Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>xxi</td>
</tr>
</tbody>
</table>

Introduction

<table>
<thead>
<tr>
<th>I.1 History of Fatigue</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.2 Examples of Fatigue Failures of Marine Structures</td>
<td>9</td>
</tr>
<tr>
<td>I.2.1 The Alexander L. Kielland Accident</td>
<td>9</td>
</tr>
<tr>
<td>I.2.2 Fatigue and Fracture of a Mooring Chain</td>
<td>11</td>
</tr>
<tr>
<td>I.2.3 Fatigue Cracking in Ship Side of a Shuttle Tanker</td>
<td>11</td>
</tr>
<tr>
<td>I.3 Types of Marine Structures</td>
<td>13</td>
</tr>
<tr>
<td>I.4 Design Methodology for Marine Structures</td>
<td>13</td>
</tr>
<tr>
<td>I.5 Overview of Fatigue Analysis Examples in This Book</td>
<td>17</td>
</tr>
</tbody>
</table>

Fatigue Degradation Mechanism and Failure Modes

<table>
<thead>
<tr>
<th>1.1 General</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 Low Cycle and High Cycle Fatigue</td>
<td>20</td>
</tr>
<tr>
<td>1.3 Failure Modes due to Fatigue</td>
<td>22</td>
</tr>
<tr>
<td>1.3.1 Fatigue Crack Growth from the Weld Toe into the Base Material</td>
<td>22</td>
</tr>
<tr>
<td>1.3.2 Fatigue Crack Growth from the Weld Root through the Fillet Weld</td>
<td>23</td>
</tr>
<tr>
<td>1.3.3 Fatigue Crack Growth from the Weld Root into the Section under the Weld</td>
<td>23</td>
</tr>
<tr>
<td>1.3.4 Fatigue Crack Growth from a Surface Irregularity or Notch into the Base Material</td>
<td>25</td>
</tr>
</tbody>
</table>

Fatigue Testing and Assessment of Test Data

<table>
<thead>
<tr>
<th>2.1 Planning of Testing</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1 Constant Amplitude versus Variable Amplitude Testing</td>
<td>26</td>
</tr>
<tr>
<td>2.1.2 Fabrication of Test Specimens</td>
<td>27</td>
</tr>
<tr>
<td>2.1.3 Residual Stresses and Stress Ratio during Testing</td>
<td>27</td>
</tr>
<tr>
<td>2.1.4 Number of Tests</td>
<td>30</td>
</tr>
</tbody>
</table>
Contents

2.1.5 Instrumentation 30
2.1.6 Test Frequency 31
2.1.7 Measurements and Documentation of Test Data 32
2.1.8 Assessment of Test Data 32

2.2 Butt Welds in Piles 32
2.2.1 Material Data and Fabrication of Test Specimens 33
2.2.2 Measured Residual Stresses 36
2.2.3 Assessment of the Test Data 37

2.3 Details in Ship Structures 39
2.3.1 Fatigue Testing 39
2.3.2 Geometry and Fabrication of Specimens 43
2.3.3 Additional Test Results for Model 4 43
2.3.4 Additional Test Results for Model 5 44
2.3.5 Effect of Stress Gradient at Weld Toe 45
2.3.6 Hot Spot Stress for the Tested Specimens 48

2.4 Side Longitudinals in Ships 52
2.4.1 Test Arrangement 54
2.4.2 Instrumentation 55
2.4.3 Testing 56
2.4.4 Assessment of Fatigue Test Data 57
2.4.5 Comparison of Calculated Stress by Finite Element Analysis and Measured Data 60

2.5 Fillet Welded Connections 61
2.5.1 Fillet Welds Subjected to Axial Load 61
2.5.2 Fillet Welded Tubular Members Subjected to Combined Axial and Shear Load 64
2.5.3 Correction of Test Data for Measured Misalignment 66
2.5.4 Assessment of Test Data 69
2.5.5 Comparison of Design Equations with Test Data for Combined Loading 72

2.6 Doubling Plates or Cover Plates 74
2.6.1 Background 74
2.6.2 Test Program and Preparation of Test Specimens 75
2.6.3 Fatigue Testing 77
2.6.4 Assessment of Test Data 82

2.7 Effect of Stress Direction Relative to Weld Toe 84
2.7.1 Constant Stress Direction 84
2.7.2 Fatigue Test Data 84
2.7.3 Design Procedures in Different Design Standards 85
2.7.4 Comparison of Design Procedures with Fatigue Test Data 88
2.7.5 Varying Stress Direction during a Load Cycle 94

