

Soft Computing in Electromagnetics

Better communication systems demand high performance electromagnetic structures along with accurate, reliable and fast techniques to solve electromagnetic (EM) problems. A novel computing technique, called soft computing, is gaining popularity in a multitude of EM applications in order to tackle computationally intensive problems. It differs from conventional computing techniques by not relying on strict mathematical formulations. Soft computing techniques often seek to emulate biological systems like neural networks, swarm behaviour, etc. Fast-converging algorithms that mimic animal and human behaviour are currently emerging as the choice for replacing computationally intensive, time consuming, three-dimensional EM simulations; this development has simplified the process of EM design immensely.

Characterized by their ability to provide quick, robust and economically viable solutions despite imprecision, uncertainties and approximations in the formulation, soft computing methods such as genetic algorithm (GA), artificial neural network (ANN) and fuzzy logic have been widely used for microwave design. Similarly, they also play an important role in design and optimization applications in electromagnetics, such as EM design and performance enhancement of antennas, frequency selective surfaces (FSS), radar absorbing material (RAM) and metamaterials. This book emphasizes the suitability of soft computing techniques such as particle swarm optimization (PSO), bacterial foraging optimization (BFO) along with GA and ANN, for various EM design and optimization applications.

The application of soft computing concepts in the field of metamaterial antennas, radar absorbers, transmission line characterization and optimized radar absorbing material (RAM) is discussed in detail along with their usage for optimizing fault detection, EM propagation and path loss prediction. This book also introduces systematic implementation of soft computing tools in a relatively new area of metamaterials. Soft computing is presented here as an effective tool to minimize computations in a CAD package for quick and accurate solutions. The development of two such CAD packages for design of metamaterial split ring resonators (SRR) and path-loss prediction is presented. Numerical examples and MATLAB codes are provided to facilitate understanding of the principles of soft computing techniques by a wider readership.

Balamati Choudhury works as a Scientist at the Centre for Electromagnetics, CSIR-National Aerospace Laboratories, Bangalore. Her areas of interest include soft computing techniques, computational electromagnetics, and novel applications of metamaterials. She was recipient of the CSIR-NAL Young Scientist Award for the year 2013–2014 for her contribution in the area of Computational Electromagnetics for Aerospace Applications.

Rakesh Mohan Jha heads the Centre for Electromagnetics, CSIR-National Aerospace Laboratories, Bangalore. He worked as an SERC (UK) Post-Doctoral Research Fellow at Dept. of Engg. Sci., University of Oxford, England (in 1991–1992), and as Alexander von Humboldt Fellow at the Institute for High Frequency Techniques and Electronics of the University of Karlsruhe, Germany (in 1992–1993 and 2007). He was a warded Sir C.V. Raman Award for Aerospace Engineering for the Year 1999. Dr Jha was elected Fellow of INAE (FNAE) in 2010, for his contributions to the EM Applications to Aerospace Engineering.

Soft Computing in Electromagnetics

Methods and Applications

Balamati Choudhury and Rakesh Mohan Jha

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107122482

© Balamati Choudhury and Rakesh Mohan Jha 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2015

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data

Choudhury, Balamati.

Soft computing in electromagnetics: methods and applications / Balamati Choudhury, Rakesh Mohan Jha. pages cm

Includes index.

Summary: "Discusses application of soft computing concepts in the field of metamaterial antennas, radar absorbers, transmission line characterization and optimised radar absorbing material (RAM)"-- Provided by publisher.

ISBN 978-1-107-12248-2 (hardback)

Electromagnetic waves--Data processing.
 Antenna radiation patterns--Data processing.
 Radar--Data processing.
 Absorption spectra--Data processing.
 Soft computing.
 Jha, R. M. (Rakesh Mohan), 1959- II. Title.

TK7864.C44 2015

006.3--dc23

2015016642

ISBN 978-1-107-12248-2 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To

Professor Satya N. Atluri

Contents

List of Figures					xiii
List of Tables					xvii
Preface					xix
Ack	cnowl	edgmen	ts		xxi
	brevia				xxiii
Syn	nbols				xxv
1.	Intr	oductio	on		1
	1.1	Design	n and Opti	mization Scenarios	1
		1.1.1	Engineer	ing applications	2
		1.1.2	Medical	applications	2
		1.1.3	Finance		3
		1.1.4	Humanit	ries and social sciences	3
	1.2	Electr	omagnetic	Design Challenges	3
		1.2.1	Fabricati	on sensitivity	4
		1.2.2	Material	sensitivity	4
	1.3	Objec	tives and S	cope	4
	1.4	Organ	ization of	the Book	5
	1.5	Summ	nary		7
Ref	erence	? s			7
2.	Soft	Comp	uting Tech	niques	9
	2.1	_	cial Neural	-	10
		2.1.1	Concept	of ANN	10
		2.1.2	Back-pro	pagation algorithm	14
		2.1.3	Matlab c	ode for ANN	17
	2.2	Genet	tic Algorith	nm (GA)	18
		2.2.1	Overviev	V	18
		2.2.2	Termino	logies of GA	18
			2.2.2.1	Reproduction or selection	n 19
			2.2.2.2	Crossover	20
			2.2.2.3	Mutation	20

