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Hyperbolic space and its isometries

In this chapter we gather together basic information about the geometry of two- and
three-dimensional hyperbolic spaces and their isometries. This will set the stage for
our study of quotient manifolds and orbifolds which begins in the next chapter.

1.1 Möbius transformations

A Möbius transformation in the unit sphere Sn of dimension n is, by definition, the
result of a composition of reflections in (n−1)-dimensional spheres in Sn . It will be
orientation-preserving if it is the composition of an even number of reflections. A
defining property is that Möbius transformations send (n−1)-dimensional spheres
onto (n−1)-dimensional spheres. Automatically, a symmetric pair of points (with
respect to reflection) about one sphere gets sent to a symmetric pair about the other.

From now on, the unqualified term Möbius transformation will be reserved for
those that preserve orientation. The orientation-reversing kind will be called anti-
Möbius transformations. For a discussion of the latter, see Exercise (1-31) at the end
of the chapter.

The study of hyperbolic 3-manifolds is intimately connected with the study
of Möbius transformations on the two-dimensional sphere S2. Via stereographic
projection (Figure 1.1), S2 is homeomorphic to the extended plane C ∪ ∞, and we
will freely use this fact to change points of view between the extended plane and the
2-sphere. Under stereographic projection, the collection of circles and straight lines
in C corresponds to the collection of circles on S2; a straight line in C corresponds
to a circle on S2 through the north pole. With this correspondence in mind, we can
refer to the collection of circles and lines in C simply as “circles”. Moreover stereo-
graphic projection is a conformal map, that is, it preserves angles between intersecting
arcs—in particular, angles of intersection between circles.

Möbius transformations in two dimensions are fractional linear transformations of
the extended plane. That is, a Möbius transformation acting on C ∪∞ has the form

z 	→ A(z) = az + b

cz + d
, with a, b, c, d ∈ C such that ad − bc �= 0. (1.1)
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2 Hyperbolic space and its isometries

Fig. 1.1. Stereographic projection.

(When ad − bc = 0 the expression on the right is a constant, so the map is not a
Möbius transformation.) As we will see shortly, a map of this form can indeed be
expressed as the composition of an even number of reflections in circles (in fact,
two or four circles: see Exercise (1-7)). The symmetry properties of such maps are
established in Exercise (1-2).

Möbius transformations are conformal maps. In fact, the only conformal homeo-
morphisms of C ∪∞ are Möbius transformations.

We will generally assume that the representation in (1.1) is normalized, meaning
that ad−bc = 1. Then we can identify the group of Möbius transformations with the
quotient PSL(2,C) := SL(2,C)/± I , where SL(2,C) is the group of 2× 2 matrices
of determinant one and I is the identity matrix:

A(z) = az + b

cz + d
←→ ±

(
a b
c d

)
, A−1(z) ←→ ±

(
d −b
−c a

)
.

The± ambiguity cannot be avoided. We will not keep inserting it, unless it plays an
essential role. In any case the value of changing from transformations to matrices lies
mainly in the algebra of composition. If A, B are Möbius transformations, the Möbius
transformation resulting from the application of A followed by B is written B A; the
corresponding matrix is just the usual product B A of the component matrices, in the
order written. The ± ambiguity follows along. We will hop from one to the other,
the representation as a transformation to the representation as a matrix, depending on
which best suits the situation, without changing the labeling.

Two Möbius transformations A, B are conjugate if there is a Möbius transforma-
tion U such that B = U AU−1. Conjugate transformations have the same geometry:
U effects transfer of the geometry of A to that of B.

The expression AB A−1 B−1 is called the commutator of A and B and written as
[A, B]. Two elements commute if and only if their commutator is the identity.1

The trace of a Möbius transformation A is, by definition, the trace of the normalized
matrix of A:

1 The alternative conventions [A, B] = B−1 A−1 B A or A−1 B−1 AB are preferred by some authors; they do the
same job, but the formulas come out differently.
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1.1 Möbius transformations 3

τA = tr A = ±(a + d).