3 Fatigue Design Approaches 95
3.1 Methodology for Assessment of Low Cycle Fatigue 95
3.1.1 Cyclic Strain and Fatigue Strength 95
3.1.2 Cyclic Stress-Strain Curve 96
3.1.3 Strain-Based Approach for Assessment of Fatigue Life 98
Contents

3.1.4 Relationship between Elastic Strain and Nonlinear Elastic Strain 101
3.1.5 Notch Sensitivity and Fatigue Strength of Notched Specimens 106
3.1.6 Combination of Fatigue Damage from Low Cycle and High Cycle Fatigue 106

3.2 Methodology for Assessment of High Cycle Fatigue 107
3.2.1 Calculation of Stresses and Relation to Different S-N Curves 107
3.2.2 Guidance Regarding When Detailed Fatigue Analysis Is Required 112
3.2.3 Fatigue Damage Accumulation – Palmgren-Miner Rule 114

3.3 Residual Stresses 116
3.3.1 Residual Stresses due to Fabrication 116
3.3.2 Shakedown of Residual Stresses 116
3.3.3 Mean Stress Reduction Factor for Base Material 118
3.3.4 Residual Stress in Shell Plates in Tubular Towers after Cold Forming 118
3.3.5 Mean Stress Reduction Factor for Post-Weld Heat-Treated Welds 120
3.3.6 Mean Stress Reduction Factor for Inspection Planning for Fatigue Cracks in As-Welded Structures 120

4 S-N Curves ... 123
4.1 Design S-N Curves 123
 4.1.1 General 123
 4.1.2 S-N Curves and Joint Classification Using Nominal Stresses 123
 4.1.3 S-N Curves for Steel Details in Air 125
 4.1.4 Comparison of S-N Curves for Details in Air in Design Standards 126
 4.1.5 S-N Curves for Material with High-Strength Steel 127
 4.1.6 S-N Curves for Details in Seawater with Cathodic Protection 128
 4.1.7 S-N Curves for Details in Seawater with Free Corrosion 130
 4.1.8 S-N Curves for Sour Environment 131
 4.1.9 S-N Curves for the Notch Stress Method 131
 4.1.10 S-N Curves for Stainless Steel 131
 4.1.11 S-N Curves for Umbilicals 132
 4.1.12 S-N Curves for Copper Wires 134
 4.1.13 S-N Curves for Aluminum Structures 134
 4.1.14 S-N Curves for Titanium Risers 135
 4.1.15 S-N Curves for Chains 135
 4.1.16 S-N Curves for Wires 136
 4.1.17 S-N Curves for Concrete Structures 136
 4.1.18 S-N Curves for Stainless Steel Continuous Joints 137

4.2 Failure Criteria Inherent in S-N Curves 136
4.3 Mean Stress Effect 137
Contents

4.4 Effect of Material Yield Strength
 - 4.4.1 Base Material
 - 4.4.2 Welded Structures

4.5 Effect of Fabrication Tolerances

4.6 Initial Defects and Defects Inherent in S-N Data
 - 4.6.1 Types of Defects in Welded Connections
 - 4.6.2 Acceptance Criteria and Link to Design S-N Curves

4.7 Size and Thickness Effects
 - 4.7.1 Base Material
 - 4.7.2 Welded Connections
 - 4.7.3 Size Effect in Design Standards
 - 4.7.4 Calibration of Analysis Methods to Fatigue Test Data
 - 4.7.5 Cast Joints
 - 4.7.6 Weld Length Effect

4.8 Effect of Temperature on Fatigue Strength

4.9 Effect of Environment on Fatigue Strength
 - 4.9.1 Condition in Fresh Water
 - 4.9.2 Effect of Cathodic Protection in Seawater
 - 4.9.3 Corrosion Fatigue
 - 4.9.4 Effect of Coating

4.10 Selection of S-N Curves for Piles
 - 4.10.1 S-N Curves for Pile Driving
 - 4.10.2 S-N Curves for Installed Condition

4.11 Derivation of Characteristic and Design S-N Curves
 - 4.11.1 General
 - 4.11.2 Requirements for Confidence for Fatigue Assessment in the Literature and in Design Standards

