

Physics of Partially Ionized Plasmas

Plasma is considered to be one of the four states of matter. The other three being solid, liquid and gas. It is formed by heating a gas, which ionizes its molecules or atoms. It consists of charged particles, namely positive ions and negative electrons. A partially ionized plasma has a large number of neutral particles too. Molecular clouds, diffuse interstellar gas, solar atmosphere, the earth's ionosphere and laboratory plasmas including fusion plasmas constitute partially ionized plasmas. The topic is an active area of study in plasma physics.

This book provides a comprehensive account of the various aspects of partially ionized plasmas including multifluid description, equilibrium, and waves. It includes a detailed discussion on the reionization phase of the universe along with a brief description of high discharge plasmas, tokomak plasmas and laser plasmas. It also discusses various elastic and inelastic collisions amongst the three particle species.

Using many examples, it demonstrates the novelties of partially ionized plasmas: for instance, in a partially ionized plasma, the magnetic induction is subjected to the ambipolar diffusion and the Hall effect in addition to the usual resistive dissipation. A discussion of kinematic dynamo in partially ionized plasma is also given in the book.

Vinod Krishan was Senior Professor at the Indian Institute of Astrophysics, Bangalore. She held visiting positions, at the Indian Institute of Science, the Lawrence Berkeley Laboratory, the National Institute for Space Research (Brazil), the University of Tokyo and the Raman Research Institute. During her long teaching and research career, she taught courses on plasma astrophysics, quantum mechanics and statistical physics at undergraduate and postgraduate levels. She has published more than a hundred research papers. Her major research interests are in the areas of space and astrophysical plasmas.

Cambridge Atmospheric and Space Science Series

Editors

Alexander J. Dessler John T. Houghton Michael J. Rycroft

Titles in Print in this Series

M. H. Rees

Physics and chemistry of the upper atmosphere

R. Dalev

Atmosphere data analysis

J. K. Hargreaves

The solar-terrestrial environment

J. R. Garratt

The atmosphere boundary layer

S. Sazhin

Whistler-mode waves in a hot plasma

S. P. Gary

Theory of space plasma microinstabilities

I. N. James

Introduction to circulating atmospheres

T. I. Gombosi

Gaskinetic theory

M. Walt

Introduction to geomagnetically trapped radiation

B. A. Kagan

Ocean-atmosphere interaction and climate modelling

D. Hastings and H. Garrett

Spacecraft-environment interactions

J. C. King and J. Turner

Antarctic meteorology and climatology

T. E. Cravens

Physics of solar system plasmas

J. F. Lemaire and K. I. Gringauz

The earth's plasmasphere

T. I. Gombosi

Physics of space environment

J. Green

Atmospheric dynamics

G. E. Thomas and K. Stamnes

Radiative transfer in the atmosphere and ocean

I. G. Enting

Inverse problems in atmospheric constituent transport

R. D. Hunsucker and J. K. Hargreaves

The high-latitude ionosphere and its effects on radio propagation

N. Meyer-Vernet

Basics of the solar wind

V. Y. Trakhtengerts and M. J. Rycroft

Whistler and Alfvén mode cyclotron masers in space

R. W. Schunk and A. F. Nagy

Ionospheres physics, plasma physics, and chemistry Second Edition

Mark C. Serreze and Roger G. Barry

The arctic climate system Second Edition

David Burgess and Manfred Scholer

Collisionless shocks in space plasmas: structure and accelerated particles

Physics of Partially Ionized Plasmas

Vinod Krishan

CAMBRIDGEUNIVERSITY PRESS

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107117396

© Vinod Krishan 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in India

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Names: Krishan, V. (Vinod)

Title: Physics of partially ionized plasmas / Vinod Krishan.

Description: Delhi, India : Cambridge University Press, 2016. \mid Includes

bibliographical references and index.

