Contents

Preface
page xv

1. **ODE Integration Methods**
 - 1.1 Introduction
 - 1.2 Euler Methods
 - 1.2.1 Forward Euler
 - 1.2.2 Backward Euler
 - 1.3 Runge–Kutta Methods
 - 1.3.1 RK Coefficients
 - 1.3.2 Variable Step Size Methods
 - 1.3.3 SHK: Sommeijer, Van Der Houwen, and Kok Method
 - 1.4 Linear Multistep Methods (LMMs)
 - 1.4.1 General
 - 1.4.2 Backward Differentiation Formulas (BDFs)
 - 1.4.3 Numerical Differentiation Formulas (NDFs)
 - 1.4.4 Convergence
 - 1.4.5 Adams Methods
 - 1.5 Truncation Error and Order of Integration
 - 1.5.1 LMM Truncation Error
 - 1.5.2 Verification of Integration Order
 - 1.6 Stiffness
 - 1.7 How to Choose a Numerical Integrator
 - 1.8 Installation of the R Package Ryacas
 - 1.9 Installation of the R Package rSymPy
 - References

2. **Stability Analysis of ODE Integrators**
 - 2.1 General
 - 2.1.1 Dahlquist Barrier Theorems
 - 2.2 Dahlquist Test Problem
 - 2.3 Euler Methods

© in this web service Cambridge University Press
www.cambridge.org
Contents

2.3.1 Forward Euler 76
2.3.2 Backward Euler 76

2.4 Runge–Kutta Methods 76
2.4.1 RK-1: First-Order Runge–Kutta 76
2.4.2 RK-2: Second-Order Runge–Kutta 79
2.4.3 RK-4: Fourth-Order Runge–Kutta 80
2.4.4 RKF-54: Fehlberg Runge–Kutta 83
2.4.5 SHK: Sommeijer, van der Houwen, and Kok 85

2.5 Linear Multistep Methods (LMMs) 87
2.5.1 General 87
2.5.2 Backward Differentiation Formulas (BDFs) 89
2.5.3 Numerical Differentiation Formulas (NDFs) 95
2.5.4 Adams Methods 97

References 101

3 Numerical Solution of PDEs 102

3.1 Some PDE Basics 102
3.2 Initial and Boundary Conditions 103
3.3 Types of PDE Solutions 105
3.4 PDE Subscript Notation 105
3.5 A General PDE System 106
3.6 Classification of PDEs 107
3.7 Discretization 109
3.7.1 General Finite Difference Terminology 109
3.7.2 The Mesh 111
3.7.3 Nonuniform Grid Spacing 112
3.7.4 The Courant–Friedrichs–Lewy Number 112
3.7.5 The Stencil 112
3.7.6 Upwinding 113
3.8 Method of Lines (MOL) 114
3.8.1 Introduction 114
3.8.2 Finite Difference Matrices 115
3.8.3 MOL 1D: Cartesian Coordinates 123
3.8.4 MOL 2D: Cartesian Coordinates 141
3.8.5 MOL 2D: Polar Coordinates 175
3.9 Fully Discrete Methods 194
3.9.1 Introduction 194
3.9.2 Overview of Some Common Schemes 194
3.9.3 Results from Simulating a Hyperbolic Equation 197
3.10 Finite Volume Method 207
3.10.1 General 207
3.10.2 Application to a 1D Conservative System 208
3.10.3 Application to a General Conservation Law 210
3.11 Interpretation of Results 210
3.11.1 Verification 210
3.11.2 Validation 211
3.11.3 Truncation Error 211
Contents

3.A Appendix: Derivative Matrix Coefficients 211
 3.A.1 First Derivative Schemes 211
 3.A.2 Second Derivative Schemes 213
 3.A.3 Third Derivative Schemes 215
 3.A.4 Fourth Derivative Schemes 216
3.B Appendix: Derivative Matrix Library 217
 3.B.1 Example 220
References 222

4 PDE Stability Analysis ... 225
 4.1 Introduction ... 225
 4.2 The Well-Posed PDE Problem 226
 4.3 Matrix Stability Method 231
 4.3.1 Semi-Discrete Systems 231
 4.4 Von Neumann Stability Method 242
 4.4.1 General ... 242
 4.4.2 Fully Discrete Systems 243
 4.4.3 Semi-Discrete Systems 253
 4.5 Unstructured Grids ... 260
 4.A Fourier Transforms ... 261
References 262