4.12 Requirements for Confidence Levels, as Calculated by Probabilistic Methods
 - 4.12.1 Probabilistic Analysis
 - 4.12.2 Analysis Results for a Design-Life Approach to Safety
 - 4.12.3 Analysis Results for a Per Annum Approach to Safety
 - 4.12.4 Effect of Uncertainty in Loading Included
 - 4.12.5 Case with Known Standard Deviation
 - 4.12.6 Combination of Cases

4.13 Justifying the Use of a Given Design S-N Curve from a New Data Set
 - 4.13.1 Methodology
 - 4.13.2 Example of Analysis of Testing of Connectors, Case A
 - 4.13.3 Example of Analysis, Case B
 - 4.13.4 Example of Fatigue Proof Testing of Connector in Tethers of a Tension Leg Platform

5 Stresses in Plated Structures
 - 5.1 Butt Welds in Unstiffened Plates
 - 5.2 Fillet Welds
 - 5.3 Butt Welds in Stiffened Plates
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.1 Background</td>
<td>177</td>
</tr>
<tr>
<td>5.3.2 Finite Element Analysis of Stiffened Plates</td>
<td>178</td>
</tr>
<tr>
<td>5.3.3 Analytical Equations for Stress Concentrations at Butt Welds in Plated Structures</td>
<td>183</td>
</tr>
<tr>
<td>5.3.4 Effect of Fabrication Tolerances in Plated Structures in Fatigue Design Standards</td>
<td>184</td>
</tr>
<tr>
<td>5.4 Openings with and without Reinforcements</td>
<td>188</td>
</tr>
<tr>
<td>5.4.1 Circular Hole in a Plate</td>
<td>188</td>
</tr>
<tr>
<td>5.4.2 Elliptical Hole in a Plate</td>
<td>188</td>
</tr>
<tr>
<td>5.4.3 Rectangular Holes</td>
<td>190</td>
</tr>
<tr>
<td>5.4.4 Scallops or Cope Holes</td>
<td>190</td>
</tr>
<tr>
<td>5.5 Fatigue Assessment Procedure for Welded Penetrations</td>
<td>191</td>
</tr>
<tr>
<td>5.5.1 Critical Hot Spot Areas</td>
<td>191</td>
</tr>
<tr>
<td>5.5.2 Stress Direction Relative to Weld Toe</td>
<td>191</td>
</tr>
<tr>
<td>5.5.3 Stress Concentration Factors for Holes with Reinforcement</td>
<td>193</td>
</tr>
<tr>
<td>5.5.4 Procedure for Fatigue Assessment</td>
<td>194</td>
</tr>
<tr>
<td>5.5.5 Comparison of Analysis Procedure with Fatigue Test Data</td>
<td>199</td>
</tr>
<tr>
<td>5.5.6 Example Calculation of the Fillet Welds in the Alexander L. Kielland Platform</td>
<td>203</td>
</tr>
<tr>
<td>6 Stress Concentration Factors for Tubular and Shell Structures</td>
<td></td>
</tr>
<tr>
<td>Subjected to Axial Loads</td>
<td></td>
</tr>
<tr>
<td>6.1 Classical Shell Theory</td>
<td>205</td>
</tr>
<tr>
<td>6.2 Girth Welds</td>
<td>206</td>
</tr>
<tr>
<td>6.2.1 Circumferential Welds in Tubular Members</td>
<td>206</td>
</tr>
<tr>
<td>6.2.2 Closure Welds at Stubs</td>
<td>209</td>
</tr>
<tr>
<td>6.3 SCFs for Girth Welds in Tubular Members</td>
<td>210</td>
</tr>
<tr>
<td>6.4 Recommended SCFs for Tubular Girth Welds</td>
<td>212</td>
</tr>
<tr>
<td>6.5 Application of Eccentricity to Achieve an Improved Fatigue Strength</td>
<td>214</td>
</tr>
<tr>
<td>6.6 Example of Fatigue Assessment of Anode Attachment Close to a Circumferential Weld in a Jacket Leg</td>
<td>215</td>
</tr>
<tr>
<td>6.7 Ring Stiffeners</td>
<td>218</td>
</tr>
<tr>
<td>6.7.1 Example: Assessment of Stress Concentration Inherent in Nominal Stress S-N Curves</td>
<td>220</td>
</tr>
<tr>
<td>6.7.2 Example: Fatigue Assessment of a Drum</td>
<td>221</td>
</tr>
<tr>
<td>6.8 Conical Transitions</td>
<td>222</td>
</tr>
<tr>
<td>6.8.1 Weld at Conical Junction</td>
<td>222</td>
</tr>
<tr>
<td>6.8.2 Example of Conical Transition in Monopile for Wind Turbine Structure</td>
<td>224</td>
</tr>
<tr>
<td>6.8.3 Conical Transition with Ring Stiffeners at the Junctions</td>
<td>225</td>
</tr>
<tr>
<td>6.8.4 Conical Transition with Ring Stiffener Placed Eccentrically at Junction</td>
<td>226</td>
</tr>
<tr>
<td>6.9 Tethers and Risers Subjected to Axial Tension</td>
<td>227</td>
</tr>
<tr>
<td>6.9.1 Example: Pretensioned Riser</td>
<td>229</td>
</tr>
</tbody>
</table>
Contents

