

Index

abduction, 26	analogy-based generalization, 265-70
abductive inference 26	analysis
see abductive reasoning	definition, 35
abductive learning, 223	analysis and synthesis, 113-24
abductive reasoning, 5-8, 26, 57	inquiry-driven, 113–22
Doyle's interpretation, 8	for center of gravity determination, 116
Peirce's interpretation, 7	for evidence-based reasoning, 122
abstract task, 399	problem solving, 113–15
abstraction	symbolic integration, 113
pattern, 330	analytic task, 36
of probabilistic solution, 330	classification, 36
of reasoning, 329–31	critiquing, 36
of reasoning tree, 330–1	diagnosis, 36
of statement, 329–30	intelligence analysis, 36
access, 135	interpretation, 36
accuracy, 49	monitoring, 36
of demonstrative tangible evidence, 134	prediction, 36
action, 395	Anderson, Terence, 5
add effects, 395	Apple, 35
delete effects, 395	approximate reasoning, 21
example, 395	arch of knowledge, 5, 26
resources, 395	argument
Adam, Federic, 32	direction, 54
	force, 54
agent cognitive, 31	Aristotle, 6
cognitive assistant, 33-4	artificial intelligence, 29–33
intelligent, 30, 34	definition, 29
knowledge-based, 30, 33-4	assumption, 18
agent development	assumption-based reasoning, 143
ontology, 106	authenticity, 49
optimization, 107	of demonstrative tangible evidence, 134
rapid prototyping, 105	of real tangible evidence, 134
	authoritative record, 137
rule learning and ontology refinement, 106 specification, 105	Awad, Elias M., 88, 178-9, 389, 418
<u> </u>	Awau, Elias W., 66, 176-9, 369, 416
use and personalization, 106 agent teaching and learning	Bacon, Francis, 16
for center of gravity analysis, 380–3	Baconian inference
for course of action critiquing, 355–60	different tests of hypotheses, 16
for emergency response planning, 403–17	eliminating hypotheses, 16
for workaround planning, 345–6	Baconian probability system, 16–20, 55
Allen James 201, 425	compared with others, 23-5
Allen, James, 391, 425	intersection, 20
analogical problem solving	negation, 20
based on explanation similarity, 265	union, 20
analogy criterion, 266–70	Bayes, Thomas, 10

447

448

Index

Bayes' rule, 10 representation, 203 and assumptions, 18 concept elicitation, 176-9 Bayesian network learning, 223 conditional probability, 11 Bayesian probability system, 11-13, 55 connecting the dots, 46-55 and assumptions, 18 definition, 47 compared with others, 23-5 example, 47 Belief Functions, 11-16, 55 Cooper, Thomas A., 88 and assumptions, 18 credibility, 135 compared with others, 23-5 versus believability, 135 believability, 61 critical reasoning, 48 versus credibility, 135 Cross, Stephen E., 34 of evidence, 48 customer, 55 example, 49 cyber insider threat, 64-7 of source, 48, 54 definition, 64 believability assessment, 133-9 Cyc, 88, 90 believing as if. See assumption Dale, Andrew I., 10 benefit of the doubt, 19 DARP, 34 Betham, Jeremy, 27 BFO, 90 data, 1 David, F. N., 10 big data problem, 50 Boicu, Cristina, 41, 338 David, Paul A., 33 Davies, Todd R., 225 Boicu, Mihai, 39, 41, 338, 352, 364, 407 Bowman, Michael, 41, 338, 352, 396 decision trees induction, 223 Bresina, John L., 34 deduction, 25 Breuker, Joost, 35 deduction, induction, and abduction, 50 browsing of reasoning tree, 331 deductive inference 26 BRU generalization, 246 see deductive reasoning Buchanan, Bruce G., 83-4, 87, 389, 418 deductive reasoning, 26 Deep Blue, 34 candidate elimination algorithm, 298 defensibile argument, 54 Carbonell, Jaime G., 225 DeJong, Gerald, 258, 406 card sort method, 179 DENDRAL, 34 case-based reasoning and learning, 223 Desai, Mita, 68 causal network of relations, 225, 265 design principle, 426-32 certification, 88 complete life cycle, 431 chain of custody, 138-9 employ learning technology, 426 chain of reasoning, 4 knowledge adaptation, 429 Chaudhri, Vinay K., 90 knowledge reuse, 427 Chipman, Michael A., 34 mixed-initiative, 429 multi-agent and multidomain problem solving, Clancey, William, 35 class. See concept 427 clause generalization, 245 multistrategy learning, 428 Clausewitz, Carl von, 365 plausible reasoning, 430 CLIPS, 88 problem solving for collaboration, 427 clustering, 223 rapid development, 430 Cohen, Jonathan L., 16-18 teaching and learning, 428 Cohen, Morris R., 6 user tutoring, 430 Cohen, Paul, 346, 349 direct subconcept of collaborative autonomous agents, 70 definition, 157 combinatorial explosion, 51 disbelief. See lack of belief Disciple agent, 426 Comello, Jerome, 376 COMINT, 133-4 Disciple-CD, 35-6, 41 CommonKADS, 89 Disciple-COA, 36, 89, 348-64 competence, 3, 49, 135 Disciple-COG, 34, 91, 364-85, 427 competing hypotheses, 59 Script Editor, 377 computational theory of evidence-based Disciple-EBR, 41, 49, 53, 55, 91, 257, 309, 427 reasoning, 64 Association Browser, 165 concept Expression Editor, 282 Feature Browser, 167, 175, 189 definition, 156 as feature value, 163 Feature Editor, 175 formal representation language, 243-5 Hierarchical Browser, 165, 182

