Principles of Biomedical Instrumentation

This accessible yet in-depth textbook describes the step-by-step processes involved in biomedical device design. Integrating microfabrication techniques, sensors and digital signal processing with key clinical applications, it covers:

- the measurement, amplification and digitization of physiological signals, and the removal of interfering signals
- the transmission of signals from implanted sensors through the body, and the issues concerning the powering of these sensors
- networks for transferring sensitive patient data to hospitals for continuous home-monitoring systems
- electrical and biological tests for ensuring patient safety
- the cost-benefit and technological trade-offs involved in device design
- current challenges in biomedical device design.

With dedicated chapters on electrocardiography, digital hearing aids and mobile health, and including numerous end-of-chapter homework problems, online solutions and additional references for extended learning, it is the ideal resource for senior undergraduate students taking courses in biomedical instrumentation and clinical technology.

Andrew G. Webb is Professor and Director of the C. J. Gorter Center for High Field Magnetic Resonance Imaging at the Leiden University Medical Center. He has authored or co-authored several books, including *Introduction to Medical Imaging* (Cambridge University Press, 2010) and *Introduction to Biomedical Imaging* (Wiley, 2002).

CAMBRIDGE TEXTS IN BIOMEDICAL ENGINEERING

Series Editors W. Mark Saltzman, Yale University Shu Chien, University of California, San Diego

Series Advisors Jerry Collins, Alabama A & M University Robert Malkin, Duke University Kathy Ferrara, University of California, Davis Nicholas Peppas, University of Texas, Austin Roger Kamm, Massachusetts Institute of Technology Masaaki Sato, Tohoku University, Japan Christine Schmidt, University of Florida George Truskey, Duke University Douglas Lauffenburger, Massachusetts Institute of Technology

Cambridge Texts in Biomedical Engineering provide a forum for high-quality textbooks targeted at undergraduate and graduate courses in biomedical engineering. They cover a broad range of biomedical engineering topics from introductory texts to advanced topics, including biomechanics, physiology, biomedical instrumentation, imaging, signals and systems, cell engineering and bioinformatics, as well as other relevant subjects, with a blending of theory and practice. While aiming primarily at biomedical engineering students, this series is also suitable for courses in broader disciplines in engineering, the life sciences and medicine.

Principles of Biomedical Instrumentation

Andrew G. Webb

Leiden University Medical Center, The Netherlands

Cambridge University Press 978-1-107-11313-8 — Principles of Biomedical Instrumentation Andrew G. Webb Frontmatter More Information

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107113138 DOI: 10.1017/9781316286210

© Andrew G. Webb 2018

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2018

Printed in the United Kingdom by TJ International Ltd. Padstow, Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

LC record available at https://lccn.loc.gov/2017024373

Names: Webb, Andrew (Andrew G.), author. Title: Principles of biomedical instrumentation / Andrew G. Webb. Other titles: Cambridge texts in biomedical engineering. Description: Cambridge, United Kingdom ; New York, NY, USA : Cambridge University Press, [2018] | Series: Cambridge texts in biomedical engineering | Includes bibliographical references and index. Identifiers: LCCN 2017024373 | ISBN 9781107113138 Subjects: | MESH: Equipment and Supplies | Equipment Design Classification: LCC R857.B54 | NLM W 26 | DDC 610.28/4–dc23

ISBN 978-1-107-11313-8 Hardback

Additional resources available at www.cambridge.org/webb-principles

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Pr	Preface page xi			<i>page</i> xi
List of Abbreviations			xvi	
	_	_		
1	Bion	nedical	Instrumentation and Devices	1
	1.1	Classi	fication of Biomedical Instruments and Devices	1
	1.2	Outlin	ne of the Design Process: From Concept to Clinical	
		Devic	e	3
		1.2.1	Engineering Design	4
	1.3	Regul	ation of Biomedical Instrumentation and Devices	8
	1.4	Safety	of Biomedical Instrumentation and Devices	10
		1.4.1	ISO and IEC Standards	10
		1.4.2	Biological Testing	14
	1.5	Evalu	ation of a New Device	14
2	Sens	sors an	d Transducers	18
	2.1	Micro	-Electro-Mechanical Systems	19
		2.1.1	Noise in MEMS Devices	22
	2.2	Voltag	ge Sensors: Example – Biopotential Electrodes	24
		2.2.1	Clinical and Biomedical Voltage Measurements	24
		2.2.2	Action Potentials and Cellular Depolarization	24
		2.2.3	Surface Electrode Design	28
	2.3	Optica	al Sensors: Example – a Pulse Oximeter	31
		2.3.1	Clinical Blood Oxygenation Measurements	31
		2.3.2	Measurement Principle Using an Optical Sensor	33
		2.3.3	Optical Transmitter and Detector Design	35
	2.4	Displa	acement/Pressure Sensors and Accelerometers	37
		2.4.1	Clinical Pathologies Producing Changes in Internal	
			Pressure	38
		2.4.2	Resistive and Piezoresistive Transducers	38
		2.4.3	Piezoelectric Sensors	42