7 Stresses at Welds in Pipelines, Risers, and Storage Tanks 231
 7.1 Stresses at Girth Welds and Ring Stiffeners due to Axial Force 231
 7.1.1 General 231
 7.1.2 Circumferential Butt Welds in Pipes at Thickness
 Transitions and with Fabrication Tolerances 232
 7.1.3 Nominal Stress in Pipe Wall and Derivation of Hot Spot
 Stresses 235
 7.1.4 Stress Distribution in Pipe Away from a Butt Weld with
 Fabrication Tolerances 236
 7.2 Stresses at Seam Weld due to Out-of-Roundness of Fabricated
 Pipes and Internal Pressure 237
 7.3 Stresses at Ring Stiffeners due to Internal Pressure 241
 7.4 Stresses at Thickness Transitions due to Internal Pressure 244
 7.4.1 Circumferential Butt Welds in Pipes with Different
 Thicknesses 244
 7.5 Stresses in Cylinders Subjected to Internal Pressure 248
 7.5.1 Classical Theory for Spherical Shells 248
 7.5.2 Stresses at Girth Weld between Cylinder and Sphere in
 Storage Tank with Internal Pressure 249

8 Stress Concentration Factor for Joints 252
 8.1 General 252
 8.2 Simple Tubular Joints 253
 8.2.1 Definitions of Geometry Parameters and Stresses 253
 8.2.2 Influence of Diameter Ratio \(\beta \) on Stress Concentration 257
 8.2.3 Influence of Radius-to-Thickness Ratio of Chord, \(\gamma \), on
 Stress Concentration 257
 8.2.4 Influence of Thickness Ratio, \(\tau \), on Stress Concentration 257
 8.2.5 Influence of Chord-Length-to-Diameter, \(\alpha \), on Stress
 Concentration 259
 8.2.6 Assessment of Accuracy of SCFs 264
 8.2.7 Combination of Stresses from Different Load
 Conditions 264
 8.3 Single-Sided Welded Tubular Joints 266
 8.3.1 Background 266
 8.3.2 Design S-N Curves 267
 8.3.3 Design Fatigue Factor 268
 8.3.4 SCFs for Inside Hot Spots 268
 8.4 Overlap Joints 270
 8.5 Stiffened Tubular Joints 270
 8.6 Grout-Reinforced Joints 271
 8.6.1 General 271
 8.6.2 Chord Filled with Grout 271
 8.6.3 Annulus between Tubular Members Filled with Grout 272
 8.7 Cast Nodes 272
 8.8 Joints with Gusset Plates 272
 8.9 Rectangular Hollow Sections 273
Contents

8.10 Fillet-Welded Bearing Supports 273
8.11 Cutouts and Pipe Penetrations in Plated Structures 274
8.12 Details in Ship Structures 275
8.12.1 Lugs at Side Longitudinals 275
8.12.2 Asymmetric Sections Subjected to Dynamic Sideway Loading 275
8.12.3 Example of Calculated SCFs for an Asymmetric Section 278

