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1 — Introduction

In the 1990s and before, most of the world’s information was stored on paper and other analog media,

such as film. However, with the proliferation of personal computers and the internet, by 2000 one-quarter

of the world’s information was stored digitally. Since that time, the amount of digital data has exploded,

roughly doubling every couple of years, so that now more than 98% of all stored information is digital.

Much of this digital data is the result of the datafication of the world. Datafication is both the

digitization of existing analog media and, more significantly, the collection of digital data on people,

processes, and other things in ways that until recently were not possible. For example, the rise of

social media has resulted in the generation of massive amounts of digital data by and about individuals

throughout the world. More generally, the proliferation of smart sensors and ever-cheaper storage is

driving the availability of data from all types of societal, commercial, and government processes and

systems. The result is an exponentially increasing amount of data being collected and stored, much of

which is in need of analysis so that useful information can be extracted from the data.

What does some of this data look like? In May 2018, Bernard Marr, writing for Forbes maga-

zine, said

The amount of data we produce every day is truly mind-boggling. There are 2.5 quintillion

bytes of data created each day at our current pace, but that pace is only accelerating with

the growth of the Internet of Things (IoT). Over the last two years alone 90 percent of the

data in the world was generated. This is worth re-reading!

The information cited by Marr, which is now several years old, includes over 527,000 photos shared

on Snapchat, 120 new professionals on LinkedIn, over 4 million YouTube videos, and over 450,000

tweets; all of these statistics are per minute! These numbers have increased since 2018 and are continuing

to increase. We use Google to conduct 40,000 searches per second. One-fifth of the world’s population,

1.5 billion people, use Facebook daily.

This flood of digital data contains valuable information that can be used to inform all types of

decisions. Indeed, cutting-edge commercial organizations now focus their operations around the analysis

and exploitation of knowledge gleaned from data. This is what data science is all about: turning data

into useful information.
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2 1 Introduction

1.1 Data Science and Statistics

Both data science and statistics are concerned with the extraction of useful information from data. Let’s

start by defining the two fields.

Definition 1.1.1 — Statistics. Statistics is the science of learning from data, including collecting,

organizing, analyzing, interpreting, and presenting data, often with a particular focus on measuring,

controlling, and communicating the uncertainty inherent in the data, associated analyses, and final

results or conclusions.

Statistics traces its roots back to 2 CE, when the Han dynasty conducted a census of the Chinese

population, where it counted 57.7 million people in 12.4 million households. As this early application

illustrates, statistics is about both the collection of data and its analysis. Furthermore, as Definition 1.1.1

makes clear, statistics is also focused on determining the uncertainty in data and in the conclusions

drawn from data. This is an important consideration when only a sample of data is observed because

the results will be subject to sampling error, and classical statistics is generally predicated on the idea

that it’s not possible to observe all the data, either because it’s too expensive or it’s impossible to collect

it all. We’ll explore this concept more in Section 1.2, but briefly the idea is to use the data not only to

summarize what was observed but also to quantify what can be said about all of the data, both observed

and unobserved.

Statistics can also be split into two broad subfields: theoretical statistics and applied statistics.

Theoretical statistics is concerned with the creation and development of methods and techniques to

summarize and analyze data, including clearly defining how and when to use the methods and their

associated pros and cons. Applied statistics, on the other hand, is the application of the methods to data

and the process of conducting rigorous and principled analyses. In the statistical profession, the division

between applied and theoretical statisticians is fuzzy, with most statisticians doing both, though perhaps

with an emphasis on one or the other.

The theory and practice of statistics go hand-in-hand. A rigorous theoretical foundation is what

keeps statistics from being a purely empirical exercise of sifting through data and a rich set of applied

problems is what keeps statistics relevant to solving real-world problems. As David Bartholomew (1995),

former president of the Royal Statistical Society, said, “There can be no statistics without data and no

statistics with data alone.”

