Introduction to Probability and Statistics for Data Science

Introduction to Probability and Statistics for Data Science provides a solid course in the fundamental concepts, methods, and theory of statistics for students in statistics, data science, biostatistics, engineering, and physical science programs. It teaches students to understand, use, and build on modern statistical techniques for complex problems. The authors develop the methods from both an intuitive and mathematical angle, illustrating with simple examples how and why the methods work. More complicated examples, many of which incorporate data and code in R, show how the method is used in practice. Through this guidance, students get the big picture about how statistics works and can be applied. This text covers more modern topics such as regression trees, large-scale hypothesis testing, bootstrapping, MCMC, time series, and fewer theoretical topics such as the Cramer–Rao lower bound and the Rao–Blackwell theorem. It features more than 250 high-quality figures, 180 of which involve actual data. Data and R code are available on the book's website so that students can reproduce the examples and complete hands-on exercises.

Steven E. Rigdon is Professor of Biostatistics at Saint Louis University. He is a fellow of the American Statistical Association and is the author of *Statistical Methods for the Reliability of Repairable Systems, Calculus,* 8th and 9th editions, *Monitoring the Health of Populations by Tracking Disease Outbreaks* (2020), and *Design of Experiments for Reliability Achievement* (2022). He has received the Waldo Vizeau Award for technical contributions to quality, the Soren Bisgaard Award, and the Paul Simon Award for linking teaching and research. He is also Distinguished Research Professor Emeritus at Southern Illinois University Edwardsville.

Ronald D. Fricker, Jr. is Vice Provost for Faculty Affairs at Virginia Tech, where he has served as head of the Department of Statistics, Senior Associate Dean in the College of Science, and, subsequently, interim dean of the college. He is the author of *Introduction to Statistical Methods for Biosurveillance* (2013) and, with Steve Rigdon, *Monitoring the Health of Populations by Tracking Disease Outbreaks* (2020). He is a fellow of the American Statistical Association, a fellow of the American Association for the Advancement of Science, and an elected member of the Virginia Academy of Science, Engineering, and Medicine.

Douglas C. Montgomery is Regents' Professor and ASU Foundation Professor of Engineering at Arizona State University. He is an Honorary Member of the American Society for Quality, a fellow of the American Statistical Association, a fellow of the Institute of Industrial and Systems Engineering, and a fellow of the Royal Statistical Society. He is the author of 15 other books, including *Design and Analysis of Experiments*, 10th edition (2020) and *Design of Experiments for Reliability Achievement* (2022). He has received the Shewhart Medal, the Distinguished Service Medal, and the Brumbaugh Award from the ASQ, the Deming Lecture Award from the ASA, the Greenfield Medal from the Royal Statistical Society, and the George Box Medal from the European Network for Business and Industrial Statistics.

"This book serves as an excellent resource for students with diverse backgrounds, offering a thorough exploration of fundamental topics in statistics. The clear explanation of concepts, methods, and theory, coupled with an abundance of practical examples, provides a solid foundation to help students understand statistical principles and bridge the gap between theory and application. This book offers invaluable insights and guidance for anyone seeking to master the principles of statistics. I highly recommend adopting this book for my future statistics class."

Haijun Gong, Saint Louis University

"Professors Rigdon, Fricker and Montgomery have put together an impressive volume that covers not only basic probability and basic statistics, but also includes extensions in a number of directions, all of which have immediate relevance to the work of practitioners in quantitative fields. Suffused with common sense and insights about real data and problems, it is both approachable and precise. I'm excited about the inclusion of material on power and on multiple testing, both of which will help users become smarter about what their analyses can do, and I applaud their omission of too much theory. I also appreciate their use of R and of real data. This would be an excellent text for undergraduate or graduate-level data analysts."

Sam Buttrey, Naval Postgraduate School (NPS)

"This is a comprehensive and rich book that extends foundational concepts in statistics and probability in easily accessible form into data science as an integrated discipline. The reader applies and validates theoretical concepts in R and connects results from R back to the theory across many methods: from descriptive statistics to Bayesian models, time series, generalized linear models and more. Thoroughly enjoyable!"

