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1 Estimation and Dimensional Analysis

How large a crater does an asteroid make when it impacts the Earth? How much does

sea level change as global temperature changes? What is the average distance between

bacterial cells in the ocean? Simple questions such as these frequently give us insight into

more complicated ones, such as how often do large asteroids collide with the Earth, and can

bacteria communicate with each other in the oceans? These are complicated questions, and

to get accurate answers often involves using complicated computer simulations. However,

by simplifying the problem we can often get a good estimate of the answer and a better

understanding of what factors are important to the problem. This improved understanding

can then help guide a more detailed analysis of the problem. Two techniques we can use

to simplify complicated problems and gain intuition about them are back-of-the-envelope

calculations and dimensional analysis.

Back-of-the-envelope calculations are quick, rough-and-ready estimates that help us get

a feeling for the magnitudes of quantities in a problem.1 Instead of trying to get an exact,

quantitative solution to a problem, we aim to get an answer that is within, say, a factor

of 10 (i.e., within an order of magnitude) of the exact one. To do this we make grand

assumptions and gross approximations, all the time keeping in mind how much of an error

we might be introducing. Back-of-the-envelope calculations also help us to understand

which variables and processes are important in a problem and which ones we can ignore

because, quantitatively, they make only a small contribution to the final answer.

Dimensional analysis is another useful tool we can use to simplify a problem and

understand its structure. Unlike back-of-the-envelope calculations, which provide us with

a quantitative feeling for a problem, dimensional analysis helps us reduce the number of

variables we have to consider by examining the structure of the problem. We will rely on

both techniques throughout this book.

1.1 Making Estimates on the Back of the Envelope

One of the first steps we have to take when tackling a scientific question is to understand it.

What are the variables we need to consider? What equations do we need? Are there

1 The myth of back-of-the-envelope calculations is that one should need a piece of paper no bigger than the size

of the back of an envelope to do them. In reality, one sometimes needs a little more than that. However, the

name conjures the right spirit, to use intuition and approximations to make the calculation as simple as you can,

but not too simple!
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2 Estimation and Dimensional Analysis

assumptions we can use that will make the problem easier? Can we make an initial, rough

estimate of the answer? This sort of understanding is needed whether we are tackling a

complicated research problem, or a problem in a textbook. When we first start working

on a new problem, we might feel unsure of how to proceed to a solution, particularly if

the problem is in an area we are unfamiliar with. Our initial impulse is often to list all

the variables and processes we think might be important and see if something leaps out

at us. Back-of-the-envelope calculations can help us reduce this list by determining which

variables and processes play quantitatively important roles in the problem.

To make good back-of-the-envelope calculations we need to be comfortable making

good estimates of numbers. A good estimate is one that is likely within an order of

magnitude of the actual value. We might wonder how we know this if we do not know

the actual value. We do not. Like a painter who roughly sketches a scene, trying different

arrangements and perspectives before undertaking the actual painting, or a writer trying

different outlines before writing a book, we use back-of-the-envelope calculations to help

us build a broad understanding of the problem we are tackling. We want to learn which

variables and processes might be important for a more detailed investigation. For that we

need good quantitative estimates. Estimating that the Earth is 2 km in diameter, or that

a microbial cell is 1 m in diameter, will definitely lead us into trouble. But estimating

that the diameter of the Earth is 12000 km, or that a microbial cell is 1 µm in diameter

is acceptable. An actual microbial cell may be 2 µm in diameter, but this is only a factor

of 2 different from our estimate. A more accurate value for the equatorial diameter of the

Earth is 12756.28 km (Henderson and Henderson, 2009), so our estimate is only 6% off

from the original and is far easier to remember. The idea is to develop a feeling for the

magnitude of numbers, to build an intuition for the sizes of objects and rates of processes.