viii CONTENTS

		2.2.3 Matlab code for GA	21
	2.3	Particle Swarm Optimization (PSO)	26
		2.3.1 Basic concept of PSO	26
		2.3.1.1 Binary PSO and real valued PSO (RPSO)	27
		2.3.1.2 Single objective PSO and multi-objective PSO	29
		2.3.2 Matlab code of PSO	31
	2.4	Bacterial Foraging Optimization	34
		2.4.1 Basic concept	34
		2.4.2 Terminologies in BFO	34
		2.4.2.1 Chemotaxis	35
		2.4.2.2 Swarming	36
		2.4.2.3 Reproduction	36
		2.4.2.4 Elimination and dispersal	36
		2.4.3 Algorithm of BFO	36
		2.4.4 Matlab code for BFO	40
	2.5	Summary	42
Refe	erence		43
3.	Soft	Computing in Electromagnetics: A Review	45
	3.1	Overview	45
	3.2	Radar Absorbers	46
	3.3	Frequency Selective Surfaces	48
	3.4	Antenna Design and Optimization	49
		3.4.1 Antenna miniaturization	49
		3.4.2 Antenna pattern synthesis	50
		3.4.3 Performance enhancement	52
	3.5	Metamaterial Structures	53
	3.6	Invisibility Cloaks	57
	3.7	Microwave Devices	58
	3.8	Summary	58
Refe	erence		59
4.	Bacte	erial Foraging Optimization For Metamaterial Antennas	65
	4.1	Overview	65
	4.2	Challenges in Metamaterial Antenna design	67
	4.3	BFO for Metamaterial Antenna Design	67
		4.3.1 Multiband metamaterial fractal antenna	68
		4.3.1.1 Fractal antenna design	69
		4.3.1.2 Performance enhancement using BFO	70
		4.3.2 Mutual coupling reduction	76
		4.3.2.1 Design of microstrip antenna array	77
		4.3.2.2 Mutual coupling reduction using metamaterial	78
	4.4	Summary	81
Refe	erence		81

				CONTENTS	ix
5.	PSO	for Ra	dar Absorbers		84
	5.1		luction		84
	5.2		of Radar Absorbers		85
		5.2.1			85
		5.2.2	Magnetic absorbers		86
			Dallenbach layer		86
			Circuit analog RAM		86
			Jaumann absorber		86
	5.3		Absorber Design Procedure		86
	5.4		or Design Optimization		87
		5.4.1	Jaumann absorber optimization		88
		5.4.2	Multilayer RAM optimization		90
	5.5	Challe	enges and Issues in Conventional Absorber		95
	5.6		owave Metamaterial Absorber		96
		5.6.1	Overview		96
		5.6.2	Design of microwave metamaterial absorber		97
			PSO implementation		99
		5.6.4	-		99
	5.7	Terah	ertz Absorber Design for Biomedical Application		100
		5.7.1	Overview		100
		5.7.2	Biomedical spectroscopy system		101
			Design of metamaterial based terahertz absorber		103
			Performance enhancement using PSO		104
		5.7.5	Simulation results and discussion		106
	5.8	Sumn	nary		107
Ref	erence		,		108
6.	Char	acteriza	ation of Planar Transmission Lines Using ANN		111
	6.1		r Transmission Line		112
		6.1.1	Microstrip lines		112
		6.1.2	Slot line transmission line		113
	6.2	ANN	Implementation		113
		6.2.1	Generation of data		114
		6.2.2	Training of the neural network		114
		6.2.3	Testing		114
	6.3	Analy	rsis and Design of Microstrip Transmission Line		115
		6.3.1	Analysis of microstrip line		115
		6.3.2	Design of microstrip line		117
	6.4	Analy	rsis and Design of Slotline		119
		6.4.1	Analysis of slotline		119
		6.4.2	Design of slotline		121
	6.5	Sumn	nary		123
Ref	erence	es			123

