and good preparation for graduate-level study of fluid mechanics. If supplemented by a comparable introduction to heat and mass transfer, it would be good preparation for graduate study of transport phenomena.

ACKNOWLEDGMENTS

Some of the examples and problems originated with MIT colleagues or faculty elsewhere. I have identified such unpublished sources with footnotes that state "this problem was suggested by," a phrase intended to give credit without blame. I have revised what others had written in homework or exam problems, often extensively, or elaborated on what they and I discussed, and therefore take all responsibility for errors or confusion.

I have learned a great deal over the years from MIT faculty with whom I have taught fluid mechanics or otherwise discussed the subject. Among those present or former colleagues are Robert C. Armstrong, Martin Z. Bazant, Robert A. Brown, Fikile R. Brushett, Arup K. Chakraborty, Patrick S. Doyle, Kenneth A. Smith, James W. Swan, and Preetinder S. Virk. As a graduate student at Stanford long ago, I was inspired by a course in viscous flow theory taught by Andreas Acrivos. My education has been advanced no less by interactions with generations of MIT students, who have always impressed me with their curiosity and determination to learn. Responding to their questions has continually sharpened my own understanding of the subject.

Although undertaken after retirement, the writing of this book was supported in part by the Carbon P. Dubbs Chair in the Department of Chemical Engineering at MIT. I am appreciative of that support and the other encouragement I have received from the Department.

Last but not least are those at Cambridge University Press who helped improve the book and make it a reality, including acquisition editor Michelle Carey, copy-editor Steven Holt, and production editor Charles Howell.

W. M. D.

xxiii

Symbols

Following is a list of the more commonly used symbols. Omitted are coordinates (defined in Section A.5) and many quantities that appear in just one chapter. In general, scalars are italic Roman or Greek (e.g., a or δ), vectors are bold Roman (e.g., v), and tensors are bold Greek (e.g., τ). Magnitudes of vectors and tensors are denoted usually by the corresponding italic letter (e.g., v or τ), and vector and tensor components are represented using subscripted italics (e.g., v_x or τ_{yx}). Natural and base-10 logarithms are written as "ln" and "log," respectively.

ROMAN LETTERS

- A Surface area or cross-sectional area.
- Ar Archimedes number.
- Bo Bond number.
- C_D Drag coefficient [Eq. (3.2-1)].
- C_f Friction factor or drag coefficient for a flat plate [Eq. (3.2-13)].
- Ca Capillary number.
- D Diameter (also d).
- D_H Hydraulic diameter [Eq. (2.4-1)].
- $\mathbf{e_i}$ Unit vector associated with coordinate i.
- E_c Rate of mechanical energy loss due to compression [Eq. (11.4-2)].
- E_v Rate of mechanical energy loss due to viscous dissipation [Eq. (11.4-3)].
- f Friction factor for a tube or other conduit [Eq. (2.2-4)].
- F_D Drag force.
- **F** Force vector.
- $\mathbf{F_0}$ Force due to static pressure variations.
- F_B Net buoyancy force, $F_0 F_G$.
- **F**_G Gravitational force.
- **F**_P Pressure force.
- $\mathbf{F}_{\mathcal{P}}$ Flow-dependent part of pressure force.
- \mathbf{F}_{τ} Viscous force.
- Fr Froude number.
- **g** Gravitational acceleration vector.
- G Torque vector.
- *h* Height (usually).
- *k* Wall roughness parameter (usually) or Darcy permeability (Chapter 3).
- K_i Loss coefficient for event or device i [Eq. (12.3-1)].
- L Length as a dimension.

xxiv

List of symbols

- L Object length or characteristic length.
- L_E Entrance length for tubes or other conduits.
- m Mass.
- M Mass as a dimension.
- Ma Mach number.
- **n** Unit vector normal to a surface, directed outward from a control volume or from phase 1 to phase 2.
- P Absolute or thermodynamic pressure.
- P Dynamic pressure (also called modified pressure or equivalent pressure).
- q Volume flow rate per unit width in two-dimensional flows.
- Q Volume flow rate.
- r Position vector.
- R Radius (usually) or universal gas constant (Sections 1.2, 12.4, and 12.5).
- Re Reynolds number.
- s Stress vector.
- Surface area.
- t Time.
- t Unit vector tangent to a surface.
- T Absolute temperature.
- T Time as a dimension.
- **u** Interfacial velocity (Chapter 6), turbulent velocity fluctuation (Chapter 10), or control-surface velocity (Chapter 11).
- *u* In boundary-layer flows, the outer velocity evaluated at the surface (Chapters 9 and 10).
- u_{τ} Friction velocity [Eq. (10.2-4)].
- U Characteristic velocity, usually a mean fluid velocity or particle velocity.
- v_s Superficial velocity [Eq. (3.4-1)].
- v Fluid velocity.
- V Volume (usually) or velocity.
- w Mass flow rate (Chapters 11 and 12).
- w Vorticity vector.
- W_m Rate of work done on a system by moving surfaces (shaft work).

GREEK LETTERS

- α Contact angle at a three-phase contact line.
- β At a contraction or expansion, the smaller diameter divided by the larger one.
- δ Boundary-layer thickness (usually).
- δ_{ij} Kronecker delta [Eq. (A.3-6)].
- δ Identity tensor.
- Δ Difference along the direction of flow (downstream value minus upstream value) or differential change.
- ε Volume fraction of fluid (void fraction) in porous media or packed beds.
- ε_{ijk} Permutation symbol [Eq. (A.3-15)].
- ϕ Volume fraction of solids in porous media (Chapter 3) or velocity potential (Chapters 5 and 9).
- Γ Rate-of-strain tensor [Eq. (6.5-1)].
- Surface tension (usually) or heat-capacity ratio [Eq. (12.4-1)].
- μ Viscosity.

XXV

List of symbols

- ν Kinematic viscosity, μ/ρ .
- ρ Density.
- σ Total stress tensor.
- τ Viscous stress tensor.
- τ_w Shear stress at a wall or other solid surface (also τ_0).
- Ω Vorticity tensor [Eq. (6.5-3)].
- ψ Stream function.

SPECIAL SYMBOLS

D/Dt Material derivative, $\partial/\partial t + \mathbf{v} \cdot \nabla$.

 ∇ Gradient operator.

 ∇^2 Laplacian operator, $\nabla \cdot \nabla$.

~ Order-of-magnitude (OM) equality.

xxvi