Object Browser, 165, 175, 180	in cybersecurity, 27
Object Editor, 192–3	in forensics, 27
Object Viewer, 165	in intelligence analysis, 27
Rule Browser, 254	in law, 27
Disciple-LTA, 36	in medicine, 27
Disciple-VE, 390–4	in natural sciences, 27
Reasoning Hierarchy Browser, 396	evidential synergism, 52
Reasoning Step Editor, 396	example, 50–1
Disciple-VPT, 37, 387-425, 427	Except-When plausible version space condition,
architecture, 388-9	215, 251, 254-5, 300
VE Assistant, 388	EXPECT, 88
VE Library, 388, 416–20	expert problem
VE Team, 388	center of gravity analysis, 364-7
Disciple-WA, 37, 89, 338-48	course of action critiquing, 348–51
divide-and-conquer. See analysis and synthesis	emergency response planning, 389-90
DOLCE, 90	workaround planning, 338–41
domain understanding, 83-5, 94, 176-9	expert system, 33-5
dots	definition, 33-4
evidential, 47–8	vs knowledge-based system, 34
combinations of, 50	expert system shell, 88-9
idea, 48, 50, 52, 54	definition, 88
Doyle, Arthur Conan, 6	explanation, 266
drill-down analysis, 143	with comparison, 283
Drucker, Peter, 33	with fixed value, 280
Durham, Susan, 391	with function, 280
Durkin, John, 34, 389, 418	generation, 262–4
Dybala, Tom, 40, 338	incompleteness, 263
	explanation piece, 261
Echevarria, Antulio J., 365	association, 261
Eco, Umberto, 8	correlation, 261
Eikmeier, Dale C., 365	generalization, 261
Einstein, Albert, 21	property, 261
elicitation script, 376–9	relation, 261
for feature, 377	specific value, 261
illustration, 367-9	explanation-based learning, 223–5
EMYCIN, 89	
enumerative probability, 9-11	fact, 2
aleatory, 9	failure explanation, 254
epistemology, 2	Farquhar, Adam, 90
equivocal testimonial evidence, 136	Feigenbaum, Edward A., 38
evaluation	Fellbaum, Christiane D., 90
of Disciple-COA, 360-4	Ferrucci, David, 34
of Disciple-COG, 383–5	Filip, Florin G., 32–3
of Disciple-VPT, 422	flash of insight, 7
of Disciple-WA, 346–8	FOAF, 90
event, 2	Foray, Dominique, 33
evidence, 1, 5	Forbes, 34
ambiguity, 23	Forbus, Kenneth D., 225
dissonance, 23	foundational ontology. See upper ontology
imperfect believability, 23	frame, 15
incompleteness, 23	frame of discernment, 15
inconclusiveness, 23	Friedman-Hill, Ernest, 90
versus	Fuzzy probability system, 20-3, 55
event, 48	compared with others, 23-5
fact, 2	conjunction, 22
information, 2	disjunction, 22
knowledge, 2	negation, 22
evidence collection task, 60	
evidence in search of hypotheses, 56-7	Galilei, Galileo, 6
evidence-based assessment, 122-4	Galvin, T. P., 365
evidence-based reasoning 25-9 46-76	game of chance 9