x CONTENTS

7.	Fault	Detection in Antenna Arrays	124
	7.1	Preliminaries and Overview	124
	7.2	Artificial Neural Network for Array Fault Detection	125
		7.2.1 Antenna array design	127
		7.2.2 ANN implementation	129
		7.2.3 Results	131
	7.3	PSO for Array Fault Detection	133
		7.3.1 PSO implementation	133
		7.3.2 Results and discussion	137
	7.4	BFO for Array Fault Finding	142
		7.4.1 BFO implementation	142
		7.4.2 Results and discussion	144
	7.5	Hybrid Technique	147
	7.6	Summary	150
Re	ference	es	151
8.	Multi	i-Objective Particle Swarm Optimization for Active Terahertz Devices	155
	8.1	Introduction to Terahertz Technology	155
		8.1.1 Properties of terahertz spectrum	156
		8.1.2 Applications	156
		8.1.2.1 Space platform	156
		8.1.2.2 Security	157
		8.1.2.3 Biomedical field	157
		8.1.3 Challenges of terahertz technology	157
		8.1.3.1 Material issues	157
		8.1.3.2 Design issues	158
		8.1.3.3 Fabrication issues	158
		8.1.3.4 Characterization issues	158
	8.2	Trends in Active Terahertz Devices	158
		8.2.1 MEMS based tuning	159
		8.2.2 Photo excitation	160
		8.2.3 Electrical actuation	161
		8.2.4 Thermal actuation	161
	8.3	Design of Terahertz Device	161
		8.3.1 Design of terahertz absorber	163
		8.3.2 Performance enhancement analysis	166
	8.4	Soft Computing for Performance Enhancement	168
		8.4.1 MOPSO based computational engine	168
		8.4.2 High performance ultra-thin absorber	169
	8.5	Soft Computing for Active Terahertz Absorber	171
		8.5.1 Selection of tuning mechanism	171
		8.5.2 Implementation of tuning mechanism	173
		8.5.3 PSO for design of active absorber array	175
		8.5.3.1 Design procedure	176
		8.5.3.2 Concept of adaptive tuning	177

					CONTENTS	хi
	8.6	Fabric	ation Sensi	tivity Analysis		177
	8.7	Sumn	nary	•		178
Ref	erence	S	•			179
9.	Soft	Comp	ıting based	CAD Packages for EM Applications		182
	9.1	CAD	Package for	Metamaterial Structures		182
		9.1.1	Equivalen	t circuit analysis of square SRR		183
		9.1.2	Equivalen	t circuit analysis of circular SRR		187
		9.1.3	Developm	nent of CAD package using PSO		189
		9.1.4	Optimizat	tion of metamaterial structures		190
			9.1.4.1	Square SRR		191
			9.1.4.2	Circular SRR		192
			9.1.4.3	- · · · · · · · · · · · · · · · · · · ·		193
		9.1.5	Application	ons of the CAD package		193
	9.2	Path I	oss Predict	ion in Urban and Rural Environment		195
		9.2.1	Overview			195
		9.2.2		on model and path loss prediction		196
		9.2.3	CAD Pacl	cage using ANN		196
			9.2.3.1	Generation of data		197
			9.2.3.2	Training of the ANN		197
			9.2.3.3	Testing		197
		9.2.4	CAD mod	lel		198
		9.2.5	Results an	d discussion		199
	9.3	Summ	nary			201
Ref	erence	S				201
Aut	thor In	ıdex				205
Sub	ject Ir	ıdex				213

List of Figures

2.1	Basic concept of neural network	11
2.2	Structure of a neuron	11
2.3	Step function: for $x < 0$, $y = 0$ and for $x > 0$, $y = 1$	12
2.4	Linear function: $x = y$	12
2.5	Sigmoidal function: for any value of <i>x</i> , the output, <i>y</i> , is restricted to values between	
	0 and 1	13
2.6	Error back-propagation training algorithm flowchart	15
2.7	Flowchart for genetic algorithm	21
2.8	Variation of average fitness with respect to generations	26
2.9	Flowchart of particle swarm optimization	28
2.10	Common pareto-front geometries	30
2.11	Variation of fitness function	35
2.12	Position of particles for all PSO iterations	35
2.13	Flowchart for BFO	40
3.1	Schematic of a typical absorber, (a) multi-band metamaterial absorber unit	
	cell, (b) absorption characteristics	46
3.2	Typical frequency selective surface	48
3.3	Schematic of a metamaterial loaded planar inverted F antenna (PIFA)	50
3.4	Variation of fitness function versus number of iterations for reduction in sidelobe	
	level of antenna array	51
3.5	Radiation pattern after optimization with desired side-lobe level for the desired	
	angles	51
3.6	A typical 3D structure of a metamaterial unit cell used as meta-foil	53
4.1	Schematic diagram of a metamaterial loaded antenna	66
4.2	Schematic diagram of the fractal antenna	69
4.3	(a) Return loss of designed fractal antenna (b) 2-D radiation pattern of designed	
	fractal antenna	70
4.4	Structure of square split ring resonator (structure 1) along with its geometrical	
	parameters where <i>a</i> is the SSRR side length, <i>w</i> is the width of conductor, <i>g</i> is the	
	gap between the rings and d is the distance between the rings	71
4.5	Equivalent circuit of square split ring resonator	71