Cambridge University Press 978-1-107-11313-8 — Principles of Biomedical Instrumentation Andrew G. Webb Frontmatter <u>More Information</u>

i Contents	3	
	2.4.4 Capacitive Transducers	45
	2.4.5 Inductive Transducers: the Linear Voltage Differential	
	Transformer	48
2.5	Chemical Sensors: Example – a Glucose Monitor	49
	2.5.1 Clinical Need for Glucose Monitoring	49
	2.5.2 System Requirements for Glucose Monitoring	49
	2.5.3 Basic Detection Principles of Glucose Monitoring	50
	2.5.4 Designing a Portable Device for Glucose Monitoring	52
2.6	Acoustic Sensors: Example – a Microphone for Hearing Aids	53
	2.6.1 Clinical Need for Hearing Aids	53
	2.6.2 Microphone Design for Hearing Aids	54
3 Sign	al Filtering and Amplification	62
3.1	Frequency-Dependent Circuit Characteristics: Bode Plots	63
3.2	Passive Filter Design	71
	3.2.1 First-Order Low-Pass and High-Pass Filters	72
	3.2.2 Higher Order High-Pass, Low-Pass, Band-Pass and	
	Band-Stop Filters	73
	3.2.3 Resonant Circuits as Filters	77
3.3	Operational Amplifiers	79
	3.3.1 Circuit Analysis Rules for Op-Amps	80
	3.3.2 Single Op-Amp Configurations	80
	3.3.3 The Instrumentation Amplifier	87
3.4	Active Filters	89
	3.4.1 First-Order Low-Pass, High-Pass and Band-Pass Active	
	Filters	89
	3.4.2 Higher Order Butterworth, Chebyshev and Sallen–Key	
	Active Filters	92
3.5	Noise in Electrical Circuits	95
3.6	Examples of Signal Amplification and Filtering	97
	3.6.1 Signal Conditioning in the Pulse Oximeter	98
	3.6.2 Amplification and Filtering in a Glucose Sensor	100
4 Data	a Acquisition and Signal Processing	106
4.1	Sampling Theory and Signal Aliasing	108
4.2	Dynamic Range, Quantization Noise, Differential and Integrated	
	Non-Linearity	108

Cambridge University Press 978-1-107-11313-8 — Principles of Biomedical Instrumentation Andrew G. Webb Frontmatter <u>More Information</u>