5 Dissipation and Dispersion ... 264
 5.1 Introduction ... 264
 5.2 Dispersion Relation .. 264
 5.3 Amplification Factor .. 265
 5.4 Dissipation .. 266
 5.5 Dispersion ... 267
 5.6 Dissipation and Dispersion Errors 269
 5.6.1 The 1D Advection Equation, Semi-Discrete Upwind 269
 5.6.2 The 1D Advection Equation, Semi-Discrete Second-Order
 Upwind ... 270
 5.6.3 The 1D Advection Equation, Fully Discrete Upwind 275
 5.6.4 The 1D Advection Equation, Fully Discrete Lax–Friedrichs
 (LxF) .. 276
 5.7 Group and Phase Velocities 277
 5.7.1 Exact Relationships for the Basic PDE 278
 5.7.2 Semi-Discrete, First-Order Upwind Discretization 278
 5.7.3 Semi-Discrete Leapfrog Discretization 279
 5.7.4 Fully Discrete Leapfrog Discretization 280
 5.8 Modified PDEs ... 282
References 284

6 High-Resolution Schemes ... 285
 6.1 Introduction ... 285
 6.2 The Riemann Problem ... 285
 6.3 Total Variation Diminishing (TVD) Methods 286
 6.3.1 TVD Numerical Integration 287
6.4 Godunov Method
 6.4.1 Godunov’s Theorem
6.5 Flux Limiter Method
 6.5.1 How Limiters Work
 6.5.2 Limiter Functions
6.6 Monotone Upstream-Centered Schemes for Conservation Laws (MUSCL)
 6.6.1 Linear Reconstruction
 6.6.2 Kurganov and Tadmor Central Scheme
 6.6.3 Piecewise Parabolic Reconstruction
 6.6.4 Solutions to the Euler Equations
6.7 Weighted Essentially Nonoscillatory (WENO) Method
 6.7.1 Polynomial Reconstruction: Finite Volume Approach
 6.7.2 Polynomial Coefficients
 6.7.3 Polynomial Reconstruction: Finite Difference Reconstruction
 6.7.4 WENO Reconstruction
 6.7.5 Alternative Calculation for Substencil Coefficients
 6.7.6 Weights
 6.7.7 Smoothness Indicators
 6.7.8 Calculation of Smoothness Indicator Coefficients
 6.7.9 Flux Splitting
 6.7.10 Implementation of a WENO Finite Volume Scheme
 6.7.11 Scalar Problems
 6.7.12 Euler Equation Problems
 6.7.13 2D Examples
6.8 Further Reading
6.A Eigenvalues of Euler Equations
 6.B.1 The Main Program
 6.B.2 The Derivative Function
 6.B.3 The MUSCL Function
 6.B.4 Initialization
6.C R Code for Simulating 1D Euler Equations Problems
 6.C.1 The Main Routine
 6.C.2 Initialization
 6.C.3 The Derivative Function
 6.C.4 The MUSCL Function
 6.C.5 Postsimulation Calculations
References

7 Meshless Methods
 7.1 Introduction
 7.2 Radial Basis Functions (RBF)
 7.2.1 Positive Definite RBFs
 7.2.2 RBF with Compact Support (CSRBF)
 7.3 Interpolation
 7.3.1 Interpolation Example: 1D
Contents

7.3.2 Interpolation Example: 2D 387
7.3.3 Larger Interpolation Example: 2D 389
7.3.4 Interpolation Example: 3D 393
7.3.5 Interpolation with Polynomial Precision 397
7.4 Differentiation 398
7.4.1 Derivative Example: 1D 399
7.5 Local RBFs 401
7.5.1 Allocating Stencil Nodes 403
7.5.2 Choosing the Right Shape Parameter Value 404
7.6 Application to Partial Differential Equations 406
7.6.1 Explicit Euler Integration 406
7.6.2 Weighted Average Integration 407
7.6.3 Method of Lines 408
7.6.4 With Nonlinear Terms 408
7.6.5 Initial Conditions (ICs) and Boundary Conditions (BCs) 409
7.6.6 Stability Considerations 410
7.6.7 Time-Dependent PDEs 410
7.6.8 Time-Independent PDEs 434
7.A Franke's Function 452
7.B Halton Sequence 452
7.C RBF Definitions 454
References 455