xiv	LIST OF FIGURES	
4.6	Schematic diagram of fractal antenna with metamaterial structure 1	73
4.7	SSRR with micro-splits (considered as Structure 2)	73
4.8	(a) Permittivity and (b) Permeability of SSRR with micro splits	74
4.9	Fractal antenna with two types of metamaterial SSRR (Structure 1 and Structure 2)	75
4.10	(a) S_{11} of fractal antenna with metamaterial structures as superstrate (b) 2-D radiation pattern of the fractal antenna with metamaterials as superstrate (Fig. 4.9)	76
4.11	Schematic diagram showing design of antenna array	76
4.12	(a) Return loss in antenna element (b) Mutual coupling between the two patch	
	antennas	77
4.13	(a) Return loss of metamaterial unit cell, SSRR (b) Permeability and	5 0
	permittivity of SSRR	79
4.14	Postions of metamaterial array with respect to antenna array	80
4.15	Mutual coupling between the two elements of the antenna array for different positions	80
5.1	Variation of gbest value with respect to iterations for Jaumann RAM optimization	89
5.2	Reflection obtained in optimized Jaumann RAM design	89
5.3	Variation of fitness function for simulation for 0.2–2 GHz	93
5.4	Reflection obtained for 0.2–2 GHz RAM design	94
5.5	Variation of fitness function for simulation for 0.1–10 GHz	94
5.6	Reflection obtained for 0.1–10 GHz RAM design	95
5.7	(a) Schematic diagram of circular SRR (b) Equivalent circuit of circular SRR	97
5.8	(a) Metamaterial absorber with circular SRR unit cell,	99
	(b) Absorption characteristic of designed metamaterial absorber	100
5.9	Block diagram of a typical terahertz spectroscopy system	102
5.10	(a) Structure of square SRR, (b) LC Equivalent of Square SRR	104
5.11	(a) Extracted permittivity of the designed square SRR,	105
	(b) Extracted permeability of the designed square SRR	106
5.12	The four-layer Metamaterial RAM design.	
	(a) The top layer consists of four optimized square SRR structures,	106
	(b) Absorption characteristics of PSO optimized RAM for different	107
6.1	angles of incidence Schematic diagram of microstrip transmission line	107 112
6.2	Schematic diagram of slotline transmission line	113
6.3	Flowchart of the neural network model for design and analysis of transmission	113
0.5	lines	114
6.4	Training curve for analysis of microstrip transmission line	116
6.5	Effective dielectric constant vs width/height ratio of microstrip transmission	110
0.0	line for a substrate of dielectric constant 6.7 (Theoretical model: Data generated	
	by spectral domain method and neural network data)	116
6.6	Schematic diagram of the neural network model for design of microstrip line	117
6.7	Training curve for design of microstrip transmission line	118
6.8	Comparison of theoretical data and neural network data for design of 50 Ω	
	microstrip transmission line	118
6.9	Training curve of analysis of slotline	120
6.10	Characteristic impedance vs width of the slotline	120

	LIST OF FIGURES	XV
6.11	Training curve of the design of slotline	121
6.12	Design of slotline: Physical length vs height of the substrate	122
6.13	Design of slotline: Width of the slotline vs height of the substrate	122
7.1	Schematic diagram of the single element of the array	126
7.2	Schematic diagram of the 16-element linear microstrip patch array	127
7.3	3D radiation pattern of the 16-element linear microstrip array without any faults	127
7.4	3D radiation patterns of the 16-element linear array with (a) single (5 th) element faults and (b) double (7 th and 9 th) element fault	128
7.5	Input and output parameters of the neural network	129
7.6	Radiation pattern of a 16-element linear microstrip array in the absence of faulty	127
7.0	elements	129
7.7	Pattern for single (7th) element fault in the linear array with the corresponding	
	NN output in the inset	132
7.8	Pattern for double (1st and 8th) element fault in the linear array with the	
	corresponding NN output in the inset	132
7.9	Pattern for triple (1st, 2nd, and 4th) element fault in the linear array with the	
	corresponding NN output in the inset	133
7.10	Array factor for 26-element linear array with -25dB sidelobe level	134
7.11	Normalized amplitude excitations of array	135
7.12	Defected array pattern with faults in 9th (50%), 12th (50%) and 20th (50%), and 6th	
	(100%) elements. The sample points taken for framing the cost function is	
	marked with (*) symbols	136
7.13	Error performance of PSO	136
7.14	Performance of PSO with 35 sample points	137
7.15	18 sample points on the array factor plot of the same defected array	138
7.16	PSO performance (18 sample points)	138
7.17	Sample points taken at random locations on the array factor plot of the same	120
7 10	defected array	139
7.18	Performance of PSO with random sample points	140
7.19	BFO performance plot (35 sample points)	143
7.20	Error performances of the bacteria foraging algorithm	143
7.21 7.22	BFO performance of 26 element array (18 sample points) BFO performance with random sample points	144
7.22	Schematic diagram of the 8×8 planar microstrip array	145 148
7.23	3D radiation pattern of the 8×8 planar microstrip patch array without any faults	148
7.24	Pattern for double (9th and 35th with coordinates (1,2), (3,5)) element fault in	
	the planar array with the corresponding NN output in the inset	149
7.26	Pattern for triple (17th, 36th, 23rd with coordinates (1,3), (4,5), and (7,3)) element	
	fault in the planar array with the corresponding NN output in the inset	150
8.1	Circular split ring resonator for 2 GHz	163
8.2	Permittivity of designed circular SRR for 2 GHz. The curve follows a	
0.0	Drude–Lorentz characteristic	164
8.3	(a) S ₂₁ of circular SRR designed for 2 THz (b) Relative permeability of circular	100
0.4	SRR designed for 2 THz	164
8.4	Optimized absorber design resonating at 2 THz	165