How accurate do we need our estimates to be? We may be tempted to give our answers to

many decimal places or significant figures, but we should resist this because we are making

only rough estimates. For example, using our estimate for the diameter of the Earth, we

can estimate its surface area using A = πd
2
≈ 3 × (12 × 106)2

≈ 4.4 × 1014 m2 (a more

accurate value is 5 × 1014 m2, so our estimate is about 12% lower than the accurate value,

good enough for a back-of-the-envelope calculation). Doing the calculation on a calculator

yielded A = 4.523889 × 1014 m2, but all the digits after the first or second significant

figure are meaningless because we used an estimate of the diameter that differed from an

accurate value by 6%. Keep in mind that the aim of a back-of-the-envelope calculation is

to obtain a rough estimate, not a highly precise one, and a good rule of thumb is to keep

only the first two or three significant figures when making an estimate—this also reduces

the number of digits you have to write down and so minimizes the chances of copying a

number incorrectly.

Our first back-of-the-envelope calculations will demonstrate how they can help us

visualize the scales and magnitudes of quantities in a problem. In science, we frequently

come across numbers that are either much larger or much smaller than those we experience

in our daily lives. This can make them hard to visualize or think about clearly. For example,

in the oceans bacteria are responsible for much of the natural cycling of elements such as

carbon and nitrogen, and bacterial abundances in the surface waters are typically 105–106

cells cm−3. But does this mean that the cells are crowded in the water and almost touching

www.cambridge.org/9781107117488
www.cambridge.org


Cambridge University Press
978-1-107-11748-8 — Mathematical Methods in the Earth and Environmental Sciences
Adrian Burd 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

3 1.1 Making Estimates on the Back of the Envelope

each other? Or are they well separated? Having a good feeling or intuition for this helps

us understand processes such as the ability of bacteria to take up nutrients, or to detect

chemical signals that indicate the presence of food. We will return to this problem a bit

later.

One simple technique that can help us visualize very large or small numbers is to

compare them with similar quantities that we might be more familiar with. As an example,

let us think about visualizing the Gulf Stream, which is a large, surface current in the

North Atlantic Ocean that transports water and heat northward from the subtropics to

more temperate latitudes. The transport of water in the Gulf Stream increases from

approximately 3 × 107 m3 s−1 near Florida, to approximately 1.5 × 108 m3 s−1 near

Newfoundland (Henderson and Henderson, 2009). These numbers are large, and it is hard

to visualize a flow of hundreds of millions of cubic meters per second; we are probably not

even used to visualizing volumes of water in units of cubic meters.

To put the flow of the Gulf Stream in perspective, we can compare it with something

more familiar, but what should we choose? We experience the flow of water from a tap

(or faucet) whenever we wash our hands, so we have an intuitive feeling for that. The

idea is then to think, “How many taps would have to be turned on to obtain a total flow

equivalent to that of the Gulf Stream?” However, the flow from a single tap is too small

to make a meaningful comparison—we would end up with numbers as large as the ones

we had trouble visualizing in the first place. Comparing the flow of the Gulf Stream to

something that is larger and that we have seen for ourselves might make more sense. One

possibility is to use the flow of a large river, such as the Amazon, instead of a tap. This has

the advantage of having a much larger flow rate than a tap, and we stand a good chance of

having seen a large river personally, or in movies, so we can visualize what it is like.

Exercise 1.1.1 What is the typical flow speed of a medium to large river? This question is

intentionally vague to encourage you to use your experience. When you walk by a

large river, is it flowing faster than your walking speed? Would you have to sprint to

keep up, or could you amble along at a leisurely walking pace? You then have to ask

how fast you walk!

Exercise 1.1.2 Taking the average width near the river mouth to be 20 km, and the average

depth of 10 m, use your answer from Exercise 1.1.1 to estimate the discharge

(in m3 s−1) of the Amazon River. Compare your answer with the number given in

Table 1.1. If your answer is more than an order of magnitude different from that in

the table, determine which of your estimated numbers could be improved.

Now that we have an estimate for the discharge of the Amazon River, we can compare

it with the flow of the Gulf Stream. By simple comparison, the flow of the Gulf Stream

is between 150 and 750 Amazon Rivers, or approximately between 2000 and 9000

Mississippi Rivers,2 while the Amazon itself is equivalent to more than 10 Mississippi

Rivers. In making this calculation we have effectively come up with our own “unit”—

one Amazon River’s worth of flow—for visualizing the transport of water on the scales

2 The flow of water in the Gulf Stream is 50 times greater than the combined discharge of all the rivers that flow

into the Atlantic Ocean.
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4 Estimation and Dimensional Analysis

Table 1.1 Approximate average discharge (volume rate
of low) of some major rivers in the world.