Identifiers: LCCN 2016001616 | ISBN 9781107117396 (hardback)

Subjects: LCSH: Space plasmas. | Plasma (Ionized gases)

Classification: LCC QC809.P5 K77 2016 | DDC 530.4/4-dc23 LC record available at

http://lccn.loc.gov/2016001616

ISBN 978-1-107-11739-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> In loving memory of my father Shri Om Prakash Pabbi who taught me how to think

Contents

	Figures		
	Prefa	ace	xiii
1	Par	tially Ionized Plasmas Here and Everywhere	1
	1.1	Plasma, a Matter of State	1
	1.2	Partial Ionization in the Early Universe	1
	1.3	Reionization Phase of the Universe	6
	1.4	Partially Ionized Plasma on Cosmic Scales	7
	1.5	Molecular Clouds	7
	1.6	Accretion Disks	8
	1.7	Interstellar Partially Ionized Plasma	9
	1.8	Solar Atmosphere	9
		Cometary Tails	14
		The Ionosphere	14
		Partially Ionized Plasmas in Laboratory	14
		Cold Plasmas in Medicine	16
		Summary	17
	1.14	Problems	17
2	Multifluid Description of Partially Ionized Plasmas		18
	2.1	Statistical Description	18
		2.1.1 The Maxwellian velocity distribution function	19
	2.2	Local Maxwell-Boltzmann Distribution Function	25
		2.2.1 The Boltzmann equation	25
		2.2.2 The fluid formalism	28
		2.2.3 The stress tensor	33
		2.2.4 Validity of the fluid picture	36
		2.2.5 The Boltzmann collision integral	37
	2.3	Three-fluid Description of a Partially Ionized Plasma	37
	2.4	Two-fluid Description of a Partially Ionized Plasma	41
		2.4.1 The MHD fluid	41
		2.4.2 Restrictions on the MHD fluid	46
		2.4.3 The neutral fluid	47
		2.4.4 The two-fluid system	47

viii Contents

	2.5	Single Partially Ionized Fluid—the SPIF	48
	2.6	Weakly Ionized Plasma	54
	2.7	Summary	56
	2.8	Problems	57
3	Equ	iilibrium of Partially Ionized Plasmas	59
	3.1	The Equilibrium	59
	3.2	The Equilibrium Velocity Distribution Function	59
	3.3	Collisional Forces	61
	3.4	Collision Frequencies	64
		3.4.1 The electron-ion collision frequency	64
		3.4.2 The electron-electron collision frequency	66
		3.4.3 The electron-neutral collision frequency	66
		3.4.4 The ion-neutral collision frequency	66
	3.5	Equilibrium of the Three-fluid System	67
	3.6	Hydrostatic Equilibrium	67
	3.7	Hydrodynamic Equilibrium	69
	3.8	Equilibrium with Collisional Forces	73
	3.9	Equilibrium of Collisionally Dominated Fluids	76
	3.10	Three-fluid Equilibrium with Magnetic Field	78
	3.11	Three-fluid Equilibrium with Magnetic and Collisional Forces	79
	3.12	Equilibrium in the Two-fluid Description of a Partially Ionized	
		Plasma	83
		3.12.1 Hydrostatic equilibrium	83
		3.12.2 Hydrodynamic equilibrium	84
	3.13	Equilibrium in Collisionally Dominated Two-fluids	86
	3.14	Two-fluid Equilibrium with Magnetic Field	88
		3.14.1 With current density $\vec{J} = J_{\theta}$	92
		3.14.2 Current density $ec{J} \parallel ec{B}$	93
	3.15	Two-fluid Equilibrium with Collisional Forces	94
	3.16	Equilibrium of the SPIF	95
	3.17	Equilibrium of the Weakly Ionized Plasma	95
	3.18	Hall Equilibrium of the Weakly Ionized Plasmas	97
	3.19	Summary	99
	3.20	Problems	100
4	Wa	ves in Partially Ionized Plasmas	102
	4.1	Waves in a Weakly Ionized Plasma	102
		4.1.1 Transverse waves in weakly ionized plasmas—the	
		TWIP waves	107