xvi	LIST OF FIGURES	
8.5	Absorption shown by absorber using designed unit cell (Fig. 8.4)	165
8.6	Schematic diagram of absorber for 1 THz	166
8.7	Absorption characteristics of 2 THz absorber	166
8.8	Absorption characteristic of 1 THz absorber	167
8.9	Schematic representation of MOPSO based computational engine developed	1.00
0.10	in this project	169
8.10	Pareto front obtained for 2 THz absorber design	171
8.11	Rotation of inner ring by angle θ	172
8.12	Absorption characteristics for different rotation angles: (a) 90°	173
	(b) 120°	174
	(c) 135°	174
0.12	(d) 150°	175
8.13	Schematic representation of three element absorber array	175
8.14	Variation of fitness function with iterations for determination of angular	170
0.15	rotation of inner rings in 3 element absorber array	176
8.15	Implementation of adaptive tuning	177
8.16	Variation of absorption considering tolerance during actual fabrication	178
9.1	Schematic of various configurations of SRRs	183
9.2	Equivalent circuit of a typical square SRR The values of side length of single ring square SRR at various frequencies	184
9.3	The values of side length of single ring square SRR at various frequencies	186
9.4 9.5	The values of side length of double ring square SRR at various frequencies	186
9.5 9.6	The values of side length of triple ring square SRR at various frequencies (a) Schematic of circular SRR (b) Equivalent circuit of circular SRR	187 187
9.0 9.7	The values of external radius of circular SRR obtained at various frequencies	189
9.7 9.8	Graphical user interface for CAD package (a) Main interface (b) Input interface	105
	for square SRR (c) Input interface for circular SRR	190
9.9	Output graphical user interface for (a) Single ring SRR, (b) Double ring SRR	191
	(c) Triple ring SRR	192
9.10	Output graphical user interface for circular SRR	192
9.11	(a) PSO optimized double ring square SRR designed using FEM solver,	193
	(b) Scattering parameters of the modeled double ring square SRR	194
9.12	Extracted permittivity of the modeled double ring square SRR	194
9.13	Extracted permeability of the modeled double ring square SRR	195
9.14	Home screen of CAD package	198
9.15	Screen for path loss prediction in metropolitan environment	199
9.16	Screen for path loss prediction in suburban environment	199
9.17	Comparative study of ANN output and empirical output for outdoor microcells in a metropolitan area	200
9.18	Comparative study of ANN output and empirical output for outdoor microcells	200
J.10	in a suburban area	200
	w owe with with	_00

List of Tables

3.1	Optimized structural parameter for desired frequency	56
4.1	Characteristic of the fractal patch antenna	69
4.2	List of parameters used in BFO for design of double ring SSRR	72
4.3	Characteristics of the fractal patch antenna after the addition of metamaterial	
	structure	75
4.4	List of parameters used in BFO for design of single ring SSRR	78
5.1	Parameters considered for PSO algorithm for RAM design	88
5.2	Lossless dielectric materials (DM)	90
5.3	List of lossy dielectric materials (LDM)	90
5.4	List of lossy magnetic materials (LMM)	91
5.5	List of relaxation-type magnetic materials (RLM)	92
5.6	Optimized material selection and thickness for 0.2-2 GHz	93
5.7	Optimized material selection and thickness for 0.1–10 GHz	95
5.8	Extracted geometry of square SRR	104
6.1	Neural network structure for the analysis of microstrip transmission line	115
6.2	Training parameters considered for the neural network model for analysis of	
	microstrip transmission line	115
6.3	Neural network for the design of microstrip transmission line	117
6.4	Neural network training for design of microstrip transmission line	118
6.5	Neural network structure for the analysis of slotline	119
6.6	Training parameters of the neural network model for the analysis of slotline	119
6.7	Neural network structure for the design of slotline	121
6.8	Training parameters of the neural network model for the design of slotline	121
7.1	Network/Training parameters of the NN developed for fault finding in linear array	131
7.2	PSO parameters	135
7.3	Element excitations with different number of sample points for the array with faults	
	at 9th (partial), 12th (partial), 20th (partial) and 6th (complete) positions	140
7.4	Time analysis for computation of one defective element (5 random configurations)	141
7.5	Time analysis for computation of two defective elements (5 random configurations)	141
7.6	Time analysis for computation of three defective elements (5 random configurations)	142

