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Properties, dimensions, and scales

1.1 INTRODUCTION

Fluids, including both gases and liquids, are materials that deform continuously when

subjected to shearing forces. If a flowing fluid contains a dye or other tracer, the labeled

region tends to change shape from instant to instant. The viscosity of a fluid is a reflection

of its resistance to such deformations. This chapter begins with definitions of viscosity

and three other material properties that are important in fluid mechanics, namely density,

kinematic viscosity, and surface tension. Representative values of each are presented, and

some of the differences between Newtonian and non-Newtonian fluids are described.

Physical quantities have dimensions, such as mass (M), length (L), and time (T). The

concepts of mass, length, and time are more fundamental than the units in a particular

system of measurement, such as the kilogram (kg), meter (m), and second (s) that under-

lie the SI system. To have general validity, a physical relationship must be independent

of the observer, including the observer’s choice of units. That can be achieved by making

each variable or parameter in an equation dimensionless, which means that the physical

quantities are grouped in such a way that their dimensions cancel. Dimensionless param-

eters are ratios, and often the numerator and denominator are each the scale of a variable.

A scale is the maximum value of something, such as a velocity or force. Thus, the numer-

ical value of such a group reveals how two things compare, and thereby offers insight into

what is important in the process or phenomenon under consideration and what might be

negligible. Several dimensionless groups that arise in fluid mechanics are discussed.

Dimensional analysis, the last major topic of the chapter, provides a systematic way

to identify the dimensionless groups that are involved in something of interest. In addi-

tion to yielding relationships that are more universal, grouping quantities in this man-

ner minimizes the number of independent variables. This greatly facilitates the design

of experiments and interpretation of data, as discussed here and explored further in

Chapters 2 and 3.

1.2 FLUID PROPERTIES

Viscosity

A definition of viscosity is provided by the idealized experiment in Fig. 1.1. Imagine that

a fluid fills a space of thickness H between parallel plates, each of which has an area

A. Suppose that the upper plate is pulled to the right (in the x direction) at a constant

velocity U, while the lower one is held in place. Because fluids tend to adhere to surfaces

in a way that prevents relative motion or “slip,” the fluid contacting the top plate also

moves at velocity U, while that next to the bottom remains stationary. Once enough time
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Figure 1.1 Shear flow between parallel plates. A

force F applied to the top plate moves it to the

right at velocity U, while the bottom plate is kept

stationary. The resulting fluid velocity varies lin-

early from zero at the bottom to U at the top.

has elapsed, the fluid velocity varies linearly with height (the y coordinate), as shown by

the arrows. As elements of the fluid at different heights move to the right at different

speeds, the distance between any two of them increases. Such elongation of imaginary

lines connecting pairs of points indicates that the fluid is being deformed.

A constant force F , to the right, must be applied to the top plate to keep it moving, and

the absence of slip transfers that force to the adjacent fluid. The fluid itself may be thought

of as having innumerable layers, each of which resists moving at a velocity different from

the adjacent ones. This internal friction, which is proportional to the viscosity, transmits

the horizontal force through successive fluid layers and to the bottom plate. (Not shown

in Fig. 1.1 is the restraining force of magnitude F, to the left, which would be needed to

keep the bottom plate stationary.)

A stress is a force per unit area. In principle, a stress may be computed at any point

on a surface by finding the differential force �F acting on a differential area �A, and

calculating the ratio �F/�A in the limit �A ³ 0. Intensive variables such as this (i.e.,

ones independent of system size) are central to the analysis of fluid mechanics. Shear

stresses act parallel to (tangent to) surfaces; normal stresses act perpendicular to surfaces.

The shear stress that a solid exerts on a fluid, called the wall shear stress, is denoted as

Çw.1 In the idealized experiment in Fig. 1.1, Çw happens to be the same everywhere on

the top plate. Accordingly, its value at any point equals the shear stress averaged over the

entire surface. That is, Çw = F/A.