It is invariant under conjugation. The ± ambiguity can be avoided either by using τ 2
A

or by specifying 0 ≤ arg τA < π .
By solving the equation A(z) = z, we find that a Möbius transformation �= id

has one or two fixed points in S2, namely (a − d ± √τA
2 − 4)/2c, when c �= 0, or

otherwise the points∞ and b/(d−a) = ab/(1−a2). Here A = ( a
c

b
d

)
, ad−bc = 1.

Only the identity can have three fixed points.
Given three distinct points (p2, p3, p4) ∈ S2, there exists a unique Möbius

transformation T sending p2 to 0, p3 to 1, p4 to∞. It is given by

T (z) = (z − p2)(p3 − p4)

(z − p4)(p3 − p2)
= (z, p2, p3, p4),

when none of the points pi is ∞. By taking the limit as some pi → ∞, we obtain
the correct expression for pi = ∞. The expression (z, p2, p3, p4) is called the cross
ratio of the four points.2

• Given distinct triples (p2, p3, p4), (p′2, p′3, p′4) there is a unique Möbius trans-
formation taking one triple onto the other.

• Cross ratios are invariant under Möbius transformations:

(Az, Ap2, Ap3, Ap4) = (z, p2, p3, p4) for any A.

To establish the second item, note that both Möbius transformations S(z) =
(z, Ap2, Ap3, Ap4) and T ◦ A−1(z) take (Ap2, Ap3, Ap4) to (0, 1,∞) so they are
identical. Replace z by A(z).

Apart from the identity, Möbius transformations fall into one of three types:

A is parabolic if the following equivalent properties hold.

• A is conjugate to z 	→ z + 1.
• A has exactly one fixed point in S2.
• τA = ±2 and A �= id.

A is elliptic if the following equivalent properties hold.

• A is conjugate to z 	→ e2iθ z, with 2θ �≡ 2π .
• τA ∈ (−2,+2).
• A has exactly two fixed points, and the derivative of A has absolute value 1 at

each of them.

A is loxodromic if the following equivalent properties hold.

• A is conjugate to z 	→ λ2z, with |λ| > 1.
• τA ∈ C \ [−2,+2].
• A has two fixed points; at one |A′| < 1 (attracting), at the other |A′| > 1

(repelling).

2 In the induced direction on R, UHP lies to the left; also (z, 0, 1,∞) = z. A common alternate definition results
in (z, 1, 0,∞) = z.
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4 Hyperbolic space and its isometries

We will use the term standard forms for the conjugates just listed. The geometry
of a general normalized Möbius transformation A is most easily read off from the
conjugate standard form. Note that the elliptic z 	→ 1/z is conjugate to z 	→ −z.

A loxodromic Möbius transformation A has a collection of loxodromic curves or
invariant spirals in S2. (In navigation, a loxodromic curve or rhumb line is a path
of constant bearing: it makes equal oblique angles with all meridians, and so coils
around the poles without ever reaching them.) For the standard form z 	→ λ2z, one
such spiral is given by

z(t) = λ2t , −∞ < t <∞.
If σ denotes the segment 0 ≤ t < 1 of the spiral, the various images {An(σ )} cover
the spiral without overlap. See Figure 1.2.

For additional structure in special cases see Wright [2006].
The term hyperbolic transformation has historically been used to designate a lox-

odromic transformation whose trace is real. Such a transformation is conjugate to
z 	→ λ2z with λ > 1. Nowadays the term “hyperbolic” is also used for a loxodromic
element acting in hyperbolic 3-space.

The classification is proved by first conjugating A so that one fixed point lies at∞
and the other, if there is one, at 0. The further conjugation z 	→ 1/z that interchanges
0 and∞ may be needed to put the attracting fixed point at∞.

If p ∈ C is a fixed point of A �= id, p is attracting if and only if |A′(p)| < 1 and
repelling if and only if |A′(p)| > 1. The transformation A is parabolic if and only if
A′(p) = 1; A is elliptic if and only if |A′(p)| = 1 but A′(p) �= 1.