vii Contents

	4.2	D1		
	4.3		onic Building Blocks of Analogue-to-Digital	
		Conve		112
		4.3.1	Sample-and-Hold Circuits	113
		4.3.2	1	115
		4.3.3		116
	4.4		gue-to-Digital Converter Architectures	117
		4.4.1	Flash ADCs	118
		4.4.2		119
			Pipelined ADCs	121
			Oversampling ADCs	122
	4.5		nercial ADC Specifications	127
			ADC for a Pulse Oximeter	127
			ADC for a Glucose Meter	128
	4.6		cteristics of Biomedical Signals and Post-Acquisition Signal	
		Proces	-	128
			Deterministic and Stochastic Signals	128
			The Fourier Transform	131
			Cross-Correlation	133
		4.6.4	Methods of Dealing with Low Signal-to-Noise Data	135
5	Flect	trocard	iography	140
_	LICO			
	5.1		ical Activity in the Heart	141
	5.2	Electro	ode Design and Einthoven's Triangle	145
		5.2.1	8	146
	5.3		System Design	149
			Common-Mode Signals and Other Noise Sources	150
		5.3.2	Reducing the Common-Mode Signal	152
		5.3.3	Design of Lead-Off Circuitry	154
		5.5.5	Design of Lead-Off Chedity	154
		5.3.3 5.3.4	Filtering and Sampling	154 155
	5.4	5.3.4	с ·	
	5.4	5.3.4	Filtering and Sampling Processing of the ECG Signal and Automatic Clinical	
	5.4	5.3.4 Signal	Filtering and Sampling Processing of the ECG Signal and Automatic Clinical osis	155
	5.4	5.3.4 Signal Diagn	Filtering and Sampling Processing of the ECG Signal and Automatic Clinical osis	155
	5.4 5.5	5.3.4 Signal Diagn 5.4.1	Filtering and Sampling Processing of the ECG Signal and Automatic Clinical osis University of Glasgow (Formerly Glasgow Royal	155 156
		5.3.4 Signal Diagn 5.4.1 Examp	Filtering and Sampling Processing of the ECG Signal and Automatic Clinical osis University of Glasgow (Formerly Glasgow Royal Infirmary) Algorithm	155 156
		5.3.4 Signal Diagn 5.4.1 Examp Interpr ECG	Filtering and Sampling Processing of the ECG Signal and Automatic Clinical osis University of Glasgow (Formerly Glasgow Royal Infirmary) Algorithm ples of Abnormal ECG Recordings and Clinical retation Acquisition During Exercise: Detection of Myocardial	155 156 157
	5.5	5.3.4 Signal Diagn 5.4.1 Examp Interp	Filtering and Sampling Processing of the ECG Signal and Automatic Clinical osis University of Glasgow (Formerly Glasgow Royal Infirmary) Algorithm ples of Abnormal ECG Recordings and Clinical retation Acquisition During Exercise: Detection of Myocardial	155 156 157

