CONTENTS

Preface

1 INTRODUCTION
1.1 NONLINEAR COMPUTATIONAL MECHANICS
1.2 SIMPLE EXAMPLES OF NONLINEAR STRUCTURAL BEHAVIOR
 1.2.1 Cantilever
 1.2.2 Column
1.3 NONLINEAR STRAIN MEASURES
 1.3.1 One-Dimensional Strain Measures
 1.3.2 Nonlinear Truss Example
 1.3.3 Continuum Strain Measures
1.4 DIRECTIONAL DERIVATIVE, LINEARIZATION AND EQUATION SOLUTION
 1.4.1 Directional Derivative
 1.4.2 Linearization and Solution of Nonlinear Algebraic Equations
EXERCISES

2 MATHEMATICAL PRELIMINARIES
2.1 INTRODUCTION
2.2 VECTOR AND TENSOR ALGEBRA
 2.2.1 Vectors
 2.2.2 Second-Order Tensors
 2.2.3 Vector and Tensor Invariants
 2.2.4 Higher-Order Tensors
2.3 LINEARIZATION AND THE DIRECTIONAL DERIVATIVE
 2.3.1 One Degree of Freedom
 2.3.2 General Solution to a Nonlinear Problem
2.3.3 Properties of the Directional Derivative 48
2.3.4 Examples of Linearization 49

2.4 TENSOR ANALYSIS 54
2.4.1 The Gradient and Divergence Operators 54
2.4.2 Integration Theorems 56

EXERCISES 57

3 ANALYSIS OF THREE-DIMENSIONAL TRUSS STRUCTURES 59
3.1 INTRODUCTION 59
3.2 KINEMATICS 61
3.2.1 Linearization of Geometrical Descriptors 63
3.3 INTERNAL FORCES AND HYPERELASTIC CONSTITUTIVE EQUATIONS 64
3.4 NONLINEAR EQUILIBRIUM EQUATIONS AND THE NEWTON–RAPHSON SOLUTION 66
3.4.1 Equilibrium Equations 66
3.4.2 Newton–Raphson Procedure 67
3.4.3 Tangent Elastic Stiffness Matrix 68
3.5 TOTAL POTENTIAL ENERGY 71
3.5.1 Principle of Virtual Work 72
3.6 ELASTO-PLASTIC BEHAVIOR 75
3.6.1 Multiplicative Decomposition of the Stretch 76
3.6.2 Rate-Independent Plasticity 77
3.6.3 Incremental Kinematics 81
3.6.4 Time Integration 83
3.6.5 Stress Update and Return Mapping 84
3.6.6 Algorithmic Tangent Modulus 87
3.6.7 Revised Newton–Raphson Procedure 88
3.7 EXAMPLES 89
3.7.1 Inclined Axial Rod 89
3.7.2 Trussed Frame 90

EXERCISES 91

4 KINEMATICS 96
4.1 INTRODUCTION 96
4.2 THE MOTION 96
4.3 MATERIAL AND SPATIAL DESCRIPTIONS 97
4.4 DEFORMATION GRADIENT 99
4.5 STRAIN 102
4.6 POLAR DECOMPOSITION 106
4.7 VOLUME CHANGE 112
CONTENTS

4.8 DISTORTIONAL COMPONENT OF THE DEFORMATION GRADIENT 113

4.9 AREA CHANGE 116

4.10 LINEARIZED KINEMATICS 117

4.10.1 Linearized Deformation Gradient 117

4.10.2 Linearized Strain 118

4.10.3 Linearized Volume Change 119

4.11 VELOCITY AND MATERIAL TIME DERIVATIVES 119

4.11.1 Velocity 119

4.11.2 Material Time Derivative 120

4.11.3 Directional Derivative and Time Rates 121

4.11.4 Velocity Gradient 122

4.12 RATE OF DEFORMATION 123

4.13 SPIN TENSOR 126

4.14 RATE OF CHANGE OF VOLUME 129

4.15 SUPERIMPOSED RIGID BODY MOTIONS AND OBJECTIVITY 130

EXERCISES 132

5 STRESS AND EQUILIBRIUM 137

5.1 INTRODUCTION 137

5.2 CAUCHY STRESS TENSOR 137

5.2.1 Definition 137

5.2.2 Stress Objectivity 141

5.3 EQUILIBRIUM 142

5.3.1 Translational Equilibrium 142

5.3.2 Rotational Equilibrium 144

5.4 PRINCIPLE OF VIRTUAL WORK 145

5.5 WORK CONJUGACY AND ALTERNATIVE STRESS REPRESENTATIONS 146

5.5.1 The Kirchhoff Stress Tensor 146

5.5.2 The First Piola–Kirchhoff Stress Tensor 147

5.5.3 The Second Piola–Kirchhoff Stress Tensor 150

5.5.4 Deviatoric and Pressure Components 153

5.6 STRESS RATES 154

EXERCISES 156

6 HYPERELASTICITY 158

6.1 INTRODUCTION 158

6.2 HYPERELASTICITY 158

6.3 ELASTICITY TENSOR 160

6.3.1 The Material or Lagrangian Elasticity Tensor 160

6.3.2 The Spatial or Eulerian Elasticity Tensor 161
Table of Contents

6.4 **ISOTROPIC HYPERELASTICITY** 162
 - 6.4.1 Material Description 162
 - 6.4.2 Spatial Description 163
 - 6.4.3 Compressible Neo-Hookean Material 165