Upon referring to the normalized matrix A = ( a
c

b
d

)
, we find that the eigenvalues

are λ, λ−1 = 1
2(tr A ±√tr2 A − 4). The corresponding eigenvectors

(
α

β

)
satisfy

α

β
= λ− d

c
= p and

α

β
= λ

−1 − d

c
= q,

where p, q are the fixed points. Like the trace, the eigenvalues are invariant under
conjugation. The eigenvalues of an elliptic transformation have the form e±iθ and the

Fig. 1.2. Invariant spiral of a loxodromic with trace λ+ λ−1 = 1.976+ 0.005i .
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1.1 Möbius transformations 5

trace is 2 cos θ . A loxodromic transformation has eigenvalues λ±1 and trace λ+ λ−1.
We can choose λ so that |λ| > 1, that is, so that λ is the expanding eigenvalue.

The expanding eigenvalue of a loxodromic element A can be expressed as a cross
ratio by the formula

λ2 = (z, p+, A(z), p−),

where p+, p− are the attracting and repelling fixed points. (It is enough to confirm
this when p+ = ∞ and p− = 0.)

We can write A = ( a
c

b
d

)
as

Az = 1

−c2(z + d/c)
+ a

c
if c �= 0, Az = a

d

(
z + b

a

)
if c = 0. (1.2)

This expresses A in terms of simple building blocks: maps in standard form, plus the
map z 	→ 1/z. Each of these has the property of preserving (generalized) circles.
Therefore any Möbius transformation preserves circles, as mentioned earlier. Like-
wise each building block is easily seen to be a composition of two reflections, so a
Möbius transformation is the composition of an even number of reflections.

Three distinct points p2, p3, p4 uniquely determine a circle C , with an orientation
determined by their order. When C is a proper circle or any closed curve, the posi-
tive orientation is determined by a sequence of points p2, p3, p4 in counterclockwise
direction, that is when the interior of the curve lies to the left. Let q2, q3, q4 be another
set of distinct points, and C ′ the circle through them. The Möbius transformation T
that sends pi → qi automatically sends C onto C ′. If both are proper circles, T sends
the interior of C to the interior of C ′ if and only if the triples give both circles the
same, positive or negative, orientations.

The transformation T : z → w can be expressed in terms of cross ratios as

(w, q2, q3, q4) = (z, p2, p3, p4).

But if we focus simply on sending C to C ′, and a designated side of C to a designated
side of C ′, it is easier to find T by cross ratio using the symmetry property: A Möbius
transformation sends points symmetric with respect to reflection in one circle, to a
pair of points symmetric in its image (Exercise (1-2)). For a proper circle, the most
conspicuous symmetric points are its center and∞. If the circle is {z : |z − z0| < r},
the points |a| < 1 and |a∗| > 1 are symmetric if and only if a∗ − z0 = r2/(a − z0).

A cross ratio (p, p2, p3, p4) is real if and only if the four points lie on a circle
in S2. The cross ratio is positive if and only if (p, p3, p4) gives the circle the same
orientation as (p2, p3, p4).

We are now ready to show that Möbius transformations in C∪∞ can be extended to
Möbius transformations acting in upper half-space (UHS) {�x = (z, t) : z ∈ C, t > 0}
(and, correspondingly, lower half-space (LHS)). The simplest way to see this is by
applying the following observation. Each Möbius transformation is the composition
of an even number of reflections in circles or lines in C. A reflection in a circle extends
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6 Hyperbolic space and its isometries

naturally to the reflection in the upper hemisphere bounded by that circle. Likewise the
reflection in a straight line extends to the reflection in the vertical half-plane bounded
by that line. (The same argument shows that Möbius transformations on Sn = Rn ∪
{∞} extend to upper half (n+1)-space.)