6 Ele	ctroencephalography	169
6.1	Electrical Signals Generated in the Brain	171
	6.1.1 Postsynaptic Potentials	171
	6.1.2 Volume Conduction Through the Brain	173
6.2	EEG System Design	175
	6.2.1 Electrodes and their Placement on the Scalp	176
	6.2.2 Amplifiers/Filters and Digitizing Circuitry	178
6.3	Features of a Normal EEG: Delta, Theta, Alpha and Beta	
	Waves	180
6.4	Clinical Applications of EEG	182
	6.4.1 EEG in Epilepsy	182
	6.4.2 Role of EEG in Anaesthesia: the Bispectral Index	183
6.5	EEG Signals in Brain–Computer Interfaces for Physically	
	Challenged Patients	187
	6.5.1 Applications of BCIs to Communication Devices	188
	6.5.2 Applications of BCIs in Functional Electrical Stimulation	
	and Neuroprostheses	190
6.6	Source Localization in EEG Measurements (Electrical Source	
	Imaging)	191
7 Dig	ital Hearing Aids	196
7 Dig 7.	-	196 198
-	1 The Human Auditory System	
7. 7.	1 The Human Auditory System	198
7. 7. 7.	 The Human Auditory System Causes of Hearing Loss 	198 201
7. 7. 7. 7.	 The Human Auditory System Causes of Hearing Loss Basic Design of a Digital Hearing Aid 	198 201 202
7. 7. 7. 7.	 The Human Auditory System Causes of Hearing Loss Basic Design of a Digital Hearing Aid Different Styles of Hearing Aid 	198 201 202 202
7. 7. 7. 7.	 The Human Auditory System Causes of Hearing Loss Basic Design of a Digital Hearing Aid Different Styles of Hearing Aid Components of a Hearing Aid 	198 201 202 202 203
7. 7. 7. 7. 7.	 The Human Auditory System Causes of Hearing Loss Basic Design of a Digital Hearing Aid Different Styles of Hearing Aid Components of a Hearing Aid 7.5.1 Earmoulds and Vents 	198 201 202 202 203 204
7. 7. 7. 7. 7.	 The Human Auditory System Causes of Hearing Loss Basic Design of a Digital Hearing Aid Different Styles of Hearing Aid Components of a Hearing Aid T.5.1 Earmoulds and Vents T.5.2 Microphones 	198 201 202 202 203 204 207
7. 7. 7. 7. 7.	 The Human Auditory System Causes of Hearing Loss Basic Design of a Digital Hearing Aid Different Styles of Hearing Aid Components of a Hearing Aid Components of a Hearing Aid T.5.1 Earmoulds and Vents T.5.2 Microphones Digital Signal Processing T.6.1 Feedback Reduction 	198 201 202 202 203 204 207 213
7. 7. 7. 7. 7.	 The Human Auditory System Causes of Hearing Loss Basic Design of a Digital Hearing Aid Different Styles of Hearing Aid Components of a Hearing Aid Components of a Hearing Aid T.5.1 Earmoulds and Vents T.5.2 Microphones Digital Signal Processing T.6.1 Feedback Reduction 	198 201 202 202 203 204 207 213 216
7. 7. 7. 7. 7.	 The Human Auditory System Causes of Hearing Loss Basic Design of a Digital Hearing Aid Different Styles of Hearing Aid Components of a Hearing Aid T.5.1 Earmoulds and Vents T.5.2 Microphones Digital Signal Processing T.6.1 Feedback Reduction T.6.2 Adaptive Directionality and Noise Reduction 	198 201 202 203 204 207 213 216 216
7. 7. 7. 7. 7.	 The Human Auditory System Causes of Hearing Loss Basic Design of a Digital Hearing Aid Different Styles of Hearing Aid Components of a Hearing Aid Components of a Hearing Aid T.5.1 Earmoulds and Vents T.5.2 Microphones Digital Signal Processing T.6.1 Feedback Reduction T.6.2 Adaptive Directionality and Noise Reduction T.6.3 Wind-Noise Reduction 	198 201 202 203 204 207 213 216 216
7. 7. 7. 7. 7.	 The Human Auditory System Causes of Hearing Loss Basic Design of a Digital Hearing Aid Different Styles of Hearing Aid Components of a Hearing Aid Components of a Hearing Aid T.5.1 Earmoulds and Vents T.5.2 Microphones Digital Signal Processing T.6.1 Feedback Reduction T.6.2 Adaptive Directionality and Noise Reduction T.6.3 Wind-Noise Reduction T.6.4 Multi-Channel and Impulsive Noise-Reduction 	198 201 202 203 204 207 213 216 216 218
7. 7. 7. 7. 7.	 The Human Auditory System Causes of Hearing Loss Basic Design of a Digital Hearing Aid Different Styles of Hearing Aid Components of a Hearing Aid Components of a Hearing Aid T.5.1 Earmoulds and Vents T.5.2 Microphones Digital Signal Processing T.6.1 Feedback Reduction T.6.2 Adaptive Directionality and Noise Reduction T.6.3 Wind-Noise Reduction T.6.4 Multi-Channel and Impulsive Noise-Reduction Algorithms T.6.5 Compression 	198 201 202 203 204 207 213 216 216 216 218 220
7. 7. 7. 7. 7.	 The Human Auditory System Causes of Hearing Loss Basic Design of a Digital Hearing Aid Different Styles of Hearing Aid Components of a Hearing Aid Components of a Hearing Aid T.5.1 Earmoulds and Vents T.5.2 Microphones Digital Signal Processing T.6.1 Feedback Reduction T.6.2 Adaptive Directionality and Noise Reduction T.6.3 Wind-Noise Reduction T.6.4 Multi-Channel and Impulsive Noise-Reduction Algorithms T.6.5 Compression 	198 201 202 203 204 207 213 216 216 216 218 220 220

Cambridge University Press 978-1-107-11313-8 — Principles of Biomedical Instrumentation Andrew G. Webb Frontmatter <u>More Information</u>

Contents		
7.8	Power Requirements and Hearing Aid Batteries	227
7.9	Wireless Hearing Aid Connections	227
7.10	Binaural Hearing Aids	229
7.11	Hearing Aid Characterization Using KEMAR	231
8 Mob	ile Health, Wearable Health Technology and Wireless Implanted	
Devi	Ces	235
8.1	Mobile and Electronic Health: Mobile Phones and Smartphone	
	Apps	238
8.2	Wearable Health Monitors	239
	8.2.1 Technology for Wearable Sensors	240
8.3	Design Considerations for Wireless Implanted Devices	243
	8.3.1 Data Transmission Through the Body	243
8.4	Examples of Wireless Implanted Devices	250
	8.4.1 Cardiovascular Implantable Electronic Devices	250
	8.4.2 Continuous Glucose Monitors	261
	8.4.3 Implanted Pressure Sensors for Glaucoma	264
8.5	Packaging for Implanted Devices	265
	endix: Reference Standards and Information Related to Wireless	•
Impl	ant Technology	266
9 Safe	ty of Biomedical Instruments and Devices	271
9.1	Physiological Effects of Current Flow Through the Human	
	Body	274
9.2	The Hospital Electrical Supply	277
	9.2.1 Hospital-Grade Receptacles	279
9.3	Macroshock, Microshock and Leakage Currents: Causes and	
	Prevention	280
	9.3.1 Macroshock	280
	9.3.2 Protection Against Macroshock	280
	9.3.3 Microshock	284
	9.3.4 Protection Against Microshock	284
9.4	Classification of Medical Devices	285
	9.4.1 Classes of Equipment	286
	9.4.2 Types of Equipment	287
9.5	Safety Testing Equipment	288
	9.5.1 Leakage Current Measurements	289