When developing methods, statisticians seek to understand how the methods perform on particular

types of data, including how efficiently they extract information from the data and how well they

characterize the uncertainty inherent in a sample of data. That is, just as automobile designers seek

to understand the performance characteristics of a new car, statisticians seek to understand how their

methods perform. In particular, as Lindsay et al. (2004) say, “A distinguishing feature of the statistics

profession, and the methodology it develops, is the focus on a set of cautious principles for drawing

scientific conclusions from data.”

Definition 1.1.2 — Data Science. Data science is the study of how to extract useful information

from data using quantitative methods and theories from many fields, including statistics, operations

research, computer science, and various engineering disciplines. Data science often focuses on large

data sets not originally designed or collected to address the question of interest.

In many ways data science is a modern extension of statistics and, to the extent they use statistical

methods, data scientists can be characterized as applied statisticians. Indeed, while some trace the

inception of data science to the 1960s, where it was then focused on data processing, modern data

science originated with a lecture given by Professor C.F. Jeff Wu in 1998 entitled “Statistics = Data

Science?” In that lecture, Professor Wu characterized statistical work as data modeling, analysis, and
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1.2 More on Statistics 3

decision making, and he proposed that statistics be renamed data science and statisticians be called data

scientists.

However, since the late 1990s, particularly with the explosion of massive, heterogeneous, and often

unstructured data sets, the term data science has expanded to include the ability to collect, manage, and

analyze such data. Today, data scientists are expected to be adept in both statistics and computer science,

particularly as applied to extracting and manipulating large data sets, as well as to have a solid working

knowledge of the field in which they are trying to answer questions. In particular, data scientists must

be able to:

• find, manage, and interpret large and complex data sets;

• analyze the data, including building mathematical models; and

• present and communicate results.

An important distinction between data science and statistics is whether we wish to explain or

predict.1 The goal of a study may be to make predictions. For example, the goal might be to predict

when the actual number of people with influenza is high, and the predictors might include internet

searches. Here the goal is to make accurate predictions, not to explain what variables affect the response

and the extent to which they have an effect. Other times, the goal might be to explain why something

happens. For example, when a cluster of cancer cases is discovered, epidemiologists will use data to

search for a cause. This is an example of using data to explain. Often data scientists make predictions

and use methodology designed for this purpose; statisticians develop models that explain how the world

works. This overgeneralizes, since both perform both tasks, but this is a useful way of looking at the

differences between data science and statistics.

As a result, as Definition 1.1.2 makes clear, today’s data scientists come from a variety of fields

and academic backgrounds and they collect and analyze data using a variety of methods. Thus, data

science now extends beyond the realm of traditional statistics that was generally focused on collecting

and analyzing smaller and typically very structured number-based data sets. Yet, coming full circle,

those who collected and collated the census data back in 2 CE for the Han dynasty – where collecting

information on 57.7 million people was undoubtedly a huge undertaking that resulted in a massive

amount of data for that era – could have been called data scientists!

1.2 More on Statistics

While most of the colloquial and popular media references to statistics concern the collection and

summarization of a set of numbers (e.g., baseball statistics or stock market returns), real statistics is

about much more than that. If the field of statistics were only concerned with describing data, that is,

descriptive statistics, this book would conclude with Chapter 2.

Statistics is most fundamentally about methods for describing uncertainty. For example, uncertainty

may arise if a data science question is about a particular population but data are only available on a

subset of the population – a sample. Hence, there is uncertainty about how closely the results from the

sample correspond to the results for the population. Similarly, uncertainty may arise if the data science

question involves forecasting the future which, of course, can only be answered using data from the past

and present.

For example, what if we wanted to know the average starting salary for a person obtaining a

master’s degree in data science in the United States? One way to find out would entail getting the salary

information for every new data scientist in the United States and then calculating the average. The left

side of Figure 1.1 illustrates this idea. However, obtaining the starting salary data for every single data

scientist in the United States is probably impossible. Alternatively, we could collect the starting salary

information from a sample of new data scientists with a master’s degree and use it to estimate the average

salary of the entire population. The right side of Figure 1.1 illustrates this idea, where the goal is to use

1This distinction is the topic of a paper by Shmueli (2010).
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4 1 Introduction

Population

All US students enrolled in an

MS in data science program

Sample

Some data science students

selected from the population.