River Average discharge (m3 s−1)

Amazon 2.0 × 105

Congo 4.0 × 104

Ganges/Brahmaputra 3.8 × 104

Orinoco 3.6 × 104

Yangtze 3.0 × 104

Mississippi 1.7 × 104

Henderson and Henderson (2009).

of ocean currents. To do so, we came up with a quantity that is a few orders of magnitude

different from the one we are interested in—it would be inappropriate to use the same scale

for a small stream, for example. The point is, we can come to grips with quantities that are

far larger or smaller than those we experience every day by comparing them with things

that are more familiar to us.

Exercise 1.1.3 Estimate the amount of milk (or your favorite drink) you drink in a week, and

use this to estimate how long would it take you to consume 1 m3 of it.

Exercise 1.1.4 What is the volume of water in a standard Olympic-sized swimming pool

(50 m long, 25 m wide, and 3 m in depth)?

Exercise 1.1.5 How long would it take you to fly a distance equivalent to the diameter of the

Earth?

Exercise 1.1.6 How many times could the Earth fit in the distance between the Earth and the

Moon, and between the Earth and the Sun?

Exercise 1.1.7 Rainfall rates in a hurricane can be as high as 3.5 cm per hour within 56 km

of the center of the hurricane. If that rainfall rate occurred uniformly over a circle of

radius 56 km for 1 hour, how many Olympic-sized swimming pools would this fill?

Back-of-the-envelope estimates frequently involve more detailed calculations, but we need

to always keep in mind that we are seeking an estimate, an answer that is likely accurate

to within a factor of about ten. To do this, we sometimes need to know good estimates

to certain numbers (e.g., the diameter of the Earth) and we need to learn how to make

judicious approximations. Let us look at a more involved example.

Example 1.1 The average concentration of gold in seawater is approximately 100 fmol kg−1

of seawater (Falkner and Edmond, 1990; Henderson and Henderson, 2009). This is a very

small number, but we can visualize it by recasting this number in terms of something more

familiar. For example, if a gold ring contains 4 g of gold, how many rings could one make

using all of the gold in the world’s oceans?3

3 The extraction of gold from seawater has actually been put forward as a serious business proposition several

times.
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5 1.1 Making Estimates on the Back of the Envelope

We rarely come across a femto (see Appendix A) of anything in our daily lives, so it

is hard to visualize what 100 fmol (i.e., 100 × 10−15 moles) of gold looks like. Instead of

thinking about such a low concentration, we might ask what is the mass of gold in 1 kg of

seawater. This raises another question: what does 1 kg of seawater look like? The density

of seawater is approximately4 1000 kg m−3, so 1 kg of water occupies 10−3 m3
= 1 L, or

the equivalent of a milk carton. The atomic weight of gold is 197 g mol−1, so 100 fmol kg−1

is the same as

100 × 10−15 mol × 197 g mol−1
≈ 100 × 10−15

× 200 g = 2 × 10−11 g L−1.

Notice that we have approximated 197 by 200 to make our numbers easy, and which incurs

an error of only 1.5%. To calculate the total amount of gold in the oceans, we need to know

the total volume of the world’s oceans. Knowing the radius r of the Earth (≈ 6000 km) we

can calculate its surface area: 4πr
2
≈ 12 × (6 × 103)2

≈ 12 × 36 × 106
= 432 × 106 km2,

assuming π ≈ 3. The average depth of the oceans is 4 km and they cover approximately

70% of the Earth’s surface (Henderson and Henderson, 2009), so we can calculate the vol-

ume of the oceans; ≈ 1.2×109 km3 or ≈ 1.2×1018 m3 or ≈ 1.2×1021 L. Now, we estimated

earlier that 1 L of seawater contained about 2×10−11 g of gold, so the total amount of gold

in the oceans is approximately 2 × 1010 g of gold, enough to make about 5 × 109 rings.