Cambridge University Press 978-1-107-11313-8 — Principles of Biomedical Instrumentation Andrew G. Webb Frontmatter <u>More Information</u>

х

	9.5.2	Earthbond Testing	292
9.6	Safety	of Implanted Devices	293
	9.6.1	Biocompatibility	293
	9.6.2	Electromagnetic Safety	300
	9.6.3	Clinical Studies	301
9.7	Design	n of Devices That Can Be Used in a Magnetic Reso	onance
	Imagin	ng Scanner	302
App	endix: S	Safety Policy Documents	304
Glossa	ry		308
Index			320

Preface

The main aim of this textbook is to provide the tools to understand the function and design of different biomedical instruments and devices, and for the reader to be able to use these tools to envision new and improved future technology and designs. Throughout the book the terms medical and biomedical are used interchangeably, and similarly with the terms device and instrument. With several thousand instruments and devices on the market it is clearly impossible to consider more than a handful in detail. Instead, this book concentrates on the following general approach.

- (i) What is the clinically relevant measurement that needs to be made?
- (ii) What are the pathophysiological mechanisms that give rise to the clinical condition?
- (iii) What are the characteristics (e.g. magnitude, frequency, bandwidth) of the signal to be measured? How accurate and reproducible does the measurement have to be? What are the interfering signals that have to be suppressed?
- (iv) What are the recommended instrumental specifications for the particular device? How does one design the device to meet these specifications?
- (v) How does one test the biocompatibility and electrical safety of such a device, whether it is external or implanted, so that it can operate safely for a number of years?

Traditionally, most of these instruments and devices have been located in a hospital, and patients travel to the clinics for the measurements to be performed by trained personnel. However, this model is changing and nowadays there is an increasing role for what is termed mobile health (m-health), which involves a much greater degree of healthcare being performed by the patients themselves at home. This means that a biomedical device must operate in the patient's home environment without specialized training, as well as transmit the data wirelessly and securely to the physician. This model of **continuous patient monitoring** not only provides a much more complete assessment of the patient's health, but also reduces the number of visits that a patient has to make to the hospital.

The main areas of technological development that have enabled the rapid incorporation of m-health into the healthcare infrastructure are wearable and

Xİİ

Preface

implantable devices that can transmit data to the physician via mobile phone networks. The integration of micromachined and microfabricated electronics has enabled much smaller high performance devices to be designed. Classic measurement circuits such as the Wheatstone bridge, which used to consist of small lumped element resistors, can now be produced using integrated circuit technology on a submillimetre scale and integrated with amplifiers and filters on a single chip. The role of integrated digital signal processors (DSPs) has become much more important, and has played a key role in fundamental improvements in devices such as hearing aids. The technical challenges of the trade-off between increased signal processing power, miniaturization and battery life are discussed throughout the book.

ORGANIZATION

The skills needed to design and analyze the performance of biomedical instruments come mainly from an engineering background. This book assumes a basic level of understanding of electrical circuits and signal processing, typical of a second-year undergraduate course. No prior knowledge of clinical pathophysiology is assumed, although a basic course in anatomy would be useful.

Chapter 1 outlines the general principles involved in designing a biomedical instrument or device. An outline of the classification schemes used by regulatory bodies and manufacturers is given, along with a general discussion on the steps involved in the design and regulation process. Finally, the various safety standards for biomedical instrumentation are introduced, including testing of hardware, software and user interfaces.