Maybe students in your class.

Selected from the

population somehow

Average salary in the population

(parameter)

Average salary in the sample

(statistic)

Figure 1.1 Calculating the

average starting salary for the entire

population of data scientists in the

United States versus the average

starting salary for a sample of data

scientists. The average calculated

from a sample is unlikely to be the

same as the average calculated from

the population.

the sample results to understand the population, and so it is clearly important to ensure the sample is

representative of the population.

In either situation the natural question that arises is “How far off is the estimated or predicted average

salary from the actual value?” After all, in Figure 1.1 the sample is not the population, so any analysis on

sample data is likely to differ from the same analysis done on the complete population’s data. Statistical

methodology is designed to formally specify the precision and uncertainty inherent in any such estimate

or prediction.

Of course, since it is often difficult or impossible to know the true result for the population, it

can be easy for unprincipled analysts to fool those not skilled in statistics. Good statistics is about

defining mathematically rigorous ways to do estimation, hypothesis testing, and modeling combined

with principled methods for quantifying how far off an estimate is likely to be from the true answer. That

may sound like a bit of magic, but you will learn how to do it in this book!

1.2.1 Populations and Samples

We used the terms population and sample to motivate what statistics is all about: quantifying uncertainty.

A population is the set of all people or things that meet the criteria of a particular research study or data

science question. A sample is a subset of the population upon which the study or analysis will actually

be done. A random sample is a subset that is not drawn in any systematic way from the population.

(We’ll learn more about sampling in Chapter 7.)

For example, if we were interested in saying something about the average GRE scores for graduate

students studying data science this year, then the population would be all students enrolled in a data

science degree program this year. A sample of that population could be the students in your statistics

class. That sample is not likely to be random, however, since it systematically excludes certain groups

of students (such as students enrolled in data science programs at other schools).

If we are interested in the average height of students in your statistics class, the class is the

population. A sample might be all the women in the class. Is that a random sample? If we used the

average of the heights of the women in the class to estimate the average height of all students in the

class, would we be making a good estimate?

Why sample? Often it is either impossible or financially prohibitive to observe an entire population.

In fact, sometimes even with significant resources and extraordinary effort it is difficult to accurately

measure an entire population. A good example is the US Census. Every decade the US government
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1.2 More on Statistics 5

spends millions of dollars and puts forth significant effort trying to count every individual in the country.

And, every decade, the Census is challenged for failing to accurately count certain segments of society.
Several governmental agencies collect large amounts of data in complex surveys. For example,

the Centers for Disease Control and Prevention (CDC), part of the US Department of Health and

Human Services, selects approximately 10,000 participants and provides thorough health data through

a physical exam. The sampling design involves both stratification and cluster sampling, and analysis

of the National Health and Nutrition Examination Survey (NHANES) data must account for this. The

CDC also conducts the Behavioral Risk Factor Surveillance System, which interviews 400,000 adults

regarding their health and risk behavior. The US Department of Justice administers the National Crime

Victimization Survey twice per year. Each time about 50,000 households are selected for interview. All

of these surveys involve a complicated sampling design which must be taken into account when doing

an analysis. Interested readers are referred to Lohr (2010).

As it turns out, with good statistical practice we can often get as precise answers from a sample as

we can from an attempt to collect data from the whole population. There are times when taking a sample

can be more precise than trying to get the whole population. How can this be? Well, for the same amount

of effort or cost one can either get precise data from the sample or imprecise data from the population.

The idea is that under certain conditions it is preferable to allow for a moderate increase in sampling

error in order to achieve a greater reduction in measurement error.

1.2.2 Descriptive versus Inferential Statistics

Descriptive statistics and data visualization are ways to numerically and graphically summarize data,

whether the data are from a sample or a population. Why is this important? Think about the US Census,

with its information on more than 300 million people. If we wanted to understand the economic status

of people in the United States we would certainly not want to do so by looking at each and every Census

record. Rather, we would use ways to describe the data in a more concise way, either through summary

statistics or graphical plots of the data. That is, we would use descriptive statistics to summarize the

data.