450

Gammack, J.G., 176, 180	define feature-specific names, 196
Ganascia, Jean-Gabriel, 237, 265, 298	define similar siblings, 186
Gates, Bill, 40	group similar siblings, 187
generalization, 18	naming conventions, 188
of concepts with negation, 247	n-ary relations, 196
definition, 234	single subconcepts, 187
formal definition, 243-7	planning
inductive, 18	goal specification, 400
maximal, 266-7, 300	plausible task ordering, 398
minimal, 268, 298, 300	preconditions specification, 399
definition, 234	top-down, left-to-right specification, 399
of two concepts, 236	rule and hypothesis learning
of two concepts	avoid learning from overly specific
definition, 236	examples, 286
generalization hierarchy, 157-8	avoid learning without explanations, 288
generalization rule, 229-33	domains and ranges of features, 286
climbing generalization hierarchies, 231	extend ontology before learning, 286
definition, 229	guide explanation generation, 288
dropping conditions, 231	identify entities before learning, 285
extending discrete sets, 232	recognize concepts in tree, 288
extending intervals, 231	rule refinement
extending ordered sets of intervals, 231	assess similar hypotheses, 321
extending symbolic probabilities, 232	extend ontology for failure explanations, 321
turning constants into variables, 230	Guizzardi, G., 90
turning occurrences of a variable into different	
variables, 230	hands-on exercise
using feature definitions, 233	abstraction of reasoning, 331-4
using inference rules, 233	argumentation browsing, 76–81
using substitutions, 247	believability analysis, 140-3
generic instance, 104, 183, 188	evidence search, 130–3
and explanation selection, 263	feature hierarchy development, 189–92
genetic algorithms and evolutionary	hypothesis analysis, 124–30
computation, 223	instance definition, 192–5
Gentner, Dendre, 225	modeling and formalization, 144-6
Geonames, 90	object hierarchy development, 180-6
GFO, 90	ontology browsing, 165–8
Ghallab, Malik, 387, 394, 396, 425	pattern reuse, 146-7
Ghaziri, Hassan M., 389, 418	rule and hypothesis learning, 275-9 rule refinement, 319-21
Giarratano, Joseph, 34, 88 Gil, Yolanda, 90, 360	Hayes-Roth, Frederick, 202
	-
Giles, P. K., 365 giving benefit of the doubt. <i>See</i> assumption	Hendler, Jim, 33, 40, 89 heuristic, 62
goal, 396	Hieb, Michael R., 41, 338
Goodman, David, 34	hierarchical task network planning, 394–403
Gruber, Tom R., 155	integration with inference, 403
guideline	Hobbs, Jerry R., 90
abstraction	Holmes, Sherlock, 6, 8, 47, 51
define context-dependent names, 334	Horvitz, Eric, 32
knowledge base	HUMINT, 48-9, 139
one KB in memory, 111	Humphreys, B.L., 90
save succesive KB versions, 111	hypothesis
modeling	examples, 29
define reduction considering future	learning, 271–6
changes, 149	basic steps, 273
identify instances and constants, 148	refinement, 316–17
learn and reuse patterns, 149	testing, 59
reduction tree development, 148	hypothesis-driven evidence collection, 59
use specification to structure modeling, 147	**
ontology development	IBM, 34
categories as concepts, 195	imaginative reasoning, 48, 57
concept naming, 189	IMINT, 48, 133-4