Oliver Schabenberger, Virginia Tech Academy of Data Science

Introduction to Probability and Statistics for Data Science

with R

Steven E. Rigdon

Saint Louis University

Ronald D. Fricker, Jr.

Virginia Polytechnic Institute and State University

Douglas C. Montgomery

Arizona State University

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India 103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467 Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence. www.cambridge.org Information on this title: www.cambridge.org/highereducation/isbn/9781107113046 DOI: 10.1017/9781316286166 © Steven E. Rigdon, Ronald D. Fricker, Jr., and Douglas C. Montgomery 2025 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment. When citing this work, please include a reference to the DOI 10.1017/9781316286166 First published 2025 Printed in Mexico by Litográfica Ingramex, S.A. de C.V. A catalogue record for this publication is available from the British Library. A Cataloging-in-Publication data record for this book is available from the Library of Congress. ISBN 978-1-107-11304-6 Hardback ISBN 978-1-009-56835-7 Paperback Additional resources for this publication at www.cambridge.org/ProbStatsforDS. Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Steve Rigdon

To my wife Pat, who has always supported me and been at my side.

Ron Fricker

To my spouse, Christine: Tu ventus sub alis meis es.

And to my first statistics professor, Randy Spoeri: You introduced me to the subject and made it fun.

Doug Montgomery

To Cheryl, who has always supported and encouraged me. And to the memory of my first statistics professor, Ray Myers, mentor, colleague, collaborator, and friend.

CAMBRIDGE

Cambridge University Press & Assessment 978-1-107-11304-6 — Introduction to Probability and Statistics for Data Science Steven E. Rigdon, Ronald D. Fricker, Jr, Douglas C. Montgomery Frontmatter <u>More Information</u>

Pret	ace	

xiii

3

1	Intr	oduction	1
	1.1	Data Science and Statistics	2
	1.2	More on Statistics	3
		1.2.1 Populations and Samples	4
		1.2.2 Descriptive versus Inferential	
		Statistics	5
	1.3	An Introduction to R	6
	1.4	Descriptive Statistics	7
		1.4.1 Types of Data	8
		1.4.2 Example Data: US Domestic	
		Flights from 1987 to 2008	9
	1.5	Cross-Sectional Data	9
		1.5.1 Measures of Location	9
		1.5.2 Measures of Variation	16
		1.5.3 Measures of How Two Variables	
		Co-vary	18
		1.5.4 Other Summary Statistics	23
	1.6	Tabular Summaries of Data	25
	1.7	Chapter Summary	27
	1.8	Problems	29
2	Dat	a Visualization	31
	2.1	Introduction	31
	2.2	Traditional Statistical Graphics	32
		2.2.1 Bar Charts	32
		2.2.2 Pie Charts	35

	2.2.3 Histograms	35
	2.2.4 Lattice (or Trellis) Plots	38
	2.2.5 Box Plots	40
	2.2.6 Scatterplots	43
2.3	Graphics for Longitudinal Data	46
	2.3.1 Time Series Plots	47
	2.3.2 Repeated Cross-Sectional Plots	48
	2.3.3 Autocorrelation Plots	50
2.4	Chapter Summary	50
2.5	Problems	52
Bas	sic Probability	54
3.1	Introduction	54
3.2	Events and Sample Spaces	54
	3.2.1 Probability Axioms	56
	3.2.2 Union of Events	57
	3.2.3 Intersection of Independent	
	Events	59
	3.2.4 Complementary Events	60
	3.2.5 Conditional Probability	62
3.3	Calculating Probabilities	63
	3.3.1 Sample Point Method	64
	3.3.2 Counting Sample Points	66
	3.3.3 Combining Events	70
3.4	Bringing It All Together	71
	3.4.1 Law of Total Probability	71
	3.4.2 Bayes' Theorem	74
3.5	Chapter Summary	77
3.6	Problems	78