A Möbius transformation acting on C ∪ ∞ sends a given circle to another circle
or line. Its extension to upper half-space will therefore map the hemisphere bounded
by the circle to the hemisphere or half-plane bounded by the image of the circle. We
conclude that the extension to upper half-space maps the totality of hemispheres and
vertical half-planes onto itself.

If two hemispheres intersect, or a hemisphere and a vertical half-plane intersect,
the intersection is a semicircle which is orthogonal to C. If two vertical half-planes
intersect, they intersect in a vertical half-line orthogonal to C. The extension of a
Möbius transformation thus maps the totality of half-lines and semicircles orthogonal
to C onto itself. The dihedral angles between intersecting hemispheres is the same as
the angle of intersection between their bounding circles in C.

It is useful to explicitly work out the formula for extension to upper half-space
{�x = (z, t) : z ∈ C, t > 0}. We first extend the building blocks. First,

z 	→ az becomes (z, t) 	→ (az, |a| t);
z 	→ z + b becomes (z, t) 	→ (z + b, t).

The inversion z 	→ z−1 is most easily dealt with as the composition of two anti-
Möbius transformations: z 	→ z̄ (reflection in a line) and z 	→ z/|z|2 = z̄−1 (reflection
in the unit circle). Extending to reflections in a vertical plane and the unit hemisphere,
we get respectively (z, t) 	→ (z̄, t) and

�x 	→ �x
|�x |2 or (z, t) 	→

( z

|z|2 + t2
,

t

|z|2 + t2

)
.

Therefore,

z 	→ 1

z
becomes (z, t) 	→

( z̄

|z|2 + t2
,

t

|z|2 + t2

)
.

Composing the building blocks we find that the extension of
( a

c
b
d

)
is

(z, t) 	→
(
− z + d/c

c2
(|z + d/c|2 + t2

) + a

c
,

t

|c|2(|z + d/c|2 + t2
)) when c �= 0.

(z, t) 	→
(

a

d
(z + b/a),

∣∣∣a
d

∣∣∣ t) when c = 0.

A Möbius transformation acting in UHS acts symmetrically in LHS under the
correspondence (z, t)↔ (z,−t).

1.2 Hyperbolic geometry

In the euclidean plane, there is exactly one line through a given point and not meeting
a given line disjoint from the point; this is the famous fifth postulate of Euclid. It
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1.2 Hyperbolic geometry 7

gradually became clear in the nineteenth century that one can have a self-consistent
and interesting geometry where this postulate is not valid—where “parallel” lines
are not unique and indeed exist in uncountable abundance. This became known as
hyperbolic geometry. Though the name was bestowed in connection with conics and
projective geometry [Klein 1871, p. 72], it is a doubly felicitous choice, because the
Greeks had named the hyperbola after the word for excess (compare “hyperbole”,
from the same Greek word). Hyperbolic geometric certainly has an excess of lines—
and of “room”—compared to euclidean geometry!

Here are some of the salient features that distinguish hyperbolic geometry from the
familiar euclidean and spherical geometry.

(i) The angle sum � of a hyperbolic triangle  satisfies 0 < � < π ; in fact, �
equals π−area. The limiting case� = 0 is achieved by ideal triangles whose
vertices are “at infinity”: we will have more to say about such ideal vertices soon
(p. 14). At the other extreme, the case � = π is the limiting case of hyper-
bolic triangles of very small area. Indeed, on the infinitesimal scale, hyperbolic
geometry is euclidean.

(ii) There are no similarities in hyperbolic space—one cannot scale a figure up
or down without changing its angles and shape. It follows, for instance,
that all hyperbolic triangles with the same angles are isometric (hyperbolic
triangles are “rigid”), and also that the choice of a unit of length is not arbi-
trary, as in euclidean space; one can privilege a unit having some special
property, say the side length of an equilateral triangle whose vertex angles
are π/4.

(iii) For any 0 ≤ θ < π/(n − 2) there is a regular n-sided hyperbolic polygon
with vertex angles θ . More generally, a necessary and sufficient condition for the
existence of an n-sided convex polygon with vertex angles θi (with 0 ≤ θi < π)
in clockwise order is that

∑
θi < (n− 2)π . The polygon is uniquely determined

up to isometry and its area is (n − 2)π −∑ θi .

