Contents

Preface

List of Abbreviations

1 Biomedical Instrumentation and Devices

1.1 Classification of Biomedical Instruments and Devices 1

1.2 Outline of the Design Process: From Concept to Clinical Device

1.2.1 Engineering Design 4

1.3 Regulation of Biomedical Instrumentation and Devices 8

1.4 Safety of Biomedical Instrumentation and Devices

1.4.1 ISO and IEC Standards 10

1.4.2 Biological Testing 14

1.5 Evaluation of a New Device 14

2 Sensors and Transducers

2.1 Micro-Electro-Mechanical Systems 19

2.1.1 Noise in MEMS Devices 22

2.2 Voltage Sensors: Example – Biopotential Electrodes 24

2.2.1 Clinical and Biomedical Voltage Measurements 24

2.2.2 Action Potentials and Cellular Depolarization 24

2.2.3 Surface Electrode Design 28

2.3 Optical Sensors: Example – a Pulse Oximeter 31

2.3.1 Clinical Blood Oxygenation Measurements 31

2.3.2 Measurement Principle Using an Optical Sensor 33

2.3.3 Optical Transmitter and Detector Design 35

2.4 Displacement/Pressure Sensors and Accelerometers 37

2.4.1 Clinical Pathologies Producing Changes in Internal Pressure 38

2.4.2 Resistive and Piezoresistive Transducers 38

2.4.3 Piezoelectric Sensors 42
Contents

2.4.4 Capacitive Transducers 45
2.4.5 Inductive Transducers: the Linear Voltage Differential Transformer 48

2.5 Chemical Sensors: Example – a Glucose Monitor 49
2.5.1 Clinical Need for Glucose Monitoring 49
2.5.2 System Requirements for Glucose Monitoring 49
2.5.3 Basic Detection Principles of Glucose Monitoring 50
2.5.4 Designing a Portable Device for Glucose Monitoring 52

2.6 Acoustic Sensors: Example – a Microphone for Hearing Aids 53
2.6.1 Clinical Need for Hearing Aids 53
2.6.2 Microphone Design for Hearing Aids 54

3 Signal Filtering and Amplification 62

3.1 Frequency-Dependent Circuit Characteristics: Bode Plots 63
3.2 Passive Filter Design 71
3.2.1 First-Order Low-Pass and High-Pass Filters 72
3.2.2 Higher Order High-Pass, Low-Pass, Band-Pass and Band-Stop Filters 73
3.2.3 Resonant Circuits as Filters 77

3.3 Operational Amplifiers 79
3.3.1 Circuit Analysis Rules for Op-Amps 80
3.3.2 Single Op-Amp Configurations 80
3.3.3 The Instrumentation Amplifier 87

3.4 Active Filters 89
3.4.1 First-Order Low-Pass, High-Pass and Band-Pass Active Filters 89
3.4.2 Higher Order Butterworth, Chebyshev and Sallen–Key Active Filters 92

3.5 Noise in Electrical Circuits 95

3.6 Examples of Signal Amplification and Filtering 97
3.6.1 Signal Conditioning in the Pulse Oximeter 98
3.6.2 Amplification and Filtering in a Glucose Sensor 100

4 Data Acquisition and Signal Processing 106

4.1 Sampling Theory and Signal Aliasing 108
4.2 Dynamic Range, Quantization Noise, Differential and Integrated Non-Linearity 108
4.3 Electronic Building Blocks of Analogue-to-Digital Converters

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1 Sample-and-Hold Circuits</td>
<td>113</td>
</tr>
<tr>
<td>4.3.2 Comparator Circuits</td>
<td>115</td>
</tr>
<tr>
<td>4.3.3 Shift Register Circuits</td>
<td>116</td>
</tr>
</tbody>
</table>

4.4 Analogue-to-Digital Converter Architectures

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.1 Flash ADCs</td>
<td>118</td>
</tr>
<tr>
<td>4.4.2 Successive Approximation Register ADCs</td>
<td>119</td>
</tr>
<tr>
<td>4.4.3 Pipelined ADCs</td>
<td>121</td>
</tr>
<tr>
<td>4.4.4 Oversampling ADCs</td>
<td>122</td>
</tr>
</tbody>
</table>

4.5 Commercial ADC Specifications

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.1 ADC for a Pulse Oximeter</td>
<td>127</td>
</tr>
<tr>
<td>4.5.2 ADC for a Glucose Meter</td>
<td>128</td>
</tr>
</tbody>
</table>

4.6 Characteristics of Biomedical Signals and Post-Acquisition Signal Processing

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.1 Deterministic and Stochastic Signals</td>
<td>128</td>
</tr>
<tr>
<td>4.6.2 The Fourier Transform</td>
<td>131</td>
</tr>
<tr>
<td>4.6.3 Cross-Correlation</td>
<td>133</td>
</tr>
<tr>
<td>4.6.4 Methods of Dealing with Low Signal-to-Noise Data</td>
<td>135</td>
</tr>
</tbody>
</table>