xviii	LIST OF TABLES	
7.7	Time analysis for computation of combination of complete and partial defective	
	elements	142
7.8	BFO parameters	144
7.9	Element excitations with different number of sample points for the array with	
	faults at 9th (partial), 12th (partial), 20th (partial) and 6th (complete) positions	145
7.10	Time analysis for computation of one defective element (5 random configurations)	146
7.11	Time analysis for computation of two defective elements	147
7.12	Time analysis for computation of three defective elements	147
7.13	Time analysis for computation of combination of complete and partial	
	defective elements	147
7.14	Network / Training parameters of the NN developed for fault finding in linear array	149
8.1	PSO parameters used for design optimization of CSRR	163
8.2	MOPSO parameters used for design optimization of ultra-thin THz absorber	170
8.3	Pareto front solutions for the 2 THz absorber (dimensions in μm)	170
8.4	Implementation of tuning mechanism for SRR	175
9.1	The effective inductance and gap capacitance for different configurations of	
	square SRR	184
9.2	PSO extracted design parameters for the three configurations of square SRR	191
9.3	PSO extracted design parameters for the three configurations of square SRR	193
9.4	Training parameters for artificial neural network	197

Preface

At this point, we are at the throes of two revolutions — one is the information revolution and the other less visible one.... is the intelligent systems revolution.

-Lofti Zadeh

Ever since the days of Aristotle, classical scientific thinking has been based on strict logic, well-constructed definitions and mathematical expressions. This approach to science changed drastically when Dr Lofti Zadeh published his famous paper 'Fuzzy sets. Information and Control' in 1965. By introducing imprecision in science, Dr Zadeh created in-roads into developing greater understanding in the field of artificial intelligence and even certain areas of philosophy and psychology! This imprecision, he claims, had led to a revolution in intelligent systems that has affected the way we live.

Today, the idea conceived by Dr Zadeh has grown into a whole new field of science—the field of soft-computing. Algorithms that attempt to mimic animal and human behaviour, evolution, etc., have been developed and implemented in problems ranging from scientific ones to even problems in economics and humanities! Certain researchers have also noted that soft computing techniques offer an alternate methodology to solve mathematically intensive problems.

The extension of this wondrous computation technique into one of sciences most mathematically challenging field, that of electromagnetics, is not surprising. This book address the implementation of soft computing in numerous, common electromagnetic problems. In doing so, computationally intensive, time consuming, three-dimensional electromagnetic simulations may be replaced by these fast-converging algorithms, thereby simplifying the process of electromagnetic design. This realization has led to a concerted effort by the Center for Electromagnetics, CEM (to which the authors are affiliated) towards improving existing research in soft computing. This book is a culmination of these efforts.

Accurate, reliable and fast optimization techniques are *a priori* requirements to cater to the demand for high performance, real time electromagnetic design objectives. Soft computing techniques are emerging as important tools in design and optimization of various complex electromagnetic problems. In view of this, an attempt has been made in this book to cover soft-computing based solutions to such EM problems. A brief overview of the topics covered in the book is given below.

xx PREFACE

Resolving problems such as fault detection and compensation in active antenna arrays are important for the aerospace community; finding out real time, cost effective solutions to these problems will help in handling critical situations. In addition, (i) need for miniaturized antennas, (ii) reduction of mutual coupling, and (iii) overall improvement in EM performance, are issues that concern antenna engineers worldwide. This book yields solutions to these issues through the soft-computing route, and gives a new perspective to solving such nonlinear problems.

This book also introduces the implementation of soft computing techniques in a relatively new area in science and technology—that of metamaterial and its applications. A user friendly CAD package for metamaterial *split ring resonator* (SRR) design using soft computing is also included in this book. Some of the important applications in electromagnetics such as antenna design and performance enhancement through *particle swarm optimization* (PSO) and bacterial foraging (BFO) have been included.

This book also covers the design and optimization of radar absorbing material (RAM) using PSO. The PSO algorithm is used to determine the optimum thickness of each layer of a Jaumann absorber followed by a more complicated problem statement, which necessitates the need for selection of materials from a database and optimizes the thickness of each layer of material for improved RAM performance. Later, the same algorithm is used to design metamaterial based RAM in both microwave and terahertz regimes.