We now discuss the most commonly used conformal models of the hyperbolic
plane and of hyperbolic space with their metrics.

Fig. 1.3. Disk and upper half-plane models of H2 showing the same geodesics.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-11674-0 - Hyperbolic Manifolds: An Introduction in 2 and 3 Dimensions
Albert Marden
Excerpt
More information

http://www.cambridge.org/9781107116740
http://www.cambridge.org
http://www.cambridge.org


8 Hyperbolic space and its isometries

1.2.1 The hyperbolic plane

The upper half-plane model is {z ∈ C : Im z > 0} with the metric

ds = |dz|
Im z

.

Here Im z is the notation for the imaginary part. The unit disk model is {z ∈ C :
|z| < 1} with the metric

ds = 2 |dz|
1− |z|2 .

The two models are equivalent under any Möbius transformation that maps the
upper half-plane onto the unit disk. We will denote either one of these models by H2,
the notation for the hyperbolic plane. These models have the following properties.

(i) The metrics are infinitesimally euclidean; at each point they equal a rescaled
euclidean metric. Thus the angle between two curves in the disk or upper half-
plane is the same whether measured in the hyperbolic or the euclidean geometry;
as a result these models are often called conformal. (For other models see
Exercise (1-25) and following.)

(ii) H2 is complete in its metric. Every arc tending to the “boundary” has infinite
length.

(iii) The hyperbolic metric is invariant under any Möbius transformation that maps
the upper half-space or disk model onto itself. These transformations comprise
the full group of orientation-preserving isometries.

(iv) The hyperbolic lines (geodesics) in the upper half-plane model are semicircles
orthogonal to R and vertical half lines. In the disk model they are diameters and
circular arcs orthogonal to {|z| = 1}.

(v) Two hyperbolic triangles with the same vertex angles are isometric.

Proof of Property (v). Applying an isometry, we may assume that the base of the two
triangles ,′ lie on the same geodesic �, and that the left side of the two triangles
also lie on the same geodesic �∗. Denote the right edges by δ, δ′. If δ = δ′ then
 = ′.

Now two distinct geodesics, which intersect a third geodesic at the same angle
cannot themselves intersect. For then the angle sum would exceed π .

In view of this fact, assume δ ∩ � separates δ′ ∩ � from the vertex �∗ ∩ �. δ′ cannot
intersect δ. Therefore δ′ cannot intersect �∗, in contradiction to the assumption that′

is a triangle.

1.2.2 Hyperbolic space

The upper half-space model is {(z, t) : z ∈ C, t > 0} with the metric

ds = |d �x |
t
, |d �x |2 = |dz|2 + dt2.
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1.2 Hyperbolic geometry 9

Fig. 1.4. Ball and upper half-space model of H3 showing geodesic planes.

The ball model is {�x ∈ R3 : |�x | < 1} with the metric

ds = 2 |d �x |
1− |�x |2 .

The two models are equivalent by a Möbius transformation that maps one
to the other. Stereographic projection extends to such a Möbius transformation
(Exercise (1-11)). We will refer to either of these models with its metric as hyperbolic
space and denote it by H3.

Here is a further list of properties:

(i) The hyperbolic metric is infinitesimally euclidean and correctly represents the
angles in H3.

(ii) H3 is complete in its metric: an arc tending to the “boundary” has infinite length.
(iii) The hyperbolic planes in the upper half-space model are hemispheres orthog-

onal to C and vertical euclidean half-planes. The lines (geodesics) are semi-
circles orthogonal to C and vertical euclidean half-lines. In the ball model the
hyperbolic planes are spherical caps orthogonal to the unit sphere, and equa-
torial planes. The lines are circular arcs orthogonal to the unit sphere, and
euclidean diameters.