Let us return to the problem of the bacteria in the ocean that we described earlier in this

section. Typical abundances of bacteria in seawater are 106 cm−3. How can we determine

if the cells are crowded together or not? One approach is to think of the distance between

the cells in units of the typical size of a cell. First, we have to estimate a typical distance

between cells. One way to do this is to assume that the cells are uniformly distributed in

the 1 cm3, so that the typical distance between them will be

l =

(

1

106 cm−3

)1/3

= 10−2 cm = 100 µm.

A typical diameter of a bacterial cell is about 1 µm, so this means that we could fit 100

bacterial cells between each bacterium. From the perspective of an individual bacterium,

that is quite a low density of cells and has implications for the mechanisms that bacteria

use to detect chemical signals and survive in the oceans.

The real power of the back-of-the-envelope calculation appears when we want to obtain

quick, approximate answers to complicated problems. This can be useful if we want to

know whether or not a problem is worth pursuing in more detail, or whether it is a small

(though possibly interesting) effect in the big scheme of things.

Example 1.2 Between 1900 and 2010, Greenland lost an estimated 9 × 1012 tonnes of ice.

We might wonder how much of this ice contributed to global sea level rise. To figure this

out, we can estimate the rise in global sea level if all this melting ice contributed to sea

level rise. First, we need to determine the volume of ice that has been lost. We can use the

4 The density of seawater varies with temperature, salt content (i.e., salinity), and pressure. The average density

of seawater at the surface is 1025 kg m−3. So our estimate introduces an error of approximately 2%.
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6 Estimation and Dimensional Analysis

fact that 1 kg of water occupies a volume of 1 L—bearing in mind our approximation from

Example 1.1. So, 1 m3 of water has a mass of 1 tonne and 9 × 1012 tonnes of ice occupies

9 × 1012 m3, or 9 × 103 km3.

To obtain the rise in sea level this would cause, we need to make some simplifications

about the shape of the oceans. As we move offshore, the depth of the ocean generally

increases relatively slowly until we reach what is called the shelf break, where the depth

increases more rapidly from an average of about 130 m down to the abyssal plain at a

depth of about 4000 m. The shallow coastal regions make up less than 10% of the total

area of the oceans. So, we can approximate an ocean basin as being a straight-walled

container with sides 4000 m tall. We will also assume that the melting ice gets uniformly

distributed throughout all the world’s oceans, so we can combine them into a single ocean.

To get the change in sea level height, we simply divide the volume added to the oceans

from the melting ice by the total surface area of the oceans. We have already estimated

that the surface area of the Earth is about 4.4 × 1014 m2, so knowing that the oceans

cover approximately 70% of the Earth’s surface, we can estimate the area of the oceans

as approximately 3 × 107 km2 to get approximately 30 mm.

It is always a good idea to perform a “sanity check” after doing such a calculation, just to

make sure that our approximations are reasonable. Over the twentieth century, global sea

levels rose approximately 19 cm (Jevrejeva et al., 2008), so we estimate that about 15% of

this came from Greenland losing ice.

Exercise 1.1.8 The Greenland ice sheet contains approximately 2.8 × 106 km3 of ice.

Estimate the mass of this ice sheet and compare it with the 9 × 1012 tonnes that

was lost between 1900 and 2010. Estimate the rise in sea level if all of the Greenland

ice sheet were to melt and flow into the oceans.

Solving back-of-the-envelope calculations can often involve many steps, and sometimes

we get stuck and cannot readily see what the next step in the calculation should be. One

tactic to use to get unstuck is to examine the units of the quantities we need to calculate

and see if that provides enough information to move ahead. To illustrate this, consider the

following question: atmospheric carbon dioxide concentrations are increasing and values

are often given in units of parts per million (ppm). But at the same time, we hear that

humans emit several gigatonnes (1015 tonnes) of carbon into the atmosphere per year

(Le Quéré et al., 2016). How many gigatonnes of carbon emitted yields a 1 ppm change in

atmospheric CO2 concentration?

The first sticking point we have here is one of units: what is meant by parts per million?