Most of the rest of this book is about inferential statistics, though we will have to spend quite a few

chapters developing the probability tools we need to do statistical inference first. This is the machinery

designed for using a statistic calculated from a sample of data to say something about the population.

As illustrated in Figure 1.2, if it is impossible to obtain the starting salary for every data scientist in the

United States, then we will have to use information from a sample to infer what it is for the population.

However, inference is also more than using a sample average as an estimate for a population average; it

Population

All US students enrolled in an

MS in data science program

Sample

Some data science students

selected from the population.

Maybe students in your class.

Selected from the

population somehow

Average salary in the population

(parameter)

Average salary in the sample

(statistic)

Can’t observe

this directly

Figure 1.2 Statistical inferential

methods are designed to estimate

population parameters using statistics

generated from a sample and to

quantify the precision of the estimate.
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6 1 Introduction

is also about statistical methods to quantify how accurate the sample average is and thereby specify our

uncertainty in our knowledge of the population.

1.3 An Introduction to R

R is cutting-edge, free, open-source statistical software. R runs on a wide variety of UNIX platforms,

and on the Windows and MacOS operating systems. To download it, go to www.r-project.org and

follow the downloading and installation instructions. There are many good tutorials and books on R

coding. We assume that the reader knows the basics of R and how it runs. In this book we will explain

how R is used to analyze data while assuming some familiarity with R.

A common file format for data is csv, which stands for comma separated variables. Given that your

data are in csv format, they can be read using the read.csv() function, where the argument is the file

name (including the appropriate path) enclosed in quotes. It is customary to set R’s working directory

through the setwd command; for example:

setwd("/Users/rdfricker/Desktop")

Once the directory is set, R looks for files in this directory. If you are a PC user, note the use of forward

slashes rather than backslashes. Also note that the default option for the read.csv() function is that the

first line of the file contains the variable names and each subsequent line contains the data, one line for

each observation (row) in the data, where each item in the data is separated from the next by a comma.

If your file begins with the data in row 1 – that is, there is no row for the variable names – you can set

the header to be FALSE:

my.data <- read.csv("/Users/rdfricker/Desktop/data.csv",header=FALSE)

You can then assign names to the columns using the names() function:

names(my.data) = c("var1","var2","var3")

This will give names to the first three variables in your data frame.

Functions

One of the strengths of R is the ability to use and write functions. Functions are basically mini-programs,

where you can create a function that even calls other functions. Just about everything you do in R

involves applying a function, usually to data. And, as we’ll discuss shortly, R users can write their own

functions that can be published to the wider R community via packages that everyone can then download

and use.

R has thousands of functions. We’ll use many of them as we go through the text. For now, below is

a list of those you need to know to get started.

• c() is the concatenate function, which is often used to create a vector, as in vector1 <-

c(1,2,3) or to join two or more vectors, as in new.vector <- c(vector1,vector1).

• dim(data) returns the number of rows and columns respectively in data which can be either a

data frame object or matrix object.

• help(function.name), ?function.name, and ??text are useful for getting help.

• is.na() is a function that returns a logical object indicating whether data are missing (i.e., NA)

or not.

• length(vector) returns the number of elements in vector.

• library(name) loads the package called name so you can use/access its contents.

• ls() lists the objects in the workspace. No arguments are required to run the function, but you

do have to type the parentheses because it is a function.
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1.4 Descriptive Statistics 7

• read.csv() and read.table() are useful for reading data into R. For reading data in

specialized formats, the foreign package is very useful.

• rm(name) deletes the object name from the workspace. It works on single objects or a series of

objects separated by commas.

• rm(list = ls(all = TRUE)) deletes all the files in your workspace. Be very cautious when

using this – there is no undo option!

• sin, cos, exp, and log are, respectively, the sin, cos, exponential (i.e., ex), and natural log

functions. Most other mathematical functions you’ve encountered are built into R.