(iv) The hyperbolic metric is invariant under any Möbius transformation that maps
the upper half-space or the ball model onto itself. These transformations form
the full group of orientation-preserving isometries.

(v) The volume V of a hyperbolic ball and the surface area S of its bounding sphere
grow exponentially with the hyperbolic radius ρ. The ratio of the surface area
to the volume approaches 2 as ρ →∞.

(vi) Two convex hyperbolic polyhedra that are combinatorially the same with the
same dihedral angles and valence 3 at all vertices are isometric [Rivin 1996;
Bobenko and Springborn 2004].

(vii) Andreev-Thurston Theorem [Roeder et al. 2007] and [Bowers and Stephen-
son 1996]. Also see Exercise (4-17). Let T be a triangulation of S2 and E = {ei }
the set of edges. Assume that T is not equivalent to the edge set of a tetrahe-
dron. Assign an angle � : E → [0, π2 ] to each edge ei . The assignments must
satisfy two conditions:
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10 Hyperbolic space and its isometries

(a) If the sequence of edges (e1, e2, e3) form a closed loop on S2 satisfying∑3
i=1�(ei ) ≥ π , then these edges bound a triangle in T.

(b) If the sequence (e1, e2, e3, e4) form a closed loop on S2 satisfying∑4
i=1�(ei ) = 2π then these edges form the boundary of two adjacent

triangles.

Then there is a realization of T, (1) as a geodesic triangulation (in the spherical
metric) Tgeod ⊂ S2, unique up to Möbius equivalence, together with (2) a fam-
ily C = {Ci } of circles, centered at the vertices of Tgeod, with the property that
the two circles in C centered at the endpoints of an edge ei intersect at angle
�(ei ).

(viii) Erect the hyperbolic planes {PCi } ⊂ H3 rising from the circles {Ci }. Assume,
say in the ball model, that 0 is in the “exterior” Ext (Pi ) of each plane. Then
∩i Ext (Pi ) is a hyperbolic polyhedron with dihedral angles {�(ei )} coming
from the intersecting circles centered at the endpoints of the edges {ei }.

For analysis of properties of ideal polyhedrons (all vertices at “infinity” in H3) see
Rivin [1996].

Restricting the hyperbolic metric to a hyperbolic plane in the model yields the
two-dimensional hyperbolic metric on that plane. Particular cases are the vertical half-
plane rising from R in the upper half-space model and the equatorial plane in the ball
model.

Proof of Property (iii). For the proof that the Möbius transformations are orientation-
preserving isometries of the models, see Exercise 1-7. Here we show that there are no
other such isometries, concentrating on the hyperbolic plane.

Given three positive distances d1, d2, d3 satisfying the triangle inequality, and a
point z on an oriented line � ∈ H2, there is a triangle  with a vertex at z, a side of
length d1 lying on the positive side of �, a side of length d2 lying in the right side of �
and sharing the vertex z, and a third side of length d3. There is one other triangle with
sides of these lengths: the reflection of  in �. One of the two is uniquely determined
if an ordering of the vertices is given and required to give the positive orientation of
the triangle they bound.

Given an orientation-preserving isometry T , the T -images of three points not on a
line are not on a hyperbolic line either. There is a Möbius transformation A such that
A ◦ T fixes the three points. It then pointwise fixes the sides of the triangle they deter-
mine, and then fixes the whole triangle, say . That is, T (z) = A−1(z), for z ∈ . If
′ is a triangle sharing an edge with , there is Möbius transformation A1 such that
T (z) = A−1

1 (z) on ′. Necessarily A1 = A. Continuing on, building up the whole
plane H2 by adding in succession adjacent triangles, we conclude that T ≡ A.

Proof of Property (iv). Working in the upper half-space model, in view of (iii), we
need only prove that the vertical axis �, rising from z = 0 is itself a geodesic. Fix
a pair of points t1, t2 ∈ �. Let �x = �x(s) be a smooth parameterized arc α between
t1 < t2 ∈ �. Differentiating with respect to s,
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