Chapters 2 to 4 cover the basic building blocks of many types of biomedical instrumentation, namely: (i) the transducer/sensor, (ii) the electronic filters and amplifiers, and (iii) the data acquisition system. Analysis of these building blocks involves basic circuit theory and methods. At the end of each of these chapters, examples of the integration of these analysis tools into a real instrument are included. For example, the designs of sequential elements of a pulse oximeter are covered in sections 2.3 (sensor), section 3.6.1 (signal filtering and filtering) and section 4.5.1 (analogue-to-digital conversion).

Chapter 2 begins with a brief introduction to micro-electro-mechanical system (MEMS) devices, which are widely used in modern biomedical devices. Different types of transducers are then described, based on voltage sensors, optical sensors, displacement/pressure sensors, chemical sensors and acoustic sensors. Practical examples are given for each transducer, specifically a biopotential electrode, pulse oximeter, disposable blood pressure monitor, glucose monitor and hearing-aid microphone, respectively.

XIII

Preface

Chapter 3 concentrates on the design of passive and active filters, as well as the analysis and design of amplification circuits based on operational amplifiers (opamps). Common higher order filter geometries such as Butterworth, Chebyshev and Sallen–Key are analyzed. Finally, specific amplification and filtering circuits for a pulse oximeter and glucose monitor are shown.

Chapter 4 outlines the different types of analogue-to-digital converter (ADC) architectures that can be used for biomedical instruments, as well as their respective characteristics in terms of resolution and sampling rates. The concepts of oversampling and digital filtering are summarized in the framework of the delta-sigma ADC. The characteristics of different biosignals are described in order to classify them as either deterministic or stochastic: subdivision into different subgroups is also discussed. Finally, different signal processing algorithms including Fourier transformation and time-domain correlation techniques are summarized. Practical examples of correlation analysis in a Swan–Ganz catheter used for cardiac output measurements, as well as short-time Fourier transformation of electroencephalographic signals, are shown.

Chapter 5 deals with the most common measurement using biopotential electrodes, the electrocardiogram (ECG). The design and placement of electrodes, amplification and filtering circuitry, data acquisition system, and integrated signal processing and analysis algorithms are all discussed. Clinical applications that relate the underlying pathophysiology to changes in the ECG signal are outlined, including the most common heart diseases. Finally, the acquisition and analysis of high-frequency ECG signals are described.

Chapter 6 describes the instrumentation associated with a second measurement technique using biopotential electrodes, electroencephalography (EEG). Applications of EEG measurements to diseases such as epilepsy are outlined, as well as its increasing use in monitoring levels of anaesthesia in the operating theatre using the bispectral index. Finally, applications aiding patients with severe physical injuries to communicate and move via brain–computer interfaces are described.

Chapter 7 covers the basics of digital hearing aid design. Different configurations of microphones, and their use in beam-forming techniques to aid speech comprehension in noisy environments, are described. The important role of DSPs in continuous real-time processing within a very small device is discussed in terms of the design trade-offs of performance versus long battery life. Wireless integration of digital hearing aids with external devices, such as mobile phones, is also outlined.

Chapter 8 concentrates on the general topic of m-health and wireless transmission of biomedical data. The role of smartphones and medically related software applications is described, as well as the increasing use of wearable healthmonitoring technology. From a medical device point of view the most important

xiv

Preface

developments are the designs of implantable devices, which must be able to connect wirelessly with external transmitters and receivers. Several cardiovascular wireless implanted devices are described, as well as continuous glucose monitors and very new devices such as those for measuring intraocular pressure in patients with glaucoma.

Chapter 9 summarizes the safety issues involved with powered biomedical instruments, both in terms of electrical safety and also biocompatibility. The concepts of electrical macroshock and microshock are introduced, as well as methods of designing equipment to minimize the risks of these events occurring. Equipment for carrying out electrical safety testing is described. The safety of implanted devices is discussed in terms of the biocompatibility of the materials used, as well as their electromagnetic safety. Examples of several biological testing procedures such as cytotoxicity and haemocompatibility are given. Finally, the design of medical devices that can also be used in a magnetic resonance imaging scanner is discussed.