Experiments like that in Fig. 1.1 reveal that Çw for any fluid depends on U/H, but not

on U or H separately. The velocity-to-thickness ratio is the shear rate, s = U/H .2 It is

found that Çw always increases with s. The shear stress and shear rate are related as

Çw =
¿U

H
= ¿s (1.2-1)

where ¿ is the viscosity. In a Newtonian fluid, ¿ is independent of s and the shear stress

is exactly proportional to the shear rate. Numerous fluids of practical interest are Newto-

nian, including all gases, liquids with molecular weights (relative molecular masses) less

than about 103 (such as water and common organic solvents), and suspensions of non-

aggregating particles. For a given Newtonian fluid, ¿ depends mainly on temperature.

In non-Newtonian fluids, the value of ¿ (i.e., the ratio Çw/s) depends in some way on s.

1 This symbol is used in Part I of this book, but a more systematic way to identify stress components is needed

later. In the notation introduced in Part II, Çw at the top plate in Fig. 1.1 would be written as Ç yx. The first

subscript indicates that the surface (the plane y = H) is perpendicular to the y axis, and the second refers to a

resultant force in the x direction.
2 A symbol for shear rate that appears very widely in the literature is ³̇ . Because of the potential for confusing

that with surface tension (to be denoted as ³ ), s is used here instead.
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1.2 Fluid properties

Non-Newtonian fluids also have other distinctive features, as discussed later in this sec-

tion. Among such fluids are polymer melts, concentrated solutions of flexible polymers,

and concentrated suspensions of particles that deform, orient, or aggregate.

A flow that closely approximates that in Fig. 1.1 is realized in a Couette viscometer,

in which a liquid sample fills the annular space between long, concentric cylinders. If the

gap between cylinders is small compared with their radii, the surfaces will appear to the

liquid to be planar, just as the Earth seems flat from human eye level. One cylinder is

rotated while the other is held in place. The linear velocity of the rotating cylinder is its

radius times the angular velocity, and s is the linear velocity divided by the gap width.

The torque measured on either cylinder is proportional to Çw. This and other viscometers

avoid practical problems that would occur with the system in Fig. 1.1, such as keeping

the gap width H and fluid–solid contact area A constant.

Density and kinematic viscosity

The density Ã of a fluid is its mass per unit volume. In that density times velocity is

momentum per unit volume, Ã is needed to describe inertia. Moreover, Ãg is the grav-

itational force per unit volume, g being the gravitational acceleration. In principle, the

density at any point in a fluid could be found by repeatedly determining the mass �m in

a volume �V, and finding the limit of �m/�V as �V ³ 0. In liquids, where Ã is nearly

independent of pressure (P), it is spatially uniform unless there are significant variations

in temperature (T ). In gases, Ã is related to P and T by an equation of state, and pressure

gradients will cause it to vary with position, even if the gas is isothermal. The equation

of state for an ideal gas, which is adequate at low to moderate pressures, is

Ã =
MP

RT
(1.2-2)

where M is the average molecular weight, R is the universal gas constant, and T is the

absolute temperature. Assuming Ã to be constant, even in gases, usually leads to negli-

gible error. Exceptions include gases spanning large heights, flowing in very long pipes,

or moving at velocities that approach the speed of sound. Those situations are unusual

enough in chemical engineering that constancy of Ã will be our default assumption. The

corresponding idealization is called incompressible flow. Although such flows are our

main concern, an introduction to compressible flow, where variations in Ã must be taken

into account, is provided in Chapter 12.

The ratio of viscosity to density occurs frequently enough to have its own name, the

kinematic viscosity. It is denoted by the Greek “nu,”

¿ =
¿

Ã
. (1.2-3)

Units and values

The SI system, in which the unit of force is the newton (N = kg m s22), is used in

this book. The units of energy and power are the joule (J = N m = kg m2 s22) and

watt (W = J s21 = kg m2 s23), respectively. The unit of pressure (or stress) is the pas-

cal (Pa = N m22 = kg m21 s22). One atmosphere equals 1.013 × 105 Pa = 101.3 kPa.