VIII

4	Ran	dom Variables	82
	4.1	Introduction	82
	4.2	Discrete Random Variables	82
		4.2.1 Probability Mass Function	82
		4.2.2 Cumulative Distribution	
		Function	86
		4.2.3 Expected Value	88
		4.2.4 Variance and Standard Deviation	91
	4.3	Continuous Random Variables	93
		4.3.1 Probability Density Function	93
		4.3.2 Cumulative Distribution	07
		Function	9/
		4.3.3 Expected value	101
	4.4	4.3.4 Variance and Standard Deviation	101
	4.4	Expected value and variance	102
	45	Properties Loint Distributions for Discrete	102
	4.5	Joint Distributions for Discrete Dandom Variables	105
	16	Conditional Distributions for	105
	4.0	Discrete Random Variables	111
	47	Joint Distributions for Continuous	111
	T • /	Random Variables	113
	4.8	Conditional Distributions for	115
		Continuous Random Variables	121
	4.9	Conditioning on a Random	
		Variable	123
	4.10	Chapter Summary	126
	4.11	Problems	127
5	Disc	crete Distributions	132
	5.1	Introduction	132
	5.2	Binomial Distribution	132
	5.3	Geometric Distribution	141
	5.4	Negative Binomial	146
	5.5	Hypergeometric Distribution	149
	5.6	Poisson Distribution	154
	5.7	Multinomial Distribution	160
	5.8	Chapter Summary	164
	5.9	Problems	166
6	Cor	ntinuous Distributions	170
	6.1	Introduction	170
	6.2	Uniform Distribution	170
	6.3	Exponential Distribution	173
	6.4	Normal Distribution	180
	U.T	6.4.1 Standardizing	183
		6.4.2. Bivariate and Multivariate	105
		Normal Distributions	186

Contents

6.5	Gamma and Weibull Distribu-	
	tions	189
	6.5.1 Gamma Distribution	189
	6.5.2 Weibull Distribution	192
6.6	Distributions Related to the	
	Normal	196
	6.6.1 Chi-square (χ^2) Distribution	196
	6.6.2 <i>t</i> Distribution	198
	6.6.3 <i>F</i> Distribution	201
6.7	Beta Distribution	202
6.8	Transformations	205
	6.8.1 Simulating from Distributions	207
6.9	Moment Generating Functions	209
6.10	Quantile-Quantile Plots	215
6.11	Chapter Summary	220
6.12	Problems	221

7 About Data and Data Collection

7.1	Introduction	226
7.2	Data and the Scientific Method	228
7.3	Experimental vs. Observational	
	Data	231
	7.3.1 Convenience vs. Probability	
	Sampling	234
7.4	Accuracy vs. Precision	234
7.5	Types of Random Samples	236
	7.5.1 Sources of Bias	237
7.6	Types of Error	239
7.7	Historical Gaffes in Data	
	Collection	240
7.8	Chapter Summary	241
7.9	Problems	242

8 Sampling Distributions 244 8.1 Introduction 244 8.2 **Linear Combinations of Random** Variables 244 **Sampling Distributions for Sums** 8.3 and Means 249 Sampling Distribution for the 8.4 **Sample Variance** 253 8.5 The Central Limit Theorem 255 Normal Approximation to the 8.6 Binomial 259 8.7 Sampling Distributions for **Proportions** 263 Tchebysheff's Theorem and the 8.8 Law of Large Numbers 265

226

Contents

	8.9	Chapter	Summary	268
	8.10	Problem	15	269
9	Poir	nt Estin	nation	273
-	9.1	Introdu	ction and Intuitive	
		Estimat	ors	273
	9.2	Estimat	ion Criteria	275
		9.2.1 Ui	biased Estimators	275
		9.2.2 Co	onsistent Estimators	277
	9.3	Method	of Moments	279
	9.4	Maxim	ım Likelihood	283
	9.5	Approxi	imating MLEs	289
	9.6	Sufficier	ncv	294
	9.7	Chapter	· Summary	298
	9.8	Problem	18	299
10	Cor	ofidenc	e Intervals	302
	10.1	Introd	uction	302
	10.1	Rasic I	Dronartias	302
	10.2	I argo	Sample Confidence	505
	10.5	Interv		307
	104	Small	Sample Confidence	507
	10.4	Interv	ale	312
	10 5	Confid	ans anca Intervals for	512
	10.5	Differe		316
		10.5.1	Confidence Intervals for	510
		10.5.1	Differences of Proportions	317
		10.5.2	Confidence Intervals for	517
		10.5.2	Differences in Means	319
		1053	Confidence Interval for	017
		10.0.0	Paired Data	324
	10.6	Detern	nining the Sample Size	326
	10.7	Confid	ence Intervals from	
		Compl	ex Survey Data	330
		10.7.1	Sampling from a Finite	
			Population	330
		10.7.2	Stratified Random Samples	333
		10.7.3	Cluster Sampling	338
		10.7.4	Secondary Data Sources	339
		10.7.5	Software for Analyzing Data	
			from Complex Surveys	341
	10.8	Chapte	er Summary	343
	10.9	Proble	ms	344
11	Hyp	othesi	s Testing	348
	11.1	Introd	uction	348
	11.2	Eleme	nts of a Statistical Test	350
	11.3	Power		354
	11.4	P-valu	es	356