PROBLEMS

The majority of the problems are based specifically around the material in this book, and especially those in Chapters 2 to 4 test knowledge of the circuits, analysis tools and mode of operation of each of the sub-blocks within a biomedical instrument. Some questions may require the writing of relatively simple numerical computer code. Studying instrumentation design is not only a question of understanding the current state of the art but also constitutes a platform to envision alternative approaches, and to speculate on which new technologies and improvements may be incorporated in the future. Therefore, especially in Chapters 5 to 9, there are a number of problems that require the use of external sources in order to investigate devices that are not covered specifically in this book. For example, with the knowledge gained from Chapters 2 to 4 how would one design a new technique for harvesting the body's internal energy for powering an implanted sensor (Problem 8.4). In a similar vein, investigating cases of device failure is a good way to see how apparently watertight safety procedures can, in fact, fail and to consider the implications of these failures for future designs (Problem 1.3).

REFERENCE BOOKS

There is a large number of books covering different aspects of the principles and design of biomedical instrumentation and devices. The unofficial 'bible' of general biomedical instrumentation remains *The Encyclopedia of Medical Devices and Instrumentation* edited by J. G. Webster and published by Wiley-Blackwell in 2004, as well as the distilled classic textbook *Medical Instrumentation: Application and Design*, 4th edition, J. G. Webster, John Wiley & Sons, 2010.

xv Preface

In terms of books that concentrate on one specific aspect of design, the list below represents a partial list that have proved very useful in preparing this current volume.

- Chapter 1 Yock, P. G., Zenios, S., Makower, J. *et al.* (eds) *Biodesign: The Process* of Innovating Medical Technologies. Cambridge University Press; 2015.
- Chapter 2 Jones D. P. and Watson. J. *Biomedical Sensors* (Sensor Technology Series). Momentum Press; 2010.
- Chapter 3 Huijsing, J. Operational Amplifiers: Theory and Design, 3rd edn. Springer; 2016.
- Chapter 4 Pelgrom, M. J. Analog-to-Digital Conversion. Springer; 2013.
- Chapter 5 Crawford, J. & Doherty, L. *Practical Aspects of ECG Recording*. M&K Update Ltd; 2012.
- Chapter 6 Libenson, M. H. *Practical Approach to Electroencephalography*. Saunders; 2009.
- Chapter 7 Popelka, G. R., Moore, B. C. J., Fay, R. R. & Popper, A. N. *Hearing Aids*. Springer; 2016.
- Chapter 8 Salvo, P. & Hernandez-Silveira, M. (eds) Wireless Medical Systems and Algorithms: Design and Applications (Devices, Circuits, and Systems). CRC Press; 2016.
- Chapter 9 Gad, S. C. & McCord, M G. Safety Evaluation in the Development of Medical Devices and Combination Products, 3rd edn. CRC Press; 2008.

Abbreviations

Association for the Advancement of Medical Instrumentation
alternating current
analogue-to-digital converter
acute decompensated heart failure
atrial fibrillation
automatic gain control
American National Standards Institute
application-specific integrated circuit
amplitude-shift keying
adenosine triphosphate
atrioventricular
automatic volume control
brain-computer interface
burst-compensated spectral edge frequency
body floating
bass increase at low level
bispectral index
biventricular
burst-suppression ratio
behind the ear
bandwidth
computer-aided design
Conformité Européene
cardiac floating
Code of Federal Regulations
continuous glucose monitor
completely in canal
cardiovascular implantable electronic device
common-mode rejection ratio
cardiac resynchronization therapy
cerebrospinal fluid
digital-to-analogue converter
decibel

Cambridge University Press 978-1-107-11313-8 — Principles of Biomedical Instrumentation Andrew G. Webb Frontmatter <u>More Information</u>

xvii

List of Abbreviations

DC	direct current
DDD	dual mode, dual chamber, dual sensing
DF	directivity factor
DI	directivity index
DNL	differential non-linearity
DRL	driven right leg
DSP	digital signal processing
EC	European Commission
ECG	electrocardiogram
EDR	electrodermal response
EEG	electroencephalogram
EMG	electromyogram
EMI	electromagnetic interference
EOG	electrooculogram
EPROM	erasable programmable read-only memory
EPSP	excitatory postsynaptic potential
ESI	electric source imaging
FCC	Federal Communications Commission
FDA	Food and Drug Administration
FES	functional electrical stimulation
FET	field-effect transistor
FFT	fast Fourier transform
FIR	finite impulse response
FM	frequency modulation
FSK	frequency shift keying
FT	Fourier transform
GBWP	gain bandwidth product
GDH	glucose-1-dehydrogenase
GFCI	ground-fault current interruptor
GHK	Goldman–Hodgkin–Katz
GOx	glucose oxidase
GPS	global positioning system
GSM	global systems for mobile
GSR	galvanic skin response
HPF	high-pass filter
HR	heart rate
ICA	independent component analysis
ICD	implantable cardioverter-defibrillator
ICNIRP	International Commission on Non-Ionizing Radiation Protection
ICU	intensive care unit