Parts per million by mass? By volume? This is quite an abused notation, and we have

to be careful that we understand how it is being used in the context of the question.

In atmospheric sciences, these units are really mole-fractions—that is, 1 ppm is really

shorthand for “1 mole of specific stuff for every million moles of all the stuff combined.”

It just so happens that for gases, actually for ideal gases, the mole-fraction is the same as

the volume fraction (ppmv) because of the ideal gas laws,5 and atmospheric gases at room

temperature and surface pressures behave almost like ideal gases.

5 An ideal gas is an idealized gas of particles that only interact through collisions, with no forces of attraction or

repulsion between them, and the collisions are “perfectly elastic,” which means that none of the kinetic energy
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7 1.1 Making Estimates on the Back of the Envelope

Because 1 ppmv is a mole-fraction, we need to know how many moles of gas there

are in total in the atmosphere in order to know how many moles of CO2 are present. We

could calculate this if we knew the molecular weight (grams per mole) of air and the total

mass of the atmosphere. To tackle the first part we need to know the composition of air

(approximately 79% N2 and 21% O2) and the molecular weights of the components of air

(the molecular weight of N2 is 28 and that of O2 is 32). If we assume that the atmosphere

is well mixed so that the composition of the air is everywhere the same, then the molecular

weight of air is approximately
(

0.79
mol N2

mol air
× 28

g N2

mol N2

)

+

(

0.21
mol O2

mol air
× 32

g O2

mol O2

)

= 22.12
g N2

mol air
+ 6.72

g O2

mol air

= 28.84
g

mol air
,

or about 29 g per mole.

Next, we need to estimate the total mass or total number of moles of gas in the atmo-

sphere. Calculating the volume or mass of the atmosphere is difficult—the concentration

of gases is not uniform with height, and where does the atmosphere end? But we might be

able to find a way to estimate the mass of the atmosphere by listing what we know about it.

In this way we can see if there are any quantities we know that have units containing mass.

We know an average surface temperature, but it is hard to see how knowing something

with units of temperature will help us calculate a mass. We need to estimate a mass, so we

should try and list relevant variables that have the units of weight or force in it them.6 How

about pressure? Pressure is defined as a force per unit area, and Newton’s laws tell us that

force is mass multiplied by acceleration. Atmospheric pressure at the surface of the Earth

is 1.01 × 105 Pa (N m−2). To get the total force of the mass of the whole atmosphere, we

need to estimate the surface area of the Earth, which is about 510 × 106 km2, and we can

look up the acceleration due to gravity (9.81 N kg−1). So, the mass of the atmosphere is the

atmospheric pressure at the surface multiplied by the surface area of the Earth and divided

by the acceleration due to gravity,

(

1.01 × 105
×

1 kg

9.81 N

)

×
(

510 × 106 km2
)

×

(

1000 m

1 km

)2

≈ 5.2 × 1018 kg.

Combining this with the average molecular weight we estimated earlier, the number of

moles of gas in the atmosphere is
(

5.2 × 1021 g

29 g mol−1

)

≈ 1.8 × 1020 moles.

Our next step is to determine how much of this is in the form of CO2. Because 1 ppm is 1

part in 106, 1 ppm CO2 in the atmosphere is 1.8 × 1014 moles CO2. There is 1 carbon

atom in each CO2 molecule, so 1 ppm of CO2 corresponds to 1.8 × 1014 moles of

of the particles motion is converted to other forms of energy. The ideal gas law implies that equal volumes of

any ideal gas held at the same temperature and pressure contain the same number of molecules.
6 Recall that Newton’s laws tell us that a force is a mass multiplied by an acceleration.
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8 Estimation and Dimensional Analysis

carbon contained in CO2 molecules in the atmosphere. The end result is that the mass of

1 ppm of C is

(1.8 × 1014 moles) ×
(

12
g

mole

)

∼ 2 × 1015 gC = 2 Pg C = 2 Gt C.

So 1 ppm of CO2 corresponds to ≈ 2 Gt C. Knowing this allows us to quickly convert

between the two sets of units when we see them in articles and research papers. It also

allows us to ask other interesting questions, such as what is the contribution of fossil fuel

burning to the rise in atmospheric CO2 (see Problem 1.15)?