11.5	Testing the Mean: Variance	
	Known	357
	11.5.1 Hypothesis Tests for the	
	Mean from a Population with	
	Known Variance	357
	11.5.2 Power	360
11.6	Testing the Mean: Variance	
	Unknown	364
11.7	Testing a Proportion	370
11.8	Testing the Variance	373
11.9	Likelihood Ratio Tests	374
11.10	Chapter Summary	380
11.11	Problems	381

İХ

12 Hypothesis Tests for Two or More Populations

Mor	e Pop	ulations	386
12.1	Introd	uction	386
12.2	Testin	g Two Independent	
	Sampl	es	386
	12.2.1	Comparing Two Means	386
	12.2.2	Comparing Two Proportions	398
	12.2.3	Comparing Variances	402
12.3	Testin	g Paired Samples	404
12.4	Single	-Factor Analysis of	
	Variar	ice	409
12.5	Two-F	actor ANOVA	425
12.6	Other	Designs for Experiments	430
	12.6.1	Two-Level Factorial Designs	431
	12.6.2	Fractional Factorial Designs	436
	12.6.3	Block Designs	439
	12.6.4	Some Experimental Design	
		Principles	442
12.7	Power		444
	12.7.1	Power for Two-Sample	
		<i>t</i> -Test	445
	12.7.2	Power for One-Factor	
		ANOVA	448
12.8	Chapt	er Summary	451
12.9	Proble	ems	453

13 Hypothesis Tests for **Categorical Data** 459 Introduction 13.1 459 13.2 **Goodness-of-Fit Tests** 460 13.3 **Contingency Tables: Testing** Independence 465 13.4 **Contingency Tables: Homogene-**471 ity 13.5 **Fisher's Exact Test** 473

CAMBRIDGE

Cambridge University Press & Assessment 978-1-107-11304-6 - Introduction to Probability and Statistics for Data Science Steven E. Rigdon, Ronald D. Fricker, Jr, Douglas C. Montgomery Frontmatter **More Information**

Х

	13.6	The Continuity Correction and	
		Simulation	479
	13.7	McNemar's Test	481
	13.8	Higher-Dimensional Tables and	
		Simpson's Paradox	485
	13.9	Chapter Summary	488
	13.10	Problems	489
14	Regr	ression	493
	14.1	Introduction	493
		14.1.1 Prediction vs. Explanation	493
		14.1.2 Terminology	495
		14.1.3 A Working Example	495
	14.2	Simple Linear Regression	496
	14.3	Properties of the Least Squares	
		Estimators	503
	14.4	Inference for Parameters of the	
		Simple Linear Regression Model	510
	14.5	Matrix Formulation of Simple	
		Linear Regression	516
	14.6	Joint Confidence Regions	518
	14.7	Confidence and Prediction	
		Intervals for Responses	520
	14.8	Optimal Selection of Levels of	
		Predictor Variables	526
	14.9	The ANOVA Table for Simple	
		Linear Regression	528
	14.10	Linear Models in More than One	
		Predictor	531
	14.11	Indicator Variables	539
	14.12	Polynomial and Nonlinear	
		Regression	542
	14.13	Inference for a Linear Combina-	
		tion of Model Parameters	546
	14.14	Correlation	551
	14.15	R^2 and Adjusted R^2	561
	14.16	Model Checking	565
		14.16.1 Normal Probability Plots	566
		14.16.2 Plot of Residuals against the	
		Fitted Values	567
	14.17	Chapter Summary	568
	14.18	Problems	570
15	Baye	esian Methods	574
	15.1	Introduction	574
	15.2	Bayes' Theorem	575
	15.3	The Bayesian Paradigm	581
	15.4	Two Paradoxes	585
	15.5	Conjugate Priors	588