The standard gravitational acceleration is g = 9.807 m s22 and the gas constant is

R = 8314 kg m2 s22 kg-mol21 K21.

When making engineering estimates, one should have in mind typical values for

the various fluid properties. Table 1.1 lists properties of several gases at near-ambient
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Table 1.1 Viscosity, density, and kinematic viscosity of gases (at 27 °C and 100 kPa)a

Gas M(daltons) ¿(1025 Pa · s) Ã(kg m23) ¿(1025 m2 s21)

H2 2 0.90 0.0819 11.0

CH4 16 1.12 0.652 1.72

N2 28 1.79 1.14 1.57

Air 29 1.86 1.18 1.58

C2H6 30 0.95 1.22 0.78

O2 32 2.08 1.30 1.60

CO2 44 1.50 1.79 0.84

a The viscosities are from Lide (1990), the densities are from Eq. (1.2-2), and the

kinematic viscosities were calculated from those viscosities and densities. “Air” is dry air.

Table 1.2 Viscosity, density, and kinematic viscosity of Newtonian liquidsa

Liquid T(°C) ¿(1023 Pa · s) Ã(103 kg m23) ¿(1026 m2 s21)

Water 20 1.002 0.9982 1.004

Benzene 20 0.652 0.8765 0.744

Ethanol 20 1.200 0.7893 1.520

Mercury 20 1.554 13.55 0.115

Phenol 18 12.7 1.0576 12.0

Olive oil 20 84.0 0.918 91.5

Machine oils 16 114–661 0.87 130–760

Glycerol 20 1490 1.2613 1181

Honey 20 19,000 1.42 13,400

a All viscosities and densities are from Lide (1990), except as noted below, and ¿ was

calculated from ¿ and Ã. The density for the “machine oils” is a value typical of motor

oils. The properties of a representative honey are from www.airborne.co.nz.

conditions. The entries are arranged in order of increasing molecular weight. Despite

20-fold variations in M , the viscosities fall within a narrow range, from about 1 ×
1025 to 2 × 1025 Pa · s. With little difference in ¿ and with Ã proportional to M , the vari-

ations in ¿ are due largely to the differences in M . Given that most gas densities are

roughly 1 kg m23, a typical kinematic viscosity at ambient temperature and pressure is

about 1 × 1025 m2 s21.

The properties of a number of Newtonian liquids are shown in Table 1.2. The viscosity

of water at room temperature is 1 × 1023 Pa · s, its density is 1 × 103 kg m23, and its

kinematic viscosity is therefore 1 × 1026 m2 s21. Although the viscosity of water is about

100 times that for gases, its kinematic viscosity is about 10 times smaller because its

density is 1000 times larger. The viscosity, density, and kinematic viscosity of benzene

and ethanol, which are representative of common organic solvents, are each the same

order of magnitude as those for water. The variations in ¿ and ¿ among the other liquids

are noteworthy; they range over factors of about 104 and 105, respectively. Differences

in viscosity should not be confused with differences in density, as occurs sometimes in

casual speech or writing. Despite its high density, mercury has an ordinary viscosity,

whereas the liquids in the last five lines of Table 1.2 have increasingly large viscosities,

but ordinary densities.
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1.2 Fluid properties

Figure 1.2 Viscosities of air and water as a function of temperature. The values for air are from a corre-

lation in Kadoya et al. (1985) for dry air and those for liquid water are from Lide (1990).

Gas viscosities increase with temperature (approximately as T 1/2), whereas those for

liquids decrease, as exemplified by the results for air and water in Fig. 1.2. Liquid vis-

cosities are more temperature-sensitive. As T increases from 0 to 100 °C, ¿ for liquid

water decreases by 84%, whereas ¿ for air increases by only 27%.