Other topics covered in this book include the characterization of planar transmission line using artificial neural network (ANN) and a CAD package for ray-tracing in rural and urban environments.

To summarize, this book covers approaches to solving various complex electromagnetic problems through the novel route of soft computing. The theory behind these techniques is presented along with algorithms and the corresponding software codes. None of the books available so far covers such widespread topics and novel approaches towards real time and cost effective solutions.

Acknowledgments

At the outset, we wish to thank Mr Shyam Chetty, Director, CSIR-National Aerospace Laboratories, Bangalore for sustained support and official permission to write this book.

We would also like to acknowledge valuable suggestions from our colleagues at the Centre for Electromagnetics, Dr R.U. Nair, Dr Hema Singh, Dr Shiv Narayan and Mr K.S. Venu and their invaluable support during the course of writing this book.

It is our pleasure to acknowledge Ms Arya Menon who completed her off-campus undergraduate dissertation at CSIR-National Aerospace Laboratories. Indeed the work carried out by her was appreciated all around and we found it only fitting to invite her to adapt her dissertation as Chapter 8 of this book. We thank her for transferring the necessary copyrights for facilitating the production and circulation of the book in hand.

Beyond the technical aspects, correction of grammatical error is also a very pertinent area. We would like to extend our thanks to Mrs Balamani Vinayakumar for her help in going through the entire book for syntax error editing.

Without the concerted support of the publisher it is simply not feasible to write a book within a short span of time. Mr Manish Choudhary, Commissioning Editor, Cambridge University Press, has always been very responsive in this regard and we would like to thank him for all his inputs. We very much appreciate the meticulous effort made by Mr Hardip Grewal, Desk Editor (STM), Cambridge University Press, to improve the diction of the text and for ensuring that this book broadly conforms to the Cambridge University Press style and format.

Balamati Choudhury expresses her gratitude to her doctoral supervisors Prof. A. Patnaik (IIT Roorkee) and Prof. Ajit Panda (Dean, NIST, Berhampur) for their guidance and active help. She also wishes to thank her erstwhile NIST colleagues, Mr Om Prakash Acharya and Mrs Sandhya Pattnaik, for collaborative works in this exciting area of soft computing.

Needless to mention the gratitude, Balamati owes to her parents Mrs Binodini Choudhury and Mr Gajendra Kumar Choudhury and her uncle Mr Bipin Padhy for their blessings and constant encouragement. Further, she owes a lot to her brothers Balakrishna and Basudev, and their spouses Babita and Sujata, for their immense support coupled with a tinge of proud feeling of completion of this book.

R.M. Jha appreciates his wife Renu and daughter Vishnupriya for their support and putting up cheerfully with the demands on time that he had during the course of writing this book.

Abbreviations

AMC Artificial magnetic conductors

ANN Artificial neural network **Bacterial** foraging BFO

Binary genetic algorithm BGA

BPSO Binary particle swarm optimisation

BST Barium strontium titanate CD Circular dichroism

CG Conjugate gradient

CLPSO Comprehensive learning particle swarm optimisation

CPGA Continuous parameter genetic algorithm

CSRR Circular split ring resonator Dual log-spiral resonator DLSR Dielectric materials DM **EBG** Electronic band gap Equivalent circuit analysis **ECA**

EM Electromagnetic

ESS Electromagnetic smart screen Finite difference time domain **FDTD**

FEL Free electron laser **FEM** Finite element method **FSS** Frequency selective surface

Genetic Algorithm GA Gold nano-particles **GNP** Hyperbolic metamaterial HMM

High impedance frequency selective surface **HZ-FSS**

IPS In-plane switching mode

IR Infrared LC Liquid crystal

Lossy dielectric materials LDM Left-handed material LHM

LIM Low refractive index metamaterial

xxiv ABBREVIATIONS

LMM Lossy magnetic materials

MFDM Multilayer finite-difference method MIC Microwave integrated circuits MIMO Multiple input, multiple output

MLP Multi-layer perceptron MLS Method of least square

MOPSO Multi-objective particle swarm optimisation MOPSO Multi-objective particle swarm optimisation

MTL-PSO Multi-conductor transmission line particle swarm optimisation

NEP Noise equivalent power NN Neural networks

NSGA Non-dominated sorting genetic algorithm

PCS Personal communication systems

PEC Perfect electric conductor
PIFA Planar inverted F antenna
PMM Periodic method of moments
PRS Partially reflecting surface
PSO Particle swarm optimisation
RAM Radar absorbing material
RCS Radar cross section

RLM Relaxation-type magnetic materials RPSO Real valued particle swarm optimisation