Time	Covie		(10
15.10	Proble	ems	614
15.9	Chapt	er Summary	613
15.8	Hiera	rchical Bayes Models	606
		Algorithm	604
	15.7.2	The Gibbs Sampling	
		Algorithm	601
	15.7.1	Metropolis-Hastings	
15.7	Simulation Methods		599
15.6	Nonin	formative Priors	596

Contents

16 Time Series Methods

16.1	Introduction	618
16.2	Using R for Time Series	622
16.3	Numerical Description of Time	
	Series	623
16.4	Exponential Smoothing Methods	628
16.5	Autoregressive Integrated	
	Moving Average (ARIMA)	
	Models	635
16.6	Chapter Summary	640
16.7	Problems	642

17 Estimating the Standard Error: Analytic Approximations, the Jackknife, and the **Bootstrap**

17.1	Introduction	645
17.2	Analytic Approximations to the	
	Standard Error of an Estimator	646
17.3	The Jackknife	656
17.4	The Bootstrap	662
	17.4.1 Bootstrap Confidence	
	Intervals Based on	
	Percentiles	667
17.5	Parametric Bootstrap	670
17.6	Bootstrapping in R	674
17.7	Chapter Summary	681
17.8	Problems	682

18 Generalized Linear Models and Regression Trees 684 18.1 **Logistic Regression** 684 18.2 **Multinomial Logistic Regression** 698 18.3 **Poisson Regression** 703 **Generalized Linear Models** 18.4 706 18.5 **Regression Trees** 707 **Discrimination and Classifica-**18.6 tion 714

645

Contents

19	Cros Estir	ss-Vali nates	dation and of Prediction Error	751
	18.9	Proble	ems	746
	18.8	Chapt	er Summary	745
		Classi	lication	740
	18.7	Logist	ic Regression for	
			Analysis	739
			and Quadratic Discriminant	
		18.6.6	Choosing Between Linear	
			Parameters	739
		18.6.5	Dealing with Estimated	
			Analysis	737
		18.6.4	Quadratic Discriminant	
		18.6.3	K Groups and p Variables	725
		18.6.2	K Groups and $p = 1$ Variable	724
			Variable	718
		18.6.1	K = 2 Groups and $p = 1$	

19.1	Overfitting and Underfitting	751
19.2	Cross-Validation	754
	19.2.1 Splitting the Data at Random	755
19.3	Leave-One-Out Cross-	
	Validation	760
19.4	k-Fold Cross-Validation	762

	19.5	Cross-Validation with Classifica-	
		tion Data	765
	19.6	Chapter Summary	767
	19.7	Problems	769
20	Larg	e-Scale Hypothesis	
	Testi	ing	773
	20.1	Review of Hypothesis Testing	773
	20.2	Testing Multiple Hypotheses	775

xi

809

20.3	The FWER and the Bonferroni		
	Correction	780	
20.4	Holm's Method	783	
20.5	The False Discovery Rate	785	
20.6	Simultaneous Confidence		
	Intervals	789	
20.7	Tukey's Method	791	
20.8	Scheffé's Method	794	
20.9	Chapter Summary	801	
20.10	Problems	802	
Refe	References 805		

Index

CAMBRIDGE

Cambridge University Press & Assessment 978-1-107-11304-6 — Introduction to Probability and Statistics for Data Science Steven E. Rigdon, Ronald D. Fricker, Jr, Douglas C. Montgomery Frontmatter <u>More Information</u>

This book is designed for students in statistics, data science, biostatistics, engineering, and mathematics programs who need a solid course in the fundamental concepts, methods, and theory of statistics. Our goal is to give students enough background in the methods and theory of statistics that they can understand modern techniques used in statistics and be able to apply them in the practice of data science.