Back-of-the-envelope calculations can also be useful in determining spatial and temporal

scales over which different processes are important. Many processes relevant to the Earth

and environmental sciences have characteristic scales that determine how fast they occur

and over what distances they work. For example, typical wind speeds over most of the

United States vary between 4 and 5 m s−1, but can be greater than 10 m s−1. Open ocean

surface currents have typical speeds of 0.1–2 m s−1. So, we might expect the transport

of gaseous pollutants in the atmosphere to be approximately 2–40 times faster than the

transport of dissolved pollutants in the surface ocean.

Diffusion is an important process in both air and water, and we will meet it often in

this book. Diffusion has the effect of smoothing out differences in concentration and is

characterized by a quantity called the diffusion coefficient (D) which, analogous to a

velocity, is a measure of how fast diffusion can spread material. However, whereas velocity

is a length divided by a time, the diffusion coefficient is a length squared divided by a

time—we can think of it as the square of the distance a particle diffuses divided by the time

it takes to diffuse that distance (Berg, 1993). This difference has important consequences

for the distances and times over which diffusion is an important process. For example,

the diffusion of a small molecule in air is roughly 10−5 m2 s−1, whereas in water it is

≈ 10−9 m2 s−1 (Denny, 1993). We can use this to estimate the time (t) it will take a small

molecule to diffuse a given distance (l), say 1 cm, in air and water:

tair ∼
l
2

Dair

=

10−4

10−5
= 10 s and twater ∼

l
2

Dwater

=

10−4

10−9
= 105 s ∼ 1 day.

So, diffusion is a far slower process in water than in air, all other things being equal.

What is more, because the diffusion coefficient is characterized by a length squared, it

takes relatively longer to diffuse further distances. For example, to diffuse 10 cm takes 103

seconds (approximately 15 minutes) in air, and 107 seconds (about 116 days) in water. So,

knowing something about the units of the diffusion coefficient and its value allowed us to

estimate these diffusion times.7

Exercise 1.1.9 Estimate the time it takes a small molecule to diffuse a distance of 1 µm,

10 mm, 1 m, and 10 m in both air and water.

Exercise 1.1.10 Estimate the surface area of the Earth, the total surface area occupied by

oceans, the total surface area occupied by land, and the total volume of the oceans.

7 This is a calculation that is quick and easy to do, and can often be used to impress friends, family, and

colleagues.
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9 1.2 Scaling

Exercise 1.1.11 Given that the average concentration of the salt in the oceans is 35 ppt,

estimate the total mass of salt in the oceans and compare that to the mass of humanity

on planet Earth.

1.2 Scaling

The phenomena we want to understand and explain in the Earth and environmental sciences

cover a large range of spatial and temporal scales. At the smallest scales we might want to

understand the processes of microbial interactions and how they affect biogeochemistry, or

the nucleation of raindrops in the atmosphere. At the opposite end, the largest spatial scales

encompass the planet, or large fractions of it. Consequently, it is useful to know if there

are some general, unifying frameworks that allow us to understand how the importance of

certain processes changes with scale. This is where scaling arguments become important.

There are generally two types of scaling that occur, isometric, or geometric, scaling

and allometric scaling. Isometric scaling describes situations where the variables scale

geometrically: for example, if you double the length of the side of a cube, the new surface

area will be four times the old surface area, and the new volume will be eight times the old

volume. In other words, the shape of the object stays the same, even though the size has

increased. This geometric scaling can help us to understand how the importance of many

processes changes with scale. For example, a microbial cell takes up nutrients through the

surface of the cell, so all other things being equal, a cell B with twice the diameter of

cell A should be able to take up nutrients four times faster than cell A. However, a cell’s

metabolic rate (a measure of how fast it uses energy) depends on its volume—the larger the

cell, the more of it there is that has to be kept going. So, our geometric scaling argument

implies that it should be harder for larger cells to obtain sufficient nutrients to support their

energy needs than smaller cells, all other things being equal. What is more, this will vary

by cell size according to the ratio of the cell surface area to its volume, and if the cells are

spherical

area

volume
=

6

diameter
.