We can define and write our own functions in R using the function command. The following takes

one argument x and returns (x+1)2:

f = function(x)

{

y = x + 1

z = y^2

return( z )

}

This code defines the function f and says that it takes one argument x. It then computes y = x+1 and

finally squares it to obtain the variable z. The statement return(z) returns the computed value of z

back to R. When we run the above code, nothing seems to happen, although after having run it we

notice that the function is now in R’s global environment; this can be seen in the upper right panel in R

Studio. Once the function is executed, we can call it using the syntax f(x), where x is some number or

variable. For example, typing f(9) yields

f(9)

[1] 100

1.4 Descriptive Statistics

Descriptive statistics is all about summarizing data. In this chapter we will learn how to describe data

numerically using statistics; in Chapter 2 we will learn how to graphically describe data. In fact, a

statistic is simply a number calculated from data that summarizes something about the data. For example,

the average is a statistic, and there are many other types that we will learn about in this chapter.

Descriptive statistics are becoming increasingly important as data scientists deal with ever-larger

data sets and as data collection accelerates in our ever more computerized and interconnected world.

They are important because the human mind is limited in its ability to assimilate individual facts; we

simply aren’t good at being able to synthesize lots of numbers. Indeed, human short-term memory

capacity is only about seven digits – the length of a US telephone number not counting the area code.

So, in our increasingly data-rich world, knowing how to appropriately summarize data is a critical skill.

Returning to our discussion of the US Census in Section 1.2.1, the only way to get some

understanding of the US population using the Census is to apply descriptive statistics (as well as other

methods we will talk about in later chapters) to summarize the data. Just looking at individual Census

records would not provide us with much insight into the entire US population. And, while the 300

million plus Census records may sound like a lot, these days it is not a big data set: There are now more

tweets sent per day than there are Census records.

Before we proceed further, let’s formalize what we’ve just discussed with some definitions.

Definition 1.4.1 — Data. Information, often numerical but not necessarily so, collected from an

experiment, a survey, administrative records, the internet, etc. The word “data” is plural. One piece

of information is a “datum.”
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8 1 Introduction

Definition 1.4.2 — Statistic. A numerical fact, usually computed from a data set. Statistics can

also be computed from subsets of the data and can even be just a single datum.

Definition 1.4.3 — Descriptive Statistic. A statistic that usefully summarizes a data set, where

the data can be either for an entire population or for a subset of the population.

Good descriptive statistics can help data scientists understand what the data are trying to say. They

can highlight and bring out the underlying information in a data set, which might not (and probably will

not) be evident by just inspecting the individual data elements.

1.4.1 Types of Data

We can divide data into two basic types, quantitative and qualitative. Quantitative data are data that

can be measured or characterized with a numerical value; qualitative data cannot be so measured. For

example, if we think about demographic data, height, weight, and age are all quantitative, while gender

and eye color are qualitative.

We can also divide data into cross-sectional data and longitudinal (also known as time series)

data. Cross-sectional data are data that occur either in one time period or are constant over time,

while longitudinal data covers multiple time periods or varies over time. For example, referring

back to the previous demographic data, gender and eye color are cross-sectional in the sense that

they are unlikely to change over time. Height and weight data could be cross-sectional if they are

recorded for one period of time and longitudinal if they are repeatedly measured over multiple time

periods.

As shown in Figure 1.3, we can further describe quantitative data as either continuous or discrete.

Data are discrete if there are gaps between the values the data can assume. For example, the number

of people in a family can be 1, 2, 3, . . .. It cannot be 2.7. If there are no gaps between possible data

values, then we say the data are continuous. Another way to think about continuous data is as if we had

an infinitely accurate measuring device, then we could express the data to any number of decimal places

and it would always make sense. For example, height is continuous: we can talk about someone being 6

feet tall, or 5.97 feet tall, or 5.9722683 feet tall.2

Unlike quantitative data, qualitative data cannot be measured or described numerically. As shown in

Figure 1.3, qualitative data can be either nominal or ordinal. Ordinal qualitative data are data for which

there is a natural ordering, but the data cannot be expressed on a numerical scale. For example, shirt

size is ordinal: “large” shirts are bigger than “medium” shirts which are bigger than “small” shirts. In

contrast, with nominal data there is no natural ordering to the data. For example, gender is a nominal

type of data: each person can be classified as “male” or “female,” but it does not make any sense to say

that “male” is greater than “female.”