We had to make some difficult choices regarding topic coverage. We do cover the important concepts of statistics, including maximum likelihood, the information matrix, power, etc., because these are needed for a student to be a successful statistician. When we cover maximum likelihood estimation, we specifically cover the method of approximating the maximum of the (log) likelihood function. Nowadays, data are so plentiful that we are often faced with testing multiple null hypotheses. Holm's method and the Benjamini–Hochberg method are derived and applied to real problems. There are a number of statistical methods that were developed in the late twentieth and early twentyfirst centuries, including regression trees, large-scale hypothesis testing, methods of cross-validation, the bootstrap, Markov chain Monte Carlo, and others. We address the optimal selection of levels of a predictor variable to maximize the information we obtain; this leads to an introduction to the topic of optimal design. With some exceptions, these techniques have not found their way into introductory textbooks, especially those that emphasize theory. Throughout, we have tried to include topics that a statistician would use in the practice of statistics and to cover these thoroughly. We don't develop every aspect of statistical theory; for example, we cover very little of the limit theorems in statistics (convergence in probability, convergence in distribution, almost sure convergence, Slutsky's theorem, etc.). We don't cover the Cramer–Rao lower bound or the Rao–Blackwell theorem. We cover joint continuous distributions using multiple integration, but we do not go into great depth.

The emphasis is on modern methods of statistical inference. We develop enough theory so that students will understand these methods. If a statistician or data scientist is to work effectively with practitioners, it is up to the statistician to be the one to explain how methods work, what assumptions underlie the methods, what the limitations are, and how (or whether) the assumptions can be checked. Subject matter experts (i.e., the nonstatisticians) are not trained to do this. This is why it is important for students of statistics to understand the underlying theory behind the methods.

The flip side of our approach is that we do not develop theory for theory's sake. No theory is developed for the purpose that it might be usable in a future course. We have found that students

xiv

Cambridge University Press & Assessment 978-1-107-11304-6 — Introduction to Probability and Statistics for Data Science Steven E. Rigdon, Ronald D. Fricker, Jr, Douglas C. Montgomery Frontmatter <u>More Information</u>

Preface

who understand probability and the foundational concepts of statistical theory can understand and use advanced statistical methods. Without a solid grounding on the theory and concepts of statistics it is difficult to pick up new methods.

Calculus is used in a number of places in the book, so students will need at least one or two semesters of calculus. There are a few uses of multiple integrals when we discuss joint continuous distributions, and for these the third semester of calculus will be needed. An instructor can skip these topics or sidestep the use of multiple integrals. We use calculus when it is necessary, for example in getting expected values of continuous random variables. We use R throughout the book. Although we do cover an introduction to R, it would be helpful if students had some prior background in R.

We use data extensively throughout the book. Most of the data sets are real (although at times we give small data sets to introduce a method). Many of these data sets are large. In most cases, we have provided a csv (comma separated values) file for the data. We also provide the R code used in the book to analyze the data sets that we provide. This can be found at: www.cambridge.org/ProbStatsforDS

While the book's website contains information about getting R up and running, we offer the following advice about loading in data sets and packages. First, it is always good practice to set the working directory to the directory on your computer that contains your data files. You can do this with the setwd() command. For example,

```
setwd("C:/Users/Documents/Rfiles")
```

will force R to read (write) files from (to) this directory. Note two things: (1) the path must be enclosed in quotes, and (2) subdirectories are indicated by forward slashes, not backslashes. Second, many of the methods we apply in this book require special R packages to run. These packages are collections of functions, dataframes, etc. Before you can use a package you must (1) install it, and (2) load it in during each R session. To install a package, such as dplyr, type

install.packages("dplyr")

Then, every time you start a new R session, you will have to load this package using

library(dplyr)

You need only install a package once on your computer, but you must call library() each time you begin an R session.