5 Electrocardiography

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Electrical Activity in the Heart</td>
<td>141</td>
</tr>
<tr>
<td>5.2 Electrode Design and Einthoven’s Triangle</td>
<td>145</td>
</tr>
<tr>
<td>5.2.1 Standard Twelve-Lead Configuration</td>
<td>146</td>
</tr>
<tr>
<td>5.3 ECG System Design</td>
<td>149</td>
</tr>
<tr>
<td>5.3.1 Common-Mode Signals and Other Noise Sources</td>
<td>150</td>
</tr>
<tr>
<td>5.3.2 Reducing the Common-Mode Signal</td>
<td>152</td>
</tr>
<tr>
<td>5.3.3 Design of Lead-Off Circuitry</td>
<td>154</td>
</tr>
<tr>
<td>5.3.4 Filtering and Sampling</td>
<td>155</td>
</tr>
<tr>
<td>5.4 Signal Processing of the ECG Signal and Automatic Clinical Diagnosis</td>
<td>156</td>
</tr>
<tr>
<td>5.4.1 University of Glasgow (Formerly Glasgow Royal Infirmary) Algorithm</td>
<td>157</td>
</tr>
<tr>
<td>5.5 Examples of Abnormal ECG Recordings and Clinical Interpretation</td>
<td>158</td>
</tr>
<tr>
<td>5.6 ECG Acquisition During Exercise: Detection of Myocardial Ischaemia</td>
<td>161</td>
</tr>
<tr>
<td>5.7 High-Frequency (HF) ECG Analysis</td>
<td>163</td>
</tr>
</tbody>
</table>
Contents

6 **Electroencephalography** 169

6.1 Electrical Signals Generated in the Brain 171
 6.1.1 Postsynaptic Potentials 171
 6.1.2 Volume Conduction Through the Brain 173

6.2 EEG System Design 175
 6.2.1 Electrodes and their Placement on the Scalp 176
 6.2.2 Amplifiers/Filters and Digitizing Circuitry 178

6.3 Features of a Normal EEG: Delta, Theta, Alpha and Beta Waves 180

6.4 Clinical Applications of EEG 182
 6.4.1 EEG in Epilepsy 182
 6.4.2 Role of EEG in Anaesthesia: the Bispectral Index 183

6.5 EEG Signals in Brain–Computer Interfaces for Physically Challenged Patients 187
 6.5.1 Applications of BCIs to Communication Devices 188
 6.5.2 Applications of BCIs in Functional Electrical Stimulation and Neuroprostheses 190

6.6 Source Localization in EEG Measurements (Electrical Source Imaging) 191

7 **Digital Hearing Aids** 196

7.1 The Human Auditory System 198

7.2 Causes of Hearing Loss 201

7.3 Basic Design of a Digital Hearing Aid 202

7.4 Different Styles of Hearing Aid 202

7.5 Components of a Hearing Aid 203
 7.5.1 Earmoulds and Vents 204
 7.5.2 Microphones 207

7.6 Digital Signal Processing 213
 7.6.1 Feedback Reduction 216
 7.6.2 Adaptive Directionality and Noise Reduction 216
 7.6.3 Wind-Noise Reduction 218
 7.6.4 Multi-Channel and Impulsive Noise-Reduction Algorithms 220
 7.6.5 Compression 220
 7.6.6 Multi-Channel Compression: BILL and TILL 224
 7.6.7 Frequency Lowering 224

7.7 Digital-to-Analogue Conversion and the Receiver 225
Contents

7 Power Requirements and Hearing Aid Batteries
- 7.9 Wireless Hearing Aid Connections 227
- 7.10 Binaural Hearing Aids 229
- 7.11 Hearing Aid Characterization Using KEMAR 231

8 Mobile Health, Wearable Health Technology and Wireless Implanted Devices
- 8.1 Mobile and Electronic Health: Mobile Phones and Smartphone Apps 238
- 8.2 Wearable Health Monitors 239
- 8.2.1 Technology for Wearable Sensors 240
- 8.3 Design Considerations for Wireless Implanted Devices 243
- 8.3.1 Data Transmission Through the Body 243
- 8.4 Examples of Wireless Implanted Devices 250
- 8.4.1 Cardiovascular Implanted Electronic Devices 250
- 8.4.2 Continuous Glucose Monitors 261
- 8.4.3 Implanted Pressure Sensors for Glaucoma 264
- 8.5 Packaging for Implanted Devices 265

9 Safety of Biomedical Instruments and Devices
- 9.1 Physiological Effects of Current Flow Through the Human Body 274
- 9.2 The Hospital Electrical Supply 277
- 9.2.1 Hospital-Grade Receptacles 279
- 9.3 Macroshock, Microshock and Leakage Currents: Causes and Prevention 280
- 9.3.1 Macroshock 280
- 9.3.2 Protection Against Macroshock 280
- 9.3.3 Microshock 284
- 9.3.4 Protection Against Microshock 284
- 9.4 Classification of Medical Devices 285
- 9.4.1 Classes of Equipment 286
- 9.4.2 Types of Equipment 287
- 9.5 Safety Testing Equipment 288
- 9.5.1 Leakage Current Measurements 289
Contents

9.5.2 Earthbond Testing 292

9.6 Safety of Implanted Devices 293
 9.6.1 Biocompatibility 293
 9.6.2 Electromagnetic Safety 300
 9.6.3 Clinical Studies 301

9.7 Design of Devices That Can Be Used in a Magnetic Resonance Imaging Scanner 302

Appendix: Safety Policy Documents 304

Glossary 308

Index 320