9 Finite Element Analysis 279
9.1 Welded Connections in Plated Structures 279
9.1.1 General 279
9.1.2 Finite Element Modeling for Structural Stress Analysis 281
9.1.3 Derivation of Hot Spot Stress from Finite Element Analysis 284
9.1.4 Effective Hot Spot Stress 288
9.1.5 Hot Spot S-N Curves 288
9.1.6 Analysis Methodology for Fillet Welds 291
9.1.7 Verification of Analysis Methodology 292
9.1.8 Examples of Finite Element Models in Ship Structures 292
9.2 Alternative Procedure for Analysis of Web-Stiffened Cruciform Connections 294
9.2.1 General 294
9.2.2 Plate Thickness to Be Used in Analysis Procedure 296
9.2.3 Procedure for Analysis Using a Shell Element Model 297
9.3 Joint with Gusset Plates 299
9.4 Welded Penetrations in Plates 301
9.4.1 General 301
9.4.2 Stresses for Fatigue Design at Position a 302
9.4.3 Stresses for Fatigue Design at Position b 302
9.4.4 Stresses for Fatigue Design at Position c 303
9.5 Tubular Joints 304
9.6 Notch Stress Method 305
9.6.1 General 305
9.6.2 The Notch Stress Method 306
9.6.3 Calculation of Notch Stress 308
9.6.4 Example of Validation of Analysis Methodology 308

10 Fatigue Assessment Based on Stress Range Distributions 310
10.1 Weibull Distribution of Long-Term Stress Ranges 310
10.2 Closed-Form Expressions for Fatigue Damage Based on the Weibull Distribution of Stress Ranges 312
10.3 Closed-Form Expressions for Fatigue Damage Based on the Rayleigh Distribution of Stress Ranges 314
10.4 Example of Use of Closed-Form Expressions for Fatigue Damage in Calculation Sheets Based on a Bilinear S-N Curve 315
10.5 Probability of Being Exceeded 317
Contents

10.6 Maximum Allowable Stress Range
10.6.1 Design Charts
10.6.2 Effect of Design Fatigue Factor and Other Design Lives
10.6.3 Some Guidance on Selection of a Weibull Shape Parameter
10.6.4 Example of Use of Design Charts
10.7 Combined Load and Response Processes
10.7.1 General
10.7.2 Example of Fatigue Analysis of Pipes on a Floating Production Vessel
10.8 Long-Term Loading Accounting for the Mean Stress Effect
11 Fabrication
11.1 General
11.2 Selection of Material
11.3 Welding
11.4 Defects
11.5 Fabrication Tolerances
11.6 Non-Destructive Testing for Defects
11.6.1 General
11.6.2 Visual Inspection
11.6.3 Probability of Detection by Visual Inspection
11.6.4 Magnetic Particle Inspection
11.6.5 Penetrant Testing
11.6.6 Ultrasonic Testing
11.6.7 Probability of Detection for Ultrasonic Testing
11.6.8 Radiographic Testing
11.6.9 Eddy Current
11.6.10 Alternating Current Field Measurement and Alternating Current Potential Drop Methods
11.6.11 Probability of Detection Curves for EC, MPI, and ACFM
11.6.12 Methodology to Provide Reliable PoD Curves for Other Inspection Methods
11.7 Improvement Methods
11.7.1 General
11.7.2 Weld Profiling by Machining and Grinding
11.7.3 Weld Toe Grinding
11.7.4 Workmanship
11.7.5 Example of Effect of Grinding a Weld
11.7.6 TIG Dressing
11.7.7 Hammer Peening
11.7.8 High-Frequency Mechanical Impact Treatment
11.7.9 Post-Weld Heat Treatment
11.7.10 Extended Fatigue Life
11.7.11 Stop Holes
11.7.12 Grind Repair of Fatigue Cracks 349
11.7.13 S-N Curves for Improved Areas 350
11.8 Measurement of Surface Roughness 350
11.9 Effect of Surface Roughness on Fatigue Capacity 353

12 Probability of Fatigue Failure 355
12.1 Failure Probability at the Design Stage 355
12.1.1 General 355
12.1.2 Accumulated and Annual Failure Probability 356
12.1.3 Time-Limited Failure Probability 356
12.2 Uncertainties in Fatigue Analysis 357
12.3 Requirements for In-Service Inspection for Fatigue Cracks 359
12.4 Target Safety Level for Structural Design 360
12.5 Residual Strength of Structures with a Fatigue Crack 362
12.6 System Reliability Method 364
12.6.1 Robustness 364
12.6.2 Assessment of Collapse Capacity in Jacket Structures 365
12.6.3 Simplified Method for Estimation of Probability of System Failure 365
12.7 Design Fatigue Factors 366
12.7.1 Structures 367
12.7.2 Piles 368
12.7.3 Example of Design Methodology for Storage Pipes for Compressed Gas 369
12.8 Example of Calculation of Probability of Fatigue Failure Using an Analytical Approach 376