Incident Command System, 390	knowledge base
incremental inductive generalization, 299	development, 257
indicator	Domain KB, 104, 270, 420, 428
almost certain indicator, 121	maintenance, 257
likely indicator, 121	Scenario KB, 104, 270, 420, 428
probability computation, 121	Shared KB, 104, 420, 428
very likely indicator, 121	State KB, 420
individual. See instance	knowledge engineer, 256, 426
induction, 25	definition, 83
inductive inference 26	knowledge engineering, 33-41, 426
see inductive reasoning	definition, 33
inductive learning from examples, 223–4, 238–42	knowledge society, 40
problem definition, 239	Kodratoff, Yves, 39, 237, 265, 298
inductive reasoning, 26	Kolmogorov, Andrey N., 10, 14
inference	Kolmogorov's axioms of probability, 10
action, 401	Krogh, Georg von., 39
engine, 207	radgily deally voilly de
network, 53	lack of belief, 15
task, 401	Langley, Patrick W., 31
inferential catastrophes, 49	Laplace, Pierre, 9
inferential force or weight, 61	law, 5
information, 2	Anglo-American, 5
inheritance, 162–3	laws of large numbers, 10
default, 162	Le, Vu, 41, 338
multiple, 162	learner
input variable, 408	aggressive, 241, 266
inquiry-based learning in science, 70-6	cautious, 240, 268
instance	dual-strategy, 241
definition, 157	learning
instance of, 157	with evolving ontology, 309–20
instance-based learning, 223	with incomplete representation language,
integrated teaching and learning, 39	242
intelligence analysis, 56-64	learning agent shell, 90–1, 390
intelligent agent, 30–2	definition, 90
interview with expert	learning agent shell for evidence-based reasoning
structured, 177	91-3
unstructured, 84, 177	definition, 91
dichotomous questions, 177	learning apprentice, 223
multiple-choice questions, 177	learning by analogy, 39, 223, 225-6
ranking scale questions, 177	learning from examples, 39
Intuit, 34	learning from explanations, 39
Iron, Richard, 365	learning planning rules, 417
isa. See subconcept of	action concretion rules, 415–17
ioni dee dabedheept di	correlated rules, 409–13
Jackson, Peter, 389, 418	difficulty, 409
Java, 41	method, 413
Jena, 89–90	problem definition, 413
JESS, 89	task concretion rules, 414-15
Jones, Eric, 338, 347, 349–50, 361–2	task reduction rules, 413–14
, ones, Ene, oss, on, one os, ost 2	Lempert, R. O., 134
Kant, Immanuel, 35	Lenat, Douglas B., 90, 360
Keeling, Harry, 39, 41, 338	likelihood
Keene, Raymond, 34	versus likeliness, 122
Kent, Sherman, 23	likelihood ratio, 12
Kim, Jihie, 360	likeliness
Kipling, Rudyard, 113, 427	versus likelihood, 122
Kneale, W., 6	Lindberg, D. A. B., 90
knowledge	Locke, John, 6
as justified true belief, 2–4	Loom, 90, 343
repository, 104–5	lower bound condition
reuse, 418, 427	as analogy criterion, 268-70
10430, 710, 721	as analogy criterion, 200-10

452

MacGregor, Robert, 90, 343, 360	Norvig, Peter, 30
machine learning	Noy, Natalya F., 174
definition, 223	
main plausible version space condition, 215, 251	O'Keefe, R. M., 88
MAPGEN, 34	object feature, 158-60
Marcu, Dorin, 41, 338	domain, 158
Marcus, Sandra, 37, 89	generalization hierarchy, 160
MASINT, 48, 133	partially learned, 159
Masolo, C., 90	range, 158
McDermott, John, 34	objectivity, 4, 49, 135
McGuinness, Deborah L., 174	Obrst, Leo, 90, 174
Meckl, Steven, 29	observational sensitivity, 49, 135
Michalski, Ryszard S., 39, 222, 227	OCHRE, 90
Minsky, Marvin, 222	odds, 10
missing evidence, 137	OKBC, 90
versus negative evidence, 137	
	Oldroyd, David, 5, 26
Mitchell, Tom M., 212, 222, 238, 258, 298, 318, 407	Ontolingua, 90
mixed evidence, 14, 138	ontological commitment, 155
example, 138	ontology, 155–65
mixed-initiative	definition, 155
interaction, 252	of evidence, 134
problem solving, 39	maintenance, 197
reasoning, 32–3, 262	matching, 163–5
definition, 32	of problem-solving tasks, 35-7
in explanation generation, 264	version, 311
modeling the problem-solving process, 113-22	ontology design and development, 174-81
center of gravity analysis, 369-74	for center of gravity analysis, 376-8
course of action critiquing, 351-74	for course of action critiquing, 352-5
emergency response planning, 394-6	for emergency response planning, 357-90
workaround planning, 341–3	for workaround planning, 343-4
modeling-based ontology specification, 100-1,	operation with assumption
179-81, 286	define, 146
Mooney, Ray, 258, 406	define with justification, 146
more general than	delete, 146
definition, 157	operation with case study
Morris, Jon, 25	end, 80
Morris, Paul H., 34	run, 78
multi-INT fusion, 61	operation with explanation
multistrategy learning, 39, 223, 226–7	define with comparison, 284
Murphy, Peter, 5	define with function, 283
Musen, Mark A., 89	generate with fixed value, 280
MYCIN, 34	guide generation, 279
N. I. F C	operation with hypothesis
Nagle, Ernest, 6	associate search criteria, 132
naïve Bayes learning, 223	browse analysis of hypothesis, 78
narrative, 55	convert between modeled and formalized, 146
n-ary feature, 160-1	define explanations, 275
NASA, 34	display with problem viewer, 279
National Science Education Standards, 70	insert intermediary hypothesis, 145
Nau, Dana, 366, 425	introduce into abstract reasoning tree, 334
negative evidence, 136	modify abstraction, 334
versus missing evidence, 137	move hypotheses, 145
negative example, 223	remove from abstract reasoning tree, 334
definition, 227	specify, 145
negative exception	specify by instantiating pattern, 147
definition, 228	specify reduction by reusing pattern, 147
Negoita, Constantin V., 21	update name of elementary hypothesis, 129
neural networks, 223	operation with item of evidence
Newton, Isaac, 6	assess, 127
Nilsson, Nils J., 391	associate to hypothesis, 127
Nonaka, Ikujiro, 39	define, 143
TOTAL TRAILING OF	ucilito, 170

