Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributors</td>
<td>xv</td>
</tr>
</tbody>
</table>

1 Introduction to UAV Systems

1.1 Introduction to UAV Types and Missions
 1.1.1 Fixed-wing UAVs
 1.1.2 Flapping-wing UAVs
 1.1.3 Rotary-wing UAVs
 1.1.4 Convertible UAVs
 1.1.5 Hybrid UAVs

1.2 UAV Swarming and Miniaturization

1.3 UAV Miniaturization: Challenges and Opportunities
 1.3.1 Gust Sensitivity
 1.3.2 Energy Density
 1.3.3 Aerodynamic Efficiency
 1.3.4 Other Design Challenges

1.4 UAV Networks and Their Advantages
 1.4.1 Unique Features of Airborne Networks
 1.4.2 Mobility Models for UAV Networks
 1.4.3 State of the art in UAV Networks

1.5 Summary

2 Air-to-Ground and Air-to-Air Data Link Communication

2.1 Air-to-Ground Communication for Manned Aviation
 2.1.1 Radar for Ground-based Aircraft Identification
 2.1.2 Distance and Direction Measurements Beyond Radar
 2.1.3 Instrument Landing System for Precise Localization
 2.1.4 Voice Communication between Air and Ground

2.2 Modernization of Aerial Communication for Future Growth
 2.2.1 Modern Surveillance and Navigation
 2.2.2 Digital Communication for ATM

2.3 Practical UAV and MUAV Data Links
 2.3.1 Control and Telemetry
 2.3.2 Payload or Application Data Communication
Contents

2.4 Analysis of Terrestrial Wireless Broadband Solutions for UAV Links 37
2.4.1 Single Antenna UAV System Analysis 38
2.4.2 Multiple Antenna UAV Air-to-Air Link Analysis 38
2.4.3 Multiple Antenna UAV Air-to-Ground Link Analysis 41
2.5 Conclusions 44

3 Aerial Wi-Fi Networks 45
3.1 Introduction 45
3.2 Aerial Network Characteristics 46
3.2.1 Vehicles 47
3.2.2 3D Nature 47
3.2.3 Mobility 48
3.2.4 Payload and Flight Time Constraints 48
3.3 Communication Demands of Autonomous Aerial Networks 49
3.3.1 Device Autonomy 49
3.3.2 Mission Autonomy 50
3.4 Quantitative Communication Requirements 51
3.5 Aerial Wi-Fi Networks: Results from Existing Real-World Measurements 52
3.5.1 Network Architecture 52
3.5.2 Experimental Results 54
3.6 Conclusions and Outlook 56

4 Disruption-Tolerant Airborne Networks and Protocols 58
4.1 Introduction 58
4.2 Airborne Network Environment 59
4.3 Related Work 62
4.3.1 Traditional Internet Protocols 62
4.3.2 Mobile Wireless Network Protocols 65
4.3.3 Transportation Network Protocols 67
4.3.4 Cross-Layering 69
4.4 Aeronautical Protocol Architecture 70
4.4.1 AeroTP: TCP-Friendly Transport Protocol 71
4.4.2 AeroNP: IP-Compatible Network Protocol 76
4.4.3 AeroRP: Location-Aware Routing Algorithm 78
4.5 Performance Evaluation 82
4.5.1 AeroTP Simulation Results 82
4.5.2 AeroRP and AeroNP Simulation Results 88
4.6 Summary 95