			•	Contents	ix
		4.1.2	Polarization of TWIP waves		113
		4.1.3	Energy partition in TWIP waves		114
		4.1.4			115
		4.1.5	Longitudinal waves in weakly ionized plasmas—the	3	
			LWIP waves		117
			LWIP waves with $\vec{k} \perp \vec{B}_0$		118
			Polarization of LWIP waves with $\vec{k} \perp \vec{B}_0$		119
			07 1		119
		4.1.9	Dissipation of LWIP waves for $\vec{k} \perp \vec{B}_0$		120
			Oblique LWIP waves		121
			in Single Partially Ionized Fluid—the SPIF		124
	4.3		in Two-fluid Picture		126
			Incompressible wave-motions		126
			Compressible wave-motions		135
			ostatic Waves in Three-fluid Picture		140
			ostatic Waves in Magnetized Three-fluids		149
	4.6		omagnetic Waves in Three-fluids		161
	4 =		Electromagnetic waves in unmagnetized three-fluids	3	163
	4.7		omagnetic Waves in Magnetized Three-fluids		168
			Electromagnetic waves with $ec{k}\perpec{B}_0$		170
		4.7.2	Electromagnetic waves with $ec{k} \parallel ec{B}_0$		176
		Summ	•		181
	4.9	Proble	ms		181
5	\mathbf{Ad}	vance	d Topics in Partially Ionized Plasmas		184
	5.1	-	ibrium of Partially Ionized Structures in the Solar		
			sphere		184
	5.2	_	ibrium Plasma Structures with Hall Effect		186
	5.3		Equilibrium of the Weakly Ionized Plasmas		187
	5.4		Equilibrium of the Static Weakly Ionized Plasmas		188
	5.5	•	mical Hall Equilibrium		189
	5.6		Equilibrium with Ambipolar and Resistive Effects		193
	5.7		r Relaxation in Weakly Ionized Plasmas		194
			Taylor relaxation in a single-fluid		194
			Taylor relaxation in an ideal single-fluid with flow		197
			Taylor relaxation in a two-fluid system		197
	F 0		Taylor relaxation in a weakly ionized plasma		199
	5.8		Naves in Rotating Weakly Ionized Plasmas		201
	5.9	Exact	Non-linear Dispersion Relation		206

X Contents

5.10	Kolmog	gorov Dissipation Scales in Weakly Ionized Plasmas	207
5.11	Genera	tion of Magnetic Fields in Partially Ionized Plasmas	213
	5.11.1	Mean-field dynamo	215
	5.11.2	Mean-field dynamo in partially ionized plasma	221
	5.11.3	Hall dynamo	222
	5.11.4	Mean-field dynamo with ambipolar diffusion	225
	5.11.5	Hall and ambipolar dynamo	228
	5.11.6	Differential rotation-Hall-ambipolar dynamo	229
	5.11.7	Magnetic transport via ambipolar diffusion	230
	5.11.8	Stability analysis of ambipolar diffusion	232
	5.11.9	Sweet-Parker current slab in a weakly ionized plasma	235
	5.11.10	Parker-Sweet reconnection mechanism	235
	5.11.11	Parker-Sweet current slab	237
5.12	Summa	ry	241
5.13	Problen	ns	242
6 Res	earch I	Problems in Partially Ionized Plasmas	244
6.1	The Thr	ee-fluid Description	244
6.2	The Two	p-fluid Description	245
6.3	The Sing	gle-fluid Description	245
6.4	Weakly 1	Ionized Plasma	245
6.5	The Equ	ilibrium	245
6.6	Waves		246
6.7	Continu	ation of Studies in Chapter 5	246
Supple	ementary	Matter	249
Index			259