operation with knowledge base	positive example, 223
close, 110	definition, 227
create, 110	positive exception
load and select, 108	definition, 227
save, 109	possibility function, 21
operation with ontology	posterior odds, 12
add direct subconcept or instance, 194	posterior probability, 11
add direct superconcept, 194	Powell, Gerald M., 391
change feature domain, 190	prior probability, 11
change feature range, 190	probabilistic reasoning, 25
define concept or instance, 182	probabilistically equivocal testimonial
define feature, 189, 193	evidence, 136
define generic instance, 183 define specific instance, 182	probability scale
delete concept or instance, 186	Baconian, 17 conventional, 15
rename concept or instance, 186	degree of support or belief, 15
view feature definition, 167	problem reduction rule, 204
view object, 167	production system architecture, 202–3
operation with reasoning tree	propose-and-revise, 89
define instances and constants, 145	Protégé, 89–90
delete node, 145	protocol analysis, 178
recognize concepts, 289	pure evidence, 13–14
replace generated step with modeling step, 320	,
select synthesis function, 129	R1, 34
specify node, 145	Ralescu, Dan A., 21
operation with rule	rapid prototyping, 93-100
delete with Rule Browser, 321	Rationale system, 23
display with Rule Viewer, 278	reduction
learning steps, 278	indicator, 121
refine with negative example, 320	necessary and sufficient condition, 120
refine with positive example, 319	scenario, 120
view with Rule Browser, 320	sufficient condition, 120
OPS, 88	reduction example
ordered symbolic probability scale, 61	generalized, 270-1
output variable, 408	reformulation, 264-5
overgeneralization, 242	understanding, 260–2
OWLIM, 90	reduction rule, 204–7, 394 reformulation rule
Pan, Feng, 90	definition, 229
Paris, Cecile, 88	relative frequency, 9
partially learned knowledge, 212–16	relevance, 53, 61
reasoning, 215-16	argument, 4, 54
representation, 212–15	of event, 50
concepts, 212–13	reliability
features, 159, 213	of demonstrative tangible evidence, 134
hypotheses, 214	repeatable process, 9
rules, 214	report generation, 374, 430
pattern learning, 95-8	requirements specification, 85, 93
versus rule learning, 102	Ressler, J., 90
Peirce, Charles S., 6-8	Riley, Gary, 34, 88
Pellet, 89–90	Rooney, David, 32
personalized learning, 430	Roosevelt, Franklin D., 21
planning, 387	rote learning, 223
collaborative, 420–1	rule analysis, 270
multidomain, 420-1	rule and ontology matching, 207–12
plausible explanation, 262	rule induction, 223
plausible lower bound condition, 298, 406	rule learning, 252–71
plausible upper bound condition, 405	basic steps, 260
plausible version space, 213, 300	features, 317
Plotkin, G. D., 237 Pomerol Jean-Charles 32	illustration, 253–7 for inference tasks, 403–9
	nor interence tasks, 405-9