6.5 **INCOMPRESSIBLE AND NEARLY INCOMPRESSIBLE MATERIALS** 168
 - 6.5.1 Incompressible Elasticity 168
 - 6.5.2 Incompressible Neo-Hookean Material 170
 - 6.5.3 Nearly Incompressible Hyperelastic Materials 172

6.6 **ISOTROPIC ELASTICITY IN PRINCIPAL DIRECTIONS** 175
 - 6.6.1 Material Description 175
 - 6.6.2 Spatial Description 176
 - 6.6.3 Material Elasticity Tensor 177
 - 6.6.4 Spatial Elasticity Tensor 179
 - 6.6.5 A Simple Stretch-Based Hyperelastic Material 180
 - 6.6.6 Nearly Incompressible Material in Principal Directions 181
 - 6.6.7 Plane Strain and Plane Stress Cases 184
 - 6.6.8 Uniaxial Rod Case 185

EXERCISES 186

7 **LARGE ELASTO-PLASTIC DEFORMATIONS** 188
 - 7.1 INTRODUCTION 188
 - 7.2 THE MULTIPLICATIVE DECOMPOSITION 188
 - 7.3 RATE KINEMATICS 193
 - 7.4 RATE-INDEPENDENT PLASTICITY 197
 - 7.5 PRINCIPAL DIRECTIONS 199
 - 7.6 INCREMENTAL KINEMATICS 203
 - 7.6.1 The Radial Return Mapping 206
 - 7.6.2 Algorithmic Tangent Modulus 208
 - 7.7 TWO-DIMENSIONAL CASES 209

EXERCISES 212

8 **LINEARIZED EQUILIBRIUM EQUATIONS** 214
 - 8.1 INTRODUCTION 214
 - 8.2 LINEARIZATION AND THE NEWTON–RAPHSON PROCESS 214
 - 8.3 LAGRANGIAN LINEARIZED INTERNAL VIRTUAL WORK 216
 - 8.4 EULERIAN LINEARIZED INTERNAL VIRTUAL WORK 217
 - 8.5 LINEARIZED EXTERNAL VIRTUAL WORK 219
 - 8.5.1 Body Forces 219
 - 8.5.2 Surface Forces 219
 - 8.6 VARIATIONAL METHODS AND INCOMPRESSIBILITY 221
 - 8.6.1 Total Potential Energy and Equilibrium 222
CONTENTS

8.6.2 Lagrange Multiplier Approach to Incompressibility 223
8.6.3 Penalty Methods for Incompressibility 226
8.6.4 Hu–Washizu Variational Principle for Incompressibility 227
8.6.5 Mean Dilatation Procedure 229

EXERCISES 232

9 DISCRETIZATION AND SOLUTION 234
9.1 INTRODUCTION 234
9.2 DISCRETIZED KINEMATICS 234
9.3 DISCRETIZED EQUILIBRIUM EQUATIONS 239
9.3.1 General Derivation 239
9.3.2 Derivation in Matrix Notation 241
9.4 DISCRETIZATION OF THE LINEARIZED EQUILIBRIUM EQUATIONS 242
9.4.1 Constitutive Component: Indicial Form 244
9.4.2 Constitutive Component: Matrix Form 245
9.4.3 Initial Stress Component 246
9.4.4 External Force Component 247
9.4.5 Tangent Matrix 249
9.5 MEAN DILATATION METHOD FOR INCOMPRESSIBILITY 251
9.5.1 Implementation of the Mean Dilatation Method 251
9.6 NEWTON–RAPHSON ITERATION AND SOLUTION PROCEDURE 253
9.6.1 Newton–Raphson Solution Algorithm 253
9.6.2 Line Search Method 254
9.6.3 Arc Length Method 256

EXERCISES 258

10 COMPUTER IMPLEMENTATION 260
10.1 INTRODUCTION 260
10.2 USER INSTRUCTIONS 263
10.3 OUTPUT FILE DESCRIPTION 269
10.4 ELEMENT TYPES 272
10.5 SOLVER DETAILS 274
10.6 PROGRAM STRUCTURE 276
10.7 MASTER m-FILE FlagSHyP 278
10.8 FUNCTION residual_and_stiffness_assembly 285
10.9 FUNCTION constitutive_matrix 294
10.10 FUNCTION geometric_matrix 295
10.11 FUNCTION pressure_load_and_stiffness_assembly 296
10.12 EXAMPLES 298
10.12.1 Simple Patch Test 298
10.12.2 Nonlinear Truss 299
10.12.3 Strip with a Hole 300
CONTENTS

10.12.4 Plane Strain Nearly Incompressible Strip 300
10.12.5 Twisting Column 302
10.12.6 Elasto-Plastic Cantilever 303
10.13 APPENDIX: DICTIONARY OF MAIN VARIABLES 306
10.14 APPENDIX: CONSTITUTIVE EQUATION SUMMARY 309

Bibliography 316

Index 318