SLL Sidelobe level
SRR Split ring resonator
SSRR Square split ring resonator

THz-TDS Terahertz time domain spectroscopy

UWB Ultra wideband

ZIM Zero index metamaterial

Symbols

Lower case

а	Length of SRR
a_{n}	Amplitude distribution
c	Speed of light
$c_{_{1}}$	Cognitive constant
c_{2}	Social constant
	Spacing between array elements
$d_z \ f$	Thickness of the metamaterial in the direction of wave propagation.
f	Transfer function
f_{0}	Centre frequency
$f_{ m o} \ f_{ m err}$	Cost function for resonant frequency
$f_{ m m}$	Damping frequency
$f_{ m mo}$	Magnetic resonant frequency
f_r	Resonant frequency
g	gap between SRR ring
$egin{array}{l} h \ \hat{i}_{ heta} \ \hat{i}_{\phi} \ i \end{array}$	height of substrate
\hat{i}_{θ}	Unit vector in the elevation direction
\hat{i}_{\star}	Unit vector in the azimuth direction
$i^{ arphi}$	number of input layer neurons
j	number of hidden layer neurons
k	number of output layer neurons
n	Refractive index
0	Output of the neural network
p	Solution search space
$r_{ m ext}$	External radius of SRR
S	Number of bacteria in search space
t	thickness
w	Width of SRR
$w_{_{ m ik}}$	Weights of hidden layer
W _{eff}	Effective width of the strip
z	Impedance

xxvi SYMBOLS

Upper case

opper case	
A	Amplitude
A_d	Amplitude of desired signal
AF_{o}	Instantaneous array factor
AFd	Measured array factor
A_{tar}	Total absorption
A_{iTM}^{iur}	Absorption coefficient for TM polarization
A_{iTE}^{TTM}	Absorption coefficient for TE polarization
$C^{'''}$	Gap capacitance
Cpul	per unit length capacitance
$C_{_S}$	Effective capacitance
C(i)	Tumble step size in the random direction
E	Averaged squared error energy
E	Electric field
$E_{_{ m t}}$	Tangential component of electric field
$E_i^{'}$	Incident field
$E_{T}^{'}$	Transmitted field
$G^{'}$	Antenna gain
H	Magnetic field
$H_{_{\scriptscriptstyle +}}$	Tangential component of magnetic field
$J_{cc}(\theta, P(j, k, l))$	Cost function in BFO
K(k)	Complete elliptical integral
L	Total Inductance
M	Number of neurons
N	Number of antenna elements
$N_{p} \ N_{d}$	Number of particles
$N_{_d}$	Number of dimensions
$N_{_t}$	Number of time steps
$N_{_c}$	Number of chemotaxis steps
N_t^a N_c N_s	Number of swimming steps
N_{re}	Number of reproduction steps
$N_{_{ed}}$	Number of elimination and dispersal steps
$P_{_{ed}}$	Elimination-dispersal with probability
R	Reflectance
S_{11}	Scattering parameter from Port 1
S_{21}^{11}	Scattering parameter from Port 2
1	Transmittance
W	Weight matrix connecting the hidden to the output neurons
V	Weight matrix connecting the inputs to the hidden neurons
$V_{ m min}$	Minimum particle velocity
V_{\max}	Maximum particle velocity
X_{\min}	Minimum particle position
X_{\max}	Maximum particle position
Y	Output from hidden layer neurons
Z_{o}	Impedance of free space

SYMBOLS xxvii

Greek

α	Attenuation constant
β	Progressive phase shift
δ	Intermediate error functions
ε	Permittivity of the medium
$\mathcal{E}_{_{\mathrm{o}}}$	Free space permittivity
$oldsymbol{arepsilon}_{ ext{eff}}^{ ext{o}}$	Effective dielectric constant
$\mathcal{E}_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	Relative permittivity
$arepsilon_{"}^{'}$	Real part of complex relative permittivity
$egin{array}{c} oldsymbol{arepsilon}_{ m r} \ oldsymbol{arepsilon}_{ m r}' \ oldsymbol{arepsilon}_{ m r}'' \end{array}$	Imaginary part of complex relative permittivity
$\eta^{}$	Learning rate
	Impedance of free space
$oldsymbol{\eta}_{_{o}} \ oldsymbol{ heta}$	Elevation angle
λ	Wavelength
$\mu_{_{ m o}}$	Free space permeability
$\mu_{ m r}^{\circ}$	Relative permeability
μ	Permeability of the medium
	Permeability of <i>i</i> th layer
$egin{aligned} \mu_i \ \mu'_{ ext{eff}} \ \mu''_{ ext{eff}} \end{aligned}$	Real part of magnetic permeability
$\mu_{\scriptscriptstyle m eff}^{\scriptscriptstyle m cri}$	Imaginary part of magnetic permeability
ρ	Filling factor of inductance
ϕ	Azimuth angle
$oldsymbol{\phi}_d$	Azimuth angle of desired signal
ω	Angular frequency
$\Gamma_{_0}$	Reflection coefficient