454

rule learning (cont.)	subconcept of, 157
method overview, 258-60	subject matter expert, 83, 256, 426
versus pattern learning, 102	Subjective Bayesian. See Bayesian probability
problem definition, 257-8	system
rule refinement, 294–309	substance-blind, 133
through condition specialization	SUMO, 90
illustration, 305–8	support vector machines, 223
method, 307	synthesis
with Except-When conditions	definition, 35
basic steps, 305	problem-level, 116
illustration, 300-5	reduction-level, 116
features, 317	synthesis function
illustration, 253-7	almost certain indicator, 207
method overview, 295-6	likely indicator, 207
with negative examples, 300-9	max, 120, 207
summary, 308	min, 120, 207
with positive examples, 296–300	
illustration, 296-9	on balance, 124, 207
method, 298–300	very likely indicator, 207
	synthesis rule, 204–7, 394
summary, 300	synthetic task, 36-7
problem definition, 294	assignment, 37
rule regeneration	debugging, 37
on demand, 310-12	design, 37
illustration, 312-16	planning, 37
method, 316-20	scheduling, 37
problem definition, 309–11	
Russell, Stuart J., 30, 225	tacit knowledge, 39
	taking for granted. See assumption
SALT, 89	tangible evidence, 48, 133–5
Schmidt, C.F., 391	types, 134
Schneider, Luc, 90	task, 396
Schreiber, Guus, 33, 35–6, 89	decomposition, 394
Schum, David A., 6, 11, 16, 20, 22, 25, 29, 46, 55, 61,	goal, 400
133, 135, 138	specialization, 394
Sebeok, Thomas, 8	Tate, Austin, 391, 424
Semantic Web, 40, 90, 174	TECHINT, 133
Shafer, Glenn, 13-14, 23	Tecuci, Gheorghe, 29-30, 32-4, 36-7, 39-40, 64,
Shortliffe, Edward H., 34	91–2, 116, 148, 155, 171–2, 212, 227, 237,
siblings, 186-7	262, 338, 346, 360, 362, 374, 384, 387, 391
definition, 186	420-1, 430
SIGINT, 48, 133-4	term generalization, 245
Simon, Herbert, 222	testimonial evidence, 48, 135-7
Simonite, T., 40	based on opinion, 136
Siri, 35	completely equivocal, 136
software assistant, 40	obtained at second hand, 136
solution synthesis rule	unequivocal based upon direct observation, 136
problem-level, 206-7	testing, 256–7
reduction-level, 205, 207	TIACRITIS, 35-6, 41
specialization	Toffler, Alvin, 120, 427
minimal	TopBraid Composer, 89-90
definition, 235	Toulmin, Stephen E., 23
of two concepts, 237	transitivity, 161
of two concepts	trifles, 47
definition, 237	truthfulness. See veracity
specialization rule, 229–34	Turing, Alan, 39
definition, 229	Turoff, Murray, 32
specific instance, 104, 183, 188	type. See subconcept of
statistical process, 9	type, are subconcept of
Stavrou, Angelos, 64	U.S. National Academy of Engineering, 40
Strange, Joseph, 365, 369	U.S. National Incident Management System, 390
9 1	
subclass of. See subconcept of	U.S. National Research Council, 71–2, 75–6

Index 455

W3C, 33, 40

U.S. National Response Plan, 387
UFO, 90
UMLS, 90
underspecialization, 242
understandability, 135
unequivocal testimonial evidence, 136
UNESCO, 33
universal ontology. *See* upper ontology
upper bound condition
as analogy criterion, 266–8
upper ontology, 90
user instance, 176
utility ontology, 90

validation, 88
Van Gelder, Tim, 23
Van Melle, W., 89
Veloso, Manuela, 225
veracity, 4, 49, 135
verbal assessments of probability, 22–3
versus numerical, 22
verification, 88
virtual planning expert
definition, 387
illustration, 422

Wagner, G., 90 Walker, E., 34 Walton, Douglas, 43 Warden III, John A., 365 Waterman, Donald A., 202 Watson, 34 weight of evidence as degree of support, 13 what-if scenario, 143 Whewell, William, 6 wide-area motion imagery, 68-70 forensic analysis, 68-9 real-time analysis, 68 Wielinga, Bob, 35 Wigmore, John H., 23, 53 Wilkins, David C., 389, 418 Winston, Patrick H., 225, 265 Wogrin, Nancy, 88 WordNet, 90 world state definition, 395

Zadeh, Lofti, 8, 20