13 Design of Bolted and Threaded Connections 379
13.1 Introduction 379
13.2 Failure Modes of Bolts and Bolted Connections Subjected to Dynamic Loading 381
13.3 Stress Corrosion and Embrittlements 382
13.4 Fatigue Capacity of Bolts 384
13.4.1 Geometry 384
13.4.2 Chemistry 386
13.4.3 Material Strength 386
13.4.4 Effective Bolt Area 387
13.4.5 Fitted Bolts 388
13.4.6 Thread Forming 388
13.4.7 Tolerances 389
13.4.8 Surface Treatment 389
13.4.9 Effect of Mean Stress 391
13.5 Slip-Resistant Connections 391
13.6 Tension-Type Connections 392
13.6.1 Application 392
13.6.2 Structural Mechanics for Design of Bolted Connections 393
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.7</td>
<td>Technical Specification for Supply of Heavy-Duty Bolts</td>
<td>396</td>
</tr>
<tr>
<td>13.8</td>
<td>Pretensioning of Bolts</td>
<td>397</td>
</tr>
<tr>
<td>13.9</td>
<td>Connectors for Tubular Structures</td>
<td>398</td>
</tr>
<tr>
<td>14</td>
<td>Fatigue Analysis of Jacket Structures</td>
<td>400</td>
</tr>
<tr>
<td>14.1</td>
<td>General</td>
<td>400</td>
</tr>
<tr>
<td>14.2</td>
<td>Deterministic Fatigue Analysis</td>
<td>402</td>
</tr>
<tr>
<td>14.3</td>
<td>Frequency Response Fatigue Analysis</td>
<td>404</td>
</tr>
<tr>
<td>15</td>
<td>Fatigue Analysis of Floating Platforms</td>
<td>407</td>
</tr>
<tr>
<td>15.1</td>
<td>General</td>
<td>407</td>
</tr>
<tr>
<td>15.2</td>
<td>Semi-Submersibles</td>
<td>407</td>
</tr>
<tr>
<td>15.3</td>
<td>Floating Production Vessels (FPSOs)</td>
<td>407</td>
</tr>
<tr>
<td>16</td>
<td>Fracture Mechanics for Fatigue Crack Growth Analysis and Assessment of Fracture</td>
<td>408</td>
</tr>
<tr>
<td>16.1</td>
<td>Brittle and Ductile Failures</td>
<td>408</td>
</tr>
<tr>
<td>16.1.1</td>
<td>Introduction</td>
<td>408</td>
</tr>
<tr>
<td>16.1.2</td>
<td>Design of Ductile Structures</td>
<td>408</td>
</tr>
<tr>
<td>16.1.3</td>
<td>Structural Strength of Connections with Defects</td>
<td>409</td>
</tr>
<tr>
<td>16.2</td>
<td>Stress Intensity Factors and Fatigue Crack Growth Equations</td>
<td>410</td>
</tr>
<tr>
<td>16.3</td>
<td>Examples of Crack Growth Analysis</td>
<td>413</td>
</tr>
<tr>
<td>16.3.1</td>
<td>Assessment of Internal Defects in a Cruciform Joint</td>
<td>413</td>
</tr>
<tr>
<td>16.3.2</td>
<td>Example of Crack Growth from the Crack around the Hydrophone Support in the Alexander L. Kielland Platform</td>
<td>416</td>
</tr>
<tr>
<td>16.3.3</td>
<td>Example of Crack Growth from the Root of a Partial Penetration Weld</td>
<td>418</td>
</tr>
<tr>
<td>16.3.4</td>
<td>Example of Crack Growth from the Root in a Single-Sided Girth Weld in a Pile Supporting a Jacket Structure</td>
<td>420</td>
</tr>
<tr>
<td>16.4</td>
<td>Fracture Mechanics Models for Surface Cracks at Weld Toes</td>
<td>424</td>
</tr>
<tr>
<td>16.5</td>
<td>Numerical Methods for Derivation of Stress Intensity Factors</td>
<td>427</td>
</tr>
<tr>
<td>16.6</td>
<td>Crack Tip Opening Displacement</td>
<td>428</td>
</tr>
<tr>
<td>16.7</td>
<td>Fracture Toughness Based on Charpy V Values</td>
<td>429</td>
</tr>
<tr>
<td>16.8</td>
<td>Failure Assessment Diagram for Assessment of Fracture</td>
<td>429</td>
</tr>
<tr>
<td>16.9</td>
<td>Effect of Post-Weld Heat Treatment and Effect of Crack Closure</td>
<td>431</td>
</tr>
<tr>
<td>16.10</td>
<td>Alternative Methods for Derivation of Geometry Functions</td>
<td>431</td>
</tr>
<tr>
<td>16.11</td>
<td>Crack Growth Constants</td>
<td>433</td>
</tr>
<tr>
<td>16.12</td>
<td>Link between Fracture Mechanics and S-N Data</td>
<td>434</td>
</tr>
<tr>
<td>17</td>
<td>Fatigue of Grouted Connections</td>
<td>435</td>
</tr>
<tr>
<td>17.1</td>
<td>Jacket Structures</td>
<td>435</td>
</tr>
<tr>
<td>17.1.1</td>
<td>Background for Design Standards for Grouted Connections</td>
<td>435</td>
</tr>
<tr>
<td>17.1.2</td>
<td>Grouted Connections in Newer Jackets</td>
<td>436</td>
</tr>
<tr>
<td>17.1.3</td>
<td>Assessment of Load Effects and Failure Modes</td>
<td>437</td>
</tr>
</tbody>
</table>
17.1.4 Recommended Design Practice in NORSOK N-004 and DNV-OS-J101 441
17.2 Monopiles 444
 17.2.1 Experience with Plain Cylindrical Grouted Connections 444
 17.2.2 Moment Capacity of Plain Connections 445
 17.2.3 Opening between the Steel and the Grout in the Connections due to Moment Loading 449
 17.2.4 Load on Shear Keys in Grouted Connections with Shear Keys 450
 17.2.5 Design of Box Test Specimens 458
 17.2.6 Comparison of Design Procedure with Test Data 460
 17.2.7 Fatigue Tests Data 462
 17.2.8 Illustration of Analysis for Long-Term Loads 463