Both for gases and for liquids, the effects of pressure on viscosity are generally

negligible (Blevins, 2003). That is true for gases if P�Pc < 0.2 and T�Tc > 1, where

Pc and Tc are the critical temperature and pressure, respectively. For air, Pc = 36.4 atm

and Tc = 78.6 K. For water at 50 atm, the kinematic viscosity is only about 1% less than

that at 1 atm.

Estimation methods to use when specific data are unavailable may be found in Reid

et al. (1987). Gas viscosities are explained well by kinetic theory (Hirschfelder et al.,

1954; Kennard, 1938). Although there are no comparably simple and predictive theories

for liquids, molecular-dynamics simulations provide a way to relate liquid viscosities and

other transport properties to intermolecular forces (Allen and Tildesley, 1987).

Non-Newtonian liquids

As already mentioned, a dependence of viscosity on shear rate is the hallmark of non-

Newtonian liquids. The experimental and theoretical investigation of stresses in such flu-

ids constitutes the field of rheology. Aside from the dependence of ¿ on s, the behav-

ior of polymeric liquids, in particular, can differ strikingly from that of low-molecular-

weight liquids. For example, when a Newtonian liquid is stirred, the air–liquid interface

is depressed in the vicinity of the stir rod; with various polymer solutions the interface

is elevated, and the solution may even climb the rod as stirring proceeds. Also, a steady

stream of Newtonian liquid leaving a small tube reaches a diameter that does not differ

greatly from that of the tube, whereas jets of polymeric liquids can swell to several times

the tube diameter. Further, flexible polymer molecules resist elongation and, because of

their size, can require several seconds to adjust shape in response to applied forces. This

can give the fluid an elastic character and cause viscous stresses to depend not just on

instantaneous shear rates, but also the recent history of the sample. Fluids in which ¿

is time-dependent are viscoelastic. These and other special characteristics of polymeric
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Figure 1.3 Viscosity as a function of shear rate for a solution containing 66 mM cetylpyridinium chloride

and 40 mM sodium salicilate (Haward and McKinley, 2012).

liquids are surveyed in Chapter 2 of Bird et al. (1987). Colloidal dispersions and other

particle suspensions in low-molecular-weight solvents can also be non-Newtonian, espe-

cially when very concentrated. For example, whole blood, which is almost half red cells

by volume, has a viscosity that depends on shear rate when s is small.

Many features of polymeric liquids are beyond the scope of this book. The depen-

dence of ¿ on s, and its consequences for predicting the flow rates of non-Newtonian

liquids in pipes or other conduits, tends to be of greatest practical interest and will be our

focus. A relationship that describes data for many liquids over practical ranges of s is

¿ = msn21 (1.2-4)

where m and n are positive constants. The values of m and n are specific to a given material

and temperature. In polymer solutions, m and n both depend on concentration. They are

obtained by substituting Eq. (1.2-4) into Eq. (1.2-1) and fitting the resulting equation

to data for Çw as a function of s. A material that obeys Eq. (1.2-4) is called a power-

law fluid, and such liquids can follow this relationship for values of s spanning several

orders of magnitude. For polymer solutions, n often ranges from 0.2 to 0.8 (Bird et al.,

1987, pp. 172–175; Tanner, 2000, pp. 18–19). A fluid with n < 1, such that ¿ decreases

with increasing s, is referred to as shear-thinning. In the rarer situations where n > 1,

such that ¿ increases with increasing s, it is shear-thickening. For n = 1, the viscosity is

independent of s and the Newtonian case is recovered, with ¿ = m.

Equation (1.2-4) implies that ¿ ³ > as s ³ 0 for a shear-thinning fluid. In reality,

¿ tends to be constant at very low shear rates, as exemplified by the data in Fig. 1.3. What

was studied in this case was a surfactant solution that forms highly elongated micelles.