Figures

1.1	Time line of the universe.	2
1.2	Schematic variation of the ionization fraction, $f=n_e/n_H$, of hydrogen with redshift.	6
1.3	Multi-wavelength image of a cluster of galaxies containing a massive bright elliptical galaxy (large glow) that is ejecting jets of material into the cluster. New results from Chandra find that the ejected material significantly enriches the cluster with iron and other elements.	7
1.4	Image of M16 molecular cloud.	8
1.5	Accretion disk in a binary system, an illustration.	9
1.6	Schematic temperature variation with the radius (scaled to the radius of the sun) from the core to the photosphere.	10
1.7	Temperature variation of the sun from the photosphere to the corona.	10
1.8	Umbra and penumbra in a sunspot.	11
1.9	Hot and cold regions in a solar prominence.	12
1.10	Spicules, the cold and hot jets of plasma seen in the chromosphere.	13
1.11	This photograph of Comet West was taken by amateur astronomer John Laborde on March 9, 1976. The picture shows the two distinct tails. The thin tail is made up of gases, while the broad white tail is made up of tiny dust particles.	13
1.12	Various layers of the ionosphere and their predominant ion populations are listed at their respective heights above ground.	15
1 12	The density in the ionosphere varies considerably.	16
2.1	Cold plasma flame does not burn hands. Plot of the function g vs v at two different temperatures.	23
2.2	The three speeds, v_p , v_m and v_{rms} are schematically marked on a plot of the function g vs v at $T=300$ K.	23
2.3	The particles from a point P_1 move to a point P_2 in the phase space (x, v_x) such that the phase space particle density $f(x, v_x)$ remains	26
2.1	a constant. Deflection of an electron in the Coulomb field of an ion.	26 64
3.1	Simulation of an accretion disk.	85
3.2 4.1	(a) The equilibrium form of the uniform magnetic field frozen to all the three fluids. (b) The perturbed sinusoidal form of the	63
	magnetic field not frozen to any of the fluids.	108

xii Figures

4.2	Dispersion curves for the two TWIP waves including the Hall effect (a) Equation (4.46), (b) Equation (4.48)	112
4.3	The phase velocity curves for the two TWIP waves, Eq. (4.49).	
1.0	(a) $\left(\frac{V_{\text{PT}}}{V_{nA}}\right)$ (+) vs $(k_z\lambda_{nH})$, (b) $\left(\frac{V_{\text{PT}}}{V_{nA}}\right)$ (-) vs $(k_z\lambda_{nH})$	112
4.4	The group velocity curves for the two TWIP waves, Eq. (4.52).	
	(a) $\left(\frac{V_{\text{GT}}}{V_{nA}}\right)$ (+) vs $(k_z\lambda_{nH})$, (b) $\left(\frac{V_{\text{GT}}}{V_{nA}}\right)$ (-) vs $(k_z\lambda_{nH})$	113
4.5	The damping curves for the two TWIP waves, Eq. (4.70). (a) $[\omega_I(+)/(\alpha_0\omega_{\rm ic}D_T)]$ vs $(k_z\lambda_{nH})$ (b) $[\omega_I(-)/(\alpha_0\omega_{\rm ic}D_T)]$ vs $(k_z\lambda_{nH})$	116
4.6	The positive charge Q is surrounded by negative charges forming the Debye cloud while the charged particles are also undergoing collisions with the neutrals.	143
4.7	Variation of the damping rate, ω_I , Eq. (4.245) with temperature $(T=T_e=T_i=T_n)$ for the sound wave of frequency $\omega_R=kC_{\rm ns}$	147
4.8	Variation of the damping rate, ω_I , for the electron plasma wave of frequency $\omega_R = \omega_{\rm ep}$, Eq. (4.248) and the collision frequencies $\nu_{\rm ei0}$, Eq. (3.38) and $\nu_{\rm en0}$, Eq. (3.41) with temperature $(T=T_e=T_i=T_n)$	148
4.9	Variation of the magnitude of the damping rate, $\omega_I \approx (\nu_{\rm in0}/4)$, with temperature $(T=T_e=T_i=T_n)$ for the ion acoustic wave	
	of frequency $\omega_R = \left(\omega_{ m ip}^2 + k^2 C_{ m is}^2\right)^{1/2}$	150
5.1	Variation of the the ratio of the mass densities ρ_i/ρ_n as a function of the height on the solar atmosphere.	185
5.2	Cascading process in a 3-dimensional homogeneous turbulent fluid. There is a transfer of kinetic energy from large spatial scales to small spatial scales. The kinetic energy begins to dissipate into heat at a scale at which the Reynolds number becomes unity.	208
5.3	Magnetic induction $\pm B_y(x,z)$ being advected into the Parker-Sweet current sheet with speed $V_{\rm nz}$ in a weakly ionized	200
	plasma.	236