5 UAV Systems and Networks: Emulation and Field Demonstration 96
5.1 Unmanned Aerial Vehicle (UAV) Platform Systems 96
5.1.1 UAV Platform System 97
5.1.2 UAV Autopilot Control System 99
5.1.3 UAV Communication System 102
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.4 UAV Monitoring System</td>
<td>103</td>
</tr>
<tr>
<td>5.1.5 UAV System Integration and Safety</td>
<td>105</td>
</tr>
<tr>
<td>5.2 Unmanned Aerial Vehicle (UAV) Networked Systems</td>
<td>107</td>
</tr>
<tr>
<td>5.2.1 UAV Internetworking Operational Concept (CONOPS)</td>
<td>107</td>
</tr>
<tr>
<td>5.2.2 Network Configuration</td>
<td>108</td>
</tr>
<tr>
<td>5.2.3 Network Emulation</td>
<td>108</td>
</tr>
<tr>
<td>5.2.4 Network Protocols</td>
<td>110</td>
</tr>
<tr>
<td>5.2.5 Network Systems Integration</td>
<td>112</td>
</tr>
<tr>
<td>5.2.6 Field Demonstration and Analysis</td>
<td>115</td>
</tr>
<tr>
<td>5.3 Related Works</td>
<td>117</td>
</tr>
<tr>
<td>5.4 Summary</td>
<td>118</td>
</tr>
<tr>
<td>6 Integrating UAS into the NAS – Regulatory, Technical, and Research Challenges</td>
<td>120</td>
</tr>
<tr>
<td>6.1 Regulatory Framework For Civil Aviation – Past and Present</td>
<td>120</td>
</tr>
<tr>
<td>6.1.1 Airworthiness Certification</td>
<td>121</td>
</tr>
<tr>
<td>6.1.2 Regulations for Continuing Airworthiness</td>
<td>124</td>
</tr>
<tr>
<td>6.1.3 Certification for Crew and Operators</td>
<td>124</td>
</tr>
<tr>
<td>6.2 Regulatory Bodies and UAS Legislation – Present and Future</td>
<td>126</td>
</tr>
<tr>
<td>6.2.1 European Union (EU)</td>
<td>127</td>
</tr>
<tr>
<td>6.2.2 United States of America</td>
<td>131</td>
</tr>
<tr>
<td>6.2.3 Canada</td>
<td>132</td>
</tr>
<tr>
<td>6.2.4 Australia</td>
<td>133</td>
</tr>
<tr>
<td>6.2.5 Brazil</td>
<td>135</td>
</tr>
<tr>
<td>6.2.6 South Africa</td>
<td>135</td>
</tr>
<tr>
<td>6.2.7 Japan</td>
<td>136</td>
</tr>
<tr>
<td>6.2.8 Summary</td>
<td>136</td>
</tr>
<tr>
<td>6.3 Standards Organizations</td>
<td>137</td>
</tr>
<tr>
<td>6.3.1 International Civil Aviation Organization (ICAO)</td>
<td>137</td>
</tr>
<tr>
<td>6.3.2 Radio Technical Commission for Aeronautics: SC-228</td>
<td>138</td>
</tr>
<tr>
<td>6.3.3 European Organization for Civil Aviation Equipment: WG 73/WG 93</td>
<td>139</td>
</tr>
<tr>
<td>6.3.4 Joint Authorities for Rulemaking on Unmanned Systems</td>
<td>139</td>
</tr>
<tr>
<td>6.3.5 Summary</td>
<td>140</td>
</tr>
<tr>
<td>6.4 Social Implications – Privacy and Security</td>
<td>140</td>
</tr>
<tr>
<td>6.4.1 Privacy</td>
<td>140</td>
</tr>
<tr>
<td>6.5 Gaps between Regulatory Needs and Technical State-of-the-Art</td>
<td>145</td>
</tr>
<tr>
<td>6.6 Technical Challenges</td>
<td>146</td>
</tr>
<tr>
<td>6.6.1 Research Questions</td>
<td>147</td>
</tr>
<tr>
<td>6.6.2 Minimum Transmission Range Needed by the UAVs to Keep the Airborne Backbone Network Connected at all Times</td>
<td>147</td>
</tr>
<tr>
<td>6.6.3 Minimum Number of UAVs Needed to Monitor all Suspect Mobile Targets at all Times</td>
<td>154</td>
</tr>
<tr>
<td>6.6.4 Modified Minimum Flow Problem</td>
<td>158</td>
</tr>
<tr>
<td>6.7 Summary</td>
<td>159</td>
</tr>
<tr>
<td>6.8 Acknowledgements</td>
<td>159</td>
</tr>
</tbody>
</table>
Table of Contents

7 Safety, Security, and Privacy Aspects in UAV Networks 160
 7.1 Introduction 160
 7.2 Safety in the Sky 161
 7.2.1 Automatic Dependent Surveillance – Broadcast (ADS-B) 162
 7.2.2 FLARM 163
 7.2.3 ADS-B Versus FLARM for Gliders 163
 7.2.4 L-Band Digital Aeronautical Communications System (LDACS) 164
 7.2.5 Aeronautical Mobile Aircraft Communication System (AeroMACS) 164
 7.2.6 Self-organized Airborne Network (SOAN) 164
 7.2.7 Beyond the Radio Line of Sight (BRLoS) 166
 7.2.8 Benefits of Self-organized Airborne Networks 166
 7.3 Privacy on the Ground 166
 7.3.1 Fourth Amendment in the Context of UAVs 167
 7.4 Information Security 168
 7.5 Security Requirements at UAV Level 169
 7.6 Security Requirements at UAV Network Level 172
 7.6.1 Security Requirements for Standalone Swarms 173
 7.6.2 Security Requirements in Ground-Controlled UAV Fleets 174
 7.7 Ongoing Research and Products Related to UAV Security 175
 7.8 Summary 176

8 Collaboration Between Autonomous Drones and Swarming 177
 8.1 Introduction and Background 177
 8.2 Why Use Swarms of Unmanned Aerial Systems? 178
 8.2.1 Continuous Flight/Mission 179
 8.2.2 Increased Mission Flexibility 180
 8.2.3 Increased Capabilities 181
 8.2.4 Additional Features 182
 8.2.5 Summary 183
 8.3 Major Issues and Research Directions 183
 8.3.1 Localization, Proximity Detection, and Positioning 183
 8.3.2 Man Swarm Interaction 186
 8.3.3 Degraded Mode of Operation 187
 8.3.4 Safety and Legal Issues 189
 8.3.5 Security 190
 8.4 Conclusion 192

9 Real-World Applications 194
 9.1 Introduction 194
 9.2 Wildlife Detection 194
 9.2.1 Aerial Wildlife Counts 195
 9.2.2 Raven RQ-11A Small Unmanned Aircraft System 196
Contents

9.2.3 Using the Raven RQ-11A sUAS to Estimate the Abundance of Sandhill Cranes (*Grus canadensis*) at Monte Vista National Wildlife Refuge, Colorado, USA 198
9.2.4 Evaluation of the Raven sUAS to Detect Greater Sage-Grouse (*Centrocercus urophasianus*) on Leks, Middle Park, Colorado, USA 201
9.3 Enabling Emergency Communications 204
 9.3.1 Aerial Base Stations 204
 9.3.2 Cyber Physical System Perspective 205
 9.3.3 Scientific and Engineering Challenges 206
 9.3.4 Disaster Response and Emergency Communications 207
 9.3.5 Research Challenges 208
 9.3.6 Deriving Theoretical Models 210
9.4 Summary 213

References 214
Index 242