8 Conservation Laws 457
8.1 Introduction 457
8.2 Korteweg–de Vries (KdV) Equation 459
8.2.1 The First Conservation Law, u 459
8.2.2 The Second Conservation Law, u^2 459
8.2.3 The Third Conservation Law, $u^3 + \frac{1}{2} u_x$ 460
8.2.4 Another Conservation Law 460
8.2.5 An Infinity of Conservation Laws 461
8.2.6 KdV Equation: 2D 463
8.2.7 KdV Equation with Variable Coefficients (vcKdV) 464
8.3 Conservation Laws for Other Evolutionary Equations 466
8.3.1 Nonlinear Schrödinger Equation 466
8.3.2 Boussinesq Equation 468
8.A Symbolic Algebra Computer Source Code 468
References 469

9 Case Study: Analysis of Golf Ball Flight 470
9.1 Introduction 470
9.2 Drag Force 472
9.3 Magnus Force 476
9.4 Gravitational Force 479
9.5 Golf Ball Construction 480
9.6 Ambient Conditions 480
Contents

9.7 The Shot 483
 9.7.1 Golf Ball Compression 483
 9.7.2 Spin 484
 9.7.3 Launch Angle 484
 9.7.4 Bounce and Roll 485
 9.7.5 Shot Statistics 486
9.8 Completing the Mathematical Description 487
 9.8.1 The Effect of Wind 488
9.9 Computer Simulation 489
 9.9.1 Driver Shots 490
 9.9.2 Wood Shots 491
 9.9.3 Iron Shots 491
 9.9.4 Effect of Wind 492
 9.9.5 Effect of Differing Ambient Conditions 493
 9.9.6 Effect of Push/Pull and Inclined Golf Ball Spin Axis 495
 9.9.7 Drag/Lift Carry Test 497
 9.9.8 Drag Effect at Ground Level 497
9.10 Computer Code 499
 9.10.1 Main Program 499
 9.10.2 Derivative Function 503
 9.10.3 Initial Conditions 505
References 506

10 Case Study: Taylor–Sedov Blast Wave 508
 10.1 Brief Background to the Problem 508
 10.2 System Analysis 508
 10.3 Some Useful Gas Law Relations 512
 10.4 Shock Wave Conditions 514
 10.5 Energy 515
 10.6 Photographic Evidence 516
 10.7 Trinity Site Conditions 518
 10.8 Numerical Solution 519
 10.9 Integration of PDEs 529
 10.A Appendix: Similarity Analysis 530
 10.B Appendix: Analytical Solution 531
 10.B.1 Closed-Form Solution 533
 10.B.2 Additional Complexity 537
 10.B.3 The Los Alamos Primer 537
References 537

11 Case Study: The Carbon Cycle 539
 11.1 Introduction 539
 11.2 The Model 539
 11.2.1 Atmosphere 542
 11.2.2 Oceans 543
 11.2.3 Air–Ocean Exchange 544
 11.2.4 Carbonate Chemistry 546
11.2.5 Acidity of Surface Seawater 552
11.2.6 Ocean Circulation 553
11.2.7 Emission Profiles 554
11.2.8 Earth's Radiant Energy Balance 557
11.2.9 How the Atmosphere is Affected by Radiation 562
11.3 Simulation Results 571
11.3.1 Carbon Buildup in the Atmosphere 571
11.3.2 Carbon Buildup in Surface Seawater and Accompanying Acidification 572
11.3.3 Surface Temperature Changes 575
11.A Appendices 576
11.A.1 Model Differential Equations 576
11.A.2 Correlations for Chemical Equilibrium and Dissociation Constants 576
11.A.3 Revelle and Uptake Factors 577
11.A.4 Residence Time 579
11.A.5 Mass Action 580
11.A.6 The Electromagnetic Spectrum 580
References 581

Appendix: A Mathematical Aide-Mémoire

Index

Color plates follow page 284