Cambridge University Press 978-1-107-11313-8 — Principles of Biomedical Instrumentation Andrew G. Webb Frontmatter <u>More Information</u>

xviii

List of Abbreviations		
IDE	investigational device	
IEC	International Electrotechnical Commission	
IEEE	Institute of Electrical and Electronic Engineers	
IHM	implantable haemodynamic monitor	
IIR	infinite impulse response	
ILR	implantable loop recorder	
INL	integrated non-linearity	
IOL	intraocular lens	
IOP	intraocular pressure	
IPAP	implanted pulmonary artery pressure	
IPSP	inhibitory postsynaptic potential	
ISM	industrial, scientific and medical	
ISO	International Organization for Standardization	
ITC	in the canal	
ITE	in the ear	
JFET	junction field-effect transistor	
KEMAR	Knowles Electronics Manikin for Acoustic Research	
LA	left arm	
LBBB	left bundle branch block	
LED	light-emitting diode	
LIM	line-isolation monitor	
LL	left leg	
LPF	low-pass filter	
LSB	least significant bit	
LVDT	linear voltage differential transformer	
MD	medical device	
MDRS	medical device radiocommunication service	
MEMS	micro-electro-mechanical systems	
MI	myocardial infarct	
MICS	medical implant communication service	
MRI	magnetic resonance imaging	
MSB	most significant bit	
MUX	multiplex	
NB	national body	
NC	normal conditions	
NEC	National Electrical Code	
NF	noise figure	
NFMI	near-field magnetic induction	
NIDCD	National Institute on Deafness and Other Communication Disorders	
NSTEMI	non-ST-segment elevated myocardial infarction	

Cambridge University Press 978-1-107-11313-8 — Principles of Biomedical Instrumentation Andrew G. Webb Frontmatter <u>More Information</u>

xix List of Abbreviations

OR	operating room
PA	pulmonary artery
PAC	pulmonary artery catheter
PCA	principal component analysis
PDF	probability density function
PDMS	polydimethylsiloxane
PIFA	planar inverted F-antenna
PILL	programmable increase at low level
PIPO	parallel input, parallel output
PISO	parallel input, serial output
PMA	pre-market approval
P-N	positive-negative
PSK	phase shift keying
PSP	postsynaptic potential
PTFE	polytetrafluoroethylene
PVARP	post-ventricular atrial refractory period
PVDF	polyvinyldifluoride
PWM	pulse-width modulation
QSR	quality-system regulation
RA	right arm
RAM	random access memory
RAZ	reduced amplitude zone
RBC	red blood cell
RCD	residual-current device
RF	radiofrequency
RLD	right leg drive
ROC	receiver operator characteristic
ROM	read-only memory
RPM	remote patient monitoring
RV	right ventricle
S/H	sample and hold
SA	sinoatrial
SAR	specific absorption rate
SAR ADC	successive approximation register ADC
SC	single condition
SCP	slow cortical potential
SELV	separated extra-low voltage
SFC	single-fault condition
SFDR	spurious-free dynamic range
SINAD	signal-to-noise and distortion ratio

Cambridge University Press 978-1-107-11313-8 — Principles of Biomedical Instrumentation Andrew G. Webb Frontmatter <u>More Information</u>

XX

List of Abbreviations

SIP	signal input
SIPO	serial input, parallel output
SISO	serial input, serial output
SNR	signal-to-noise ratio
SOP	signal output
SPL	sound pressure level
SpO_2	saturation of peripheral oxygen
SSVEP	steady state visual evoked potential
SVI	single ventricular
TARP	total atrial refractory period
THD	total harmonic distortion
TILL	treble increase at low level
UWB	ultrawide band
VEP	visual evoked potential
VLP	ventricular late potential
VOP	venous occlusion plethysmography
WCT	Wilson's central terminal
WDRC	wide dynamic range compression
WMTS	wireless medical telemetry system