Not all objects have a simple geometry like a sphere, so we might wonder what we use

for a typical length scale when the object we are studying is not a sphere. Generally, most

objects will have some characteristic length scale that is relevant to the problem and that

we can choose to use. For example, if we are interested in relating maximum running speed

to body length, we might choose stride length as a measure of length and relate this to body

size. We could choose another variable such as leg length, and we could develop a scaling

relationship using it, but leg length by itself is not necessarily a good indicator of running

speed. A cheetah is about 60–90 cm feet tall at the shoulder, but has a running stride of

several meters in length, much longer than a human.

A more fundamental question is whether or not geometric scaling always works. Galileo

recognized that geometric scaling arguments often fail, even though data show that a
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10 Estimation and Dimensional Analysis

scaling relationship still exists. These relationships, where a scaling relationship is not

isometric, are allometric. If you watch a King Kong movie, you will see that Kong is

just a geometrically scaled ape. However, if you carefully compare a mouse with an

elephant, you will notice that the legs of a mouse seem thinner compared to their body size

than a simple geometric scaling would suggest. This implies that larger animals require

disproportionately thicker legs to support themselves.

Now, given that it is harder to break a thick branch than a thin twig, we might suspect

that the diameter of the leg determines how easy it is to break it. The material that animal

bone is made from is pretty similar between animals, so we expect the strength to be similar

between animals. But what do we mean by “strength”? In this case we mean the strength

of the bone to withstand fracture and buckling from just bearing the weight of the animal;

in other words, a static measure of strength. The mechanical strength of a cylindrical shape

(a good approximation to the shape of a leg bone) is proportional to its cross-sectional

area (A)—cylinders with larger diameters are harder to buckle than those with smaller

diameters and the same length. So, we expect that a heavier animal would need to have

thicker bones, and hence thicker legs, to support its weight, so that A ∝ M , where M is

the animal’s mass (if we double the body mass, we might expect to have to double the

strength of the bone by doubling its cross-sectional area. The length (l) of a bone should

scale with the size (L) of the animal,8 so l ∝ L ∝ M
1/3, where we have assumed that

the mass is proportional to the animal’s volume. With the length and area of the bone, we

can get a scaling for the bone mass, and so an estimate for the animal’s skeletal mass (m),

m ∝ A× l ∝ M × M
1/3
∝ M

4/3, or m = aM
4/3 where a is a constant. If we take logarithms

of this expression, we obtain the equation of a straight line log(m) = log(a)+ (4/3) log(M),

with a slope of 4/3. If we plot data for various bird species, for example, we find a slope

closer to 1.0 than 1.33 (Figure 1.1). This is interesting because Figure 1.1 indicates that

there is indeed a nice scaling relationship between skeletal mass and total body mass for

birds, but it is not quite the relationship we expected from our geometric scaling argument.

This tells us that something else is going on, and our assumptions are incorrect, so this is

an example of an allometric scaling. In this case, there are several possibilities. One is that

bone size is not determined by the ability of the bone to bear the animal’s weight when

standing still, but rather bone size is related to the ability of the bone to withstand dynamic

processes such as walking (Prothero, 2015). Another possibility is that the structure of

bones in a large bird is in some way different from that in smaller birds. So, comparing our

scaling argument to data has revealed the assumptions behind our geometric simple scaling

to be incorrect and has presented us with some interesting questions.

As another example, consider the scaling of river basins. River networks are formed

from small streams that merge into larger rivers that themselves merge into still larger

rivers until the final, large river discharges into the oceans (Figure 1.2). We can use two

lengths to characterize the shape of the river basin, the length (L) and the average width

(W ). The area of the river basin is then A ≈ LW . Observations of river basins show that

W ∝ L
H , where

1

2
� H � 1

8 This implies that a larger animal has more difficulty supporting its weight than a smaller one, and argues that

an animal like King Kong could not exist; its bones would break when it moved. An excellent, if somewhat

gruesome, description of this effect is given in Haldane (1945).

www.cambridge.org/9781107117488
www.cambridge.org