Preface

Retirement is a time to indulge oneself, determine your own deadlines and to meet them at your own pace. The cooking breaks are no brakes! This is how I came to write this book, my second, after my superannuation; the first one is called *Plasmas; The First State of Matter.*

I was introduced to the topic of partially ionized plasmas by Professor Kumar Chitre who handed me the A. Brandenburg and E. G. Zweibel paper (1995, Ap. J., 448, 734) during my visit to the Tata Institute of Fundamental Research sometime in the year 2000. This resulted in our paper "Ambipolar diffusion in the solar atmosphere'."

Partially ionized plasmas again came into my line of sight in the year 2005 when I visited the University of Tokyo campus near Edogawadai to work with Professor Yoshida-sansei. Since then, I have been studying plasma-typical problems in partially ionized plasmas. Around the same time I was also collaborating with Professor Swadesh Mahajan on the role of the Hall effect in diverse circumstances. It turned out that in the weakly ionized plasma model of a partially ionized plasma, the ion inertial scale, a hallmark of the Hall effect, gets multiplied by the inverse of the ionization fraction. As a result, the effective ion inertial scale acquires a much larger value than its counterpart in a fully ionized plasma. This was reported in "Equilibrium structures in partially ionized rotating plasmas within Hall magnetohydrodynamics"². During my visit to Professor S. Masuda's group in Nagoya University, Professor K. Shibata and I discussed the possibility of observing this new inertial scale phenomena on the solar atmosphere with a future solar mission. Additionally, during my visits to the Kyoto University and the National Astronomical Observatory of Japan, Mitaka, Tokyo, I had discussions on the mean field dynamo in partially ionized plasmas with Professor S. Tsuneta's group. The highly positive response from my peers galvanized me into pursuing the area further, and my own desire to present partially ionized plasmas as a subject in its own right resulted in this book.

The decade and a half's work could not have been done without the support of colleagues and collaborators, some of whom I have mentioned above. I wish to place on record my appreciation for Professor R. T. Gangadhara (my first student) for his continued collaboration on problems of our common interest. I have also enjoyed working with Professor B. P. Pandey, Dr Baba Varghese, Professor Nikhil Chakraborty, Professor H. Isobe, Professor Y. Hiraki, Dr K. A. P. Singh, and Dr A. Bhowmik.

¹Chitre, S. M., and V. Krishan. 2001. Mon. Not. R. Astron. 323: L23-L25

²Krishan, V., and Z. Yoshida. 2006. Physics of Plasmas. 13: 092303

xiv Preface

I thank Dr Ebenezer for helping me with the figures.

I am one amongst the many who learnt the hard lesson from B. K. Shivani that one is responsible for all the good and the not-so-good that happens in one's life; a lesson in ultimate freedom.

I thank my housekeeper, Nagaratna for relieving me from some of the daily household chores.

I am blessed with a very supportive extended family.

My husband, Professor Som Krishan, suffice it to say, has tolerated me for forty-seven years. The remaining, I hope, are easy, for him. My daughter, Dr Monika Krishan, a cognitive scientist and a spiritual healer maintains the flow of positive energy in our lives.

Most of all, I am indebted to Professor P. Sreekumar, Director, the Indian Institute of Astrophysics, for generously extending me institute facilities which enabled me to continue my work in a smooth manner.

I hope this book will serve the young and the not so young plasma researchers.