However, the overall trends are like those found for numerous polymer solutions and

polymer melts. At low shear rates the solution was Newtonian with a viscosity of about

10 Pa · s, as indicated by the dashed line. At higher shear rates there was a power-law

region where

¿ = ¿0

"

s

s0

"n21

(1.2-5)
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1.2 Fluid properties

Figure 1.4 Shear stress as a function of shear rate for

power-law and Bingham fluids.

a relationship that is obtained by setting m = ¿0s12n
0 in Eq. (1.2-4). The curve fit shown

by the solid line corresponds to ¿0 = 10.5 Pa · s, n = 0.04, and s0 = 0.48 s21. Although

beyond the range of these experiments, at extremely high shear rates there would be

another Newtonian plateau at a lower viscosity. To describe the upper and lower Newto-

nian limits, the power-law region, and the transitions in a single expression, an equation

with more degrees of freedom is needed. Such an expression is the Carreau–Yasuda

equation, which involves five fitted constants (Bird et al., 1987, p. 171). Their inaccuracy

for extreme values of s notwithstanding, Eqs. (1.2-4) and (1.2-5) are adequate for most

pipe-flow calculations.

Another class of materials flows only when the shear stress exceeds a certain thresh-

old, called the yield stress. One way to describe their viscosity is

¿ =

§

¨

©

> for Çw < Ç0

¿0 +
Ç0

s
for Çw g Ç0

(1.2-6)

where Ç 0 is the yield stress and ¿0 is a second material-specific constant [not to be con-

fused with ¿0 in Eq. (1.2-5)]. A material that obeys Eq. (1.2-6) is called a Bingham fluid

or Bingham plastic. The infinite viscosity for Çw < Ç0 means simply that the material

behaves as a rigid solid when subjected to insufficient shear. However, for Çw g Ç0 the

viscosity becomes finite and decreases with increasing s. If s greatly exceeds Ç0/¿0, the

fluid becomes Newtonian with ¿ = ¿0. House paint and various foods behave much like

this.

The qualitative dependence of shear stress on shear rate for Newtonian, power-law,

and Bingham fluids is shown in Fig. 1.4. For a Newtonian fluid (n = 1), the straight line

through the origin indicates that ¿ (which in this case equals the slope) is constant and

that there is no yield stress. For a power-law fluid with n "= 1, the curvature of the function

Çw(s) signifies a variable ¿, but the passing of the curve through the origin indicates the

absence of a yield stress. For the Bingham model, the nonzero intercept is Ç0 and the

constant slope is ¿0.

Equations (1.2-4)–(1.2-6) are examples of rheological constitutive equations, which

relate viscous stresses to rates of shear or deformation. The constitutive equations

for Newtonian, power-law, and Bingham fluids are presented in more general form in

Section 6.5. Many other non-Newtonian constitutive equations have been proposed, some
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Figure 1.5 Surface tension at a flat air–water interface. A force

of magnitude ³ L pulls away from each side of the imaginary cut

shown by the dashed line.

purely empirical and others derived from molecular-level mechanics (Bird et al., 1987;

Tanner, 2000).

Surface tension

There is a surface tension (³ ) associated with the interface between a gas and a liquid,

or between immiscible liquids. Surface tension may be viewed either as an energy per

unit area or as a force per unit length (J/m2 or N/m in SI units). In thermodynamics, it is

the energy required to increase the interfacial area; in mechanics, the usual perspective in

this book, it is a force that acts on an imaginary line or contour within an interface. The

direction of the force is tangent to the interface and away from the line or contour. The

surface tension force at a planar interface is illustrated in Fig. 1.5, which shows a con-

tainer of width L that is partly filled with water. At an imaginary cut through the air–water

interface (dashed line), there are opposing forces of magnitude ³ L acting horizontally on

each side of the line of length L. The forces are tensile, meaning that each pulls on the

imaginary line.