18 Planning of In-Service Inspection for Fatigue Cracks 465
 18.1 General 465
 18.2 Analysis Tools 468
 18.3 Assessment of the Probability of Fatigue Failure 471
 18.4 Implementation of Monitoring Data 472
 18.5 Inspection Planning and Inspection Program 473
 18.6 Reliability Updating 473
 18.7 Description of Probabilistic Fatigue Analysis Models 474
 18.8 Description of Probabilistic Crack Growth Analysis 475
 18.9 Formulation of Reliability Updating 476
 18.10 Change in Damage Rate over Service Life 478
 18.11 Effect of Correlation 478
 18.11.1 General 478
 18.11.2 Example of Analysis Where Correlation Is Included in Assessment of an FPSO 479
 18.12 Effect of Inspection Findings 480
 18.13 Residual Strength of the Structure or System Effects with a Fatigue Crack Present 480
 18.14 Inspection for Fatigue Cracks during In-Service Life 481
 18.14.1 General 481
 18.14.2 Magnetic Particle Inspection Underwater 481
 18.14.3 Eddy Current 481
 18.14.4 Flooded Member Detection 481
 18.14.5 Leakage Detection 482
 18.14.6 Acoustic Emission 482
 18.14.7 Inspection Methods for Jackets 483
 18.14.8 Inspection Methods for Floating Structures 483
 18.15 Effect of Measurements of Action Effects 483
APPENDIX A: Examples of Fatigue Analysis 485
 A.1 Example of Fatigue Design of a Pin Support for a Bridge between a Flare Platform and a Larger Jacket Structure 485
 A.2 Fatigue Design of Ship Side Plates 486
<table>
<thead>
<tr>
<th>xvi</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.3</td>
<td>Fatigue and Unstable Fracture of a Chain 488</td>
</tr>
<tr>
<td>A.3.1</td>
<td>Problem Definition 488</td>
</tr>
<tr>
<td>A.3.2</td>
<td>Assessment of Unstable Fracture Using Failure Assessment Diagram 489</td>
</tr>
<tr>
<td>A.3.3</td>
<td>Fatigue Assessment of the Chain Based on S-N data 491</td>
</tr>
<tr>
<td>A.3.4</td>
<td>Fatigue of the Chain Assessed by Fracture Mechanics 492</td>
</tr>
</tbody>
</table>

APPENDIX B: Stress Intensity Factors 494

References 499

Index 521