If you type library for a package you haven't installed, you will get an error. For example, if you haven't installed the testassay package and if you type library(testassay), then you will get an error like this:

Error in library(testassay) : there is no package called 'testassay'

The remedy is to first install the package by typing install.packages("testassay") and then typing library(testassay). If you ever get an error like the following

Error in arrange(df, y) : could not find function "arrange"

there is a good chance you forgot to load the package that contains the function arrange(), which is in the dplyr package. The remedy is to first type library(dplyr).

Preface

XV

Most two-semester courses will include a fairly standard first semester, which would likely cover the following chapters:

Semester 1

Chapter	Topic
1	Introduction
2	Data Visualization
3	Basic Probability
4	Random Variables
5	Discrete Distributions
6	Continuous Distributions
7	About Data and Data Collection
8	Sampling Distributions
9	Point Estimation
10	Confidence Intervals
11	Hypothesis Testing
12	Hypothesis Tests for Two or More Populations

The choice of topics for a second course would depend on the nature of the course. For example, our book could be used in a mathematical statistics course that emphasizes applications of statistics without sacrificing any of the underlying theory. Such a course could use the following material in the second term:

Semester 2

Chapter	Торіс
13	Hypothesis Tests for Categorical Data
14	Regression
15	Bayesian Methods
17	The Jackknife and Bootstrap
18	Generalized Linear Models and Regression Trees
20	Large-Scale Hypothesis Testing

For a course that leans toward data science, the second semester coverage might include:

Semester 2

Chapter	Торіс
13	Hypothesis Tests for Categorical Data
14	Regression
16	Time Series Methods
17	The Jackknife and Bootstrap
18	Generalized Linear Models and Regression Trees
19	Cross-Validation and Estimates of Prediction Error
20	Large-Scale Hypothesis Testing

A course for scientists or engineers could include selected topics in the above chapters, with additional methods from Chapter 15. For example, a course in biostatistics might emphasize the sections on logistic regression, discrimination, and classification since these are frequently used in medical and public health research. Such a course could minimize or skip material on regression trees. Instructors

xvi

Preface

could also use this as a textbook for a one-semester course by selecting (and omitting) material in the early part of the book. For example, the following chapters could be covered in a one-semester course:

One-semester	course	emphasizin	g statistics
0110 001100001			Sector Seres

Chapter	Topic
1	Introduction
2	Data Visualization (omitting data visualization for survey data, geospatial
	data, and network data)
3	Basic Probability
4	Random Variables
5	Discrete Distributions (possibly omitting the hypergeometric and
	multinomial distributions)
6	Continuous Distributions (possibly skipping the Weibull, Beta distributions,
	and the sections on transformations, moment-generating functions, and QQ
	plots)
7	About Data and Data Collection (hitting just the main ideas)
8	Sampling Distributions (skipping the proof of the Central Limit Theorem)
9	Point Estimation
10	Confidence Intervals
11	Hypothesis Testing
12	Hypothesis Tests for Two or More Populations
13 or 14	Hypothesis Tests for Categorical Data/Regression

For situations where students have had a prior course on statistics (possibly one that did not use calculus), a course could be designed to emphasize data science:

One-semester course emphasizing data science

Chapter	Topics
4-6	Select topics in these chapters to bring students up to speed
7	About Data and Data Collection (hitting just the main ideas)
8	Sampling Distributions (skipping the proof of the Central Limit Theorem)
9	Point Estimation
10	Confidence Intervals
11	Hypothesis Testing
12	Hypothesis Tests for Two or More Populations
13	Hypothesis Tests for Categorical Data
14	Regression
17.	The Jackknife and Bootstrap
18.	Generalized Linear Models and Regression Trees
20.	Large-Scale Hypothesis Testing

This book was typeset in LATEX using a modified version of The Legrand Orange Book template originally created by Mathias Legrand and modified by Vel and the authors.

We would like to thank Emily Rigdon for LATEXing much of the material in the book and Gary Smith for his careful reading and editing of the manuscript. We would also like to thank the staff at Cambridge, especially Lauren Cowles, Maggie Jeffers, and Lucy Edwards for their help in molding this book into what it has become, and for their patience through the process.

Steven E. Rigdon Ronald D. Fricker, Jr. Douglas C. Montgomery