If an interface is flat and ³ is constant, the surface tension forces will balance and

not be observable. However, surface tension can become very evident when an interface

is nonplanar, when ³ varies with position (due to gradients in temperature or surfactant

concentration), or when an interface ends at a three-phase contact line. A contact line is

created, for example, at the edge of a liquid drop resting on a solid surface, where solid,

liquid, and gas all meet. The surroundings exert a force that pulls away from the contour

that corresponds to the contact line. That force may cause the drop to either spread or

contract, depending on the angle the gas–liquid interface makes with the surface, which is

called the contact angle. Contact angles and other aspects of surface tension are discussed

in much more detail in Chapter 4. Surface tension affects the dynamics of drops, bubbles,

and foams, causes wetting of surfaces, and leads to fluid uptake by porous media. These

effects are most prominent at small length scales. Many such phenomena are described

in Adamson and Gast (1997) and De Gennes et al. (2003).

Table 1.3 shows values of ³ for several liquids in contact with air. The surface ten-

sion for water (about 7 × 1022 N/m or 70 mN/m) is about three times that for benzene,

ethanol, or other common organic solvents (20–30 mN/m). Mercury is unusual in that

³ is about 20 times that for the organics (almost 500 mN/m). Surface tensions decrease

with increasing temperature, as exemplified by the entries for water and mercury.

The surface tension for water in contact with various immiscible liquids is less than

that for water and air. For example, at room temperature ³ = 45.7 mN/m for decane/water

and 16.4 mN/m for olive oil/water (Than et al., 1988).
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1.2 Fluid properties

Table 1.3 Surface tension for

liquid–air interfacesa

Liquid T(K) ³ (mN/m)

Water 293 72.88

303 71.40

313 69.92

Benzene 293 28.88

Ethanol 293 22.39

Mercury 293 486.5

303 484.5

a From Jasper (1972).

Continuum approximation

Little more is said in this book about molecules, because in continuum mechanics they are

ignored. Indeed, continuum descriptions of fluid mechanics were already well advanced

by the mid 1700s, long before the existence of molecules was firmly established. Con-

tinuum modeling is natural in that, in our everyday experiences with air and water, we

are unaware of individual molecules. Of great importance, postulating that velocities,

stresses, and material properties are smoothly varying functions of position allows us

to use the tools of calculus. In general, this approach hinges on there being enough

molecules present in a system to average their effects. That is easiest to visualize with

density. When we speak of the local value of Ã as the ratio �m/�V in the limit �V ³ 0,

what is really meant is that there exists a �V that is small compared with the system

volume, but still large enough to contain a predictable number of molecules. If �V were

so small that it enclosed only a few molecules, Ã would fluctuate wildly, according to

the thermal motion of molecules into or out of the imaginary box. Thus, Ã becomes

unpredictable if the system is too small. The same is true for the other properties we

have discussed. If the number of molecules present is inadequate, flow models must be

stochastic (based on probabilities) rather than deterministic.

To have continuum behavior with property values that are independent of system

size, the smallest linear dimension of the system (�) must greatly exceed whichever is

the larger of two molecular length scales. One is the intermolecular spacing, which may

be expressed as an average center-to-center distance (r). The other is the mean distance

traveled in a random “jump.” Single molecular displacements in liquids are typically

a small fraction of r, whereas the average distance between collisions in a gas (», the

mean free path) greatly exceeds r. This makes r limiting in liquids and » limiting in

gases. The need to have � � r is evident already from the discussion of density, and

� � » is required to make collisions among the gas molecules much more frequent than

their collisions with boundaries. Collisions among the gas molecules are what transmit

momentum in a gas, and their frequency determines ¿. If a container is so small that

collisions occur mainly with the walls, the usual values of ¿ will be inapplicable.

A typical value of r for water or organic solvents is 0.4 nm. Allowing for a factor

of 10, this suggests � > 4 nm as a criterion for the continuum modeling of such liquids.

From kinetic theory (Kennard, 1938), the mean free path in a gas is

» =
kBT

:
2 Ãd2P

(1.2-7)
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