Note that nominal data can be represented numerically for purposes of analysis, but care must

be taken not to over-interpret the numerical labels. For example, we will sometimes use an indicator

Data

Quantitative

Qualitative

Continuous

Discrete

Ordinal

Nominal

C
a
te
g
o
ri
c
a
l

O
rd
in
a
l

Figure 1.3 A taxonomy of types of data.

2In practice, height can be measured to a fixed degree of precision, probably about one-tenth of an inch. Thus, all

data are discrete because we can measure to a fixed degree of precision. Despite this, it is often helpful to think of data

such as height as continuous. All models, such as how we measure height, are approximations of reality.
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variable to do analyses, say setting a variable called gender equal to 1 for men and 0 for women. But

just because the numbers 0 and 1 are ordinal, this property does not carry over to the original qualitative

variable, and so care must be taken not to over-interpret or misuse the indicator variable.

We use the term categorical to refer to data that are either discrete or qualitative because we can

naturally categorize these types of data into groups. Continuous data are clearly ordinal since numeric

data have an obvious ordering. Finally, note that we can turn continuous data into categorical data by

defining ranges of values for each category. For example, for height, people may be categorized as

“short” if they are less than 5 feet tall; “average” if they are between 5 and 6 feet; and “tall” if they are

6 feet or greater. The reason these distinctions are important is that the appropriate statistical analyses,

and even the proper way to display data, will depend on the type of data.

1.4.2 Example Data: US Domestic Flights from 1987 to 2008

To help make the ideas and methods of this chapter concrete, we will illustrate them using a data set

consisting of US domestic airline flight arrivals and departures and associated details for all commercial

flights from October 1987 to April 2008. This is a large data set: there are nearly 120 million records for

3,376 airports. In this chapter we’ll mainly focus on the data from years 1988, 1997, and 2007, where

there are 5,202,096, 5,411,843, and 7,453,215 observations (i.e., flights), respectively, for those years.

See the book’s website for instructions on how to download this and other data sets. As shown in

Table 1.1, the data set contains information on the date, day, and time of each flight, the airline and

particular airplane, flight origin and destination, and lots of information about the length of each flight

and the types of delays, if any, experienced. Table 1.2 shows five randomly selected observations from

the 2007 data.

Looking through Table 1.2 we see, for example, that the time an airplane is in the air (see the

AirTime variable) and the distance flown (see the Distance variable) are continuous data, while the

day of the month (see the DayofMonth variable) is an example of discrete data. The reason for flight

cancellation (see the CancellationCode variable) and airport of origination (see the Origin variable)

are examples of nominal data.

Some of the data that are numerically coded are actually qualitative. For example, as we see in Table

1.2, the day of the week (see the DayOfWeek variable) contains the integers 1 to 7, where the number 1

corresponds to Monday, 2 to Tuesday, etc. Though these data are numbers, they are not quantitative data.

Instead, the numbers are only codes that represent ordinal qualitative data. Similarly, flight numbers

(FlightNum) are also coded numerically, but they are really nominal.

1.5 Cross-Sectional Data

As we just discussed, cross-sectional data are collected during the same period of time. Statistics can

then be used to summarize these data.

1.5.1 Measures of Location

Measures of location, also referred to as measures of central tendency, are typically used to quantify

where the “center” or mass of the data is located. There are a number of common measures of central

tendency, each of which quantifies the “center” in a different way. The most common measure is the

mean, which is the average of a set of observations in either a sample or a population.

Definition 1.5.1 — Population Mean. For data from a population, denoted x1, . . . ,xN , the

population mean is calculated as

µ =
1

N

N

∑
i=1

xi =
x1 + x2 + · · ·+ xN

N
.
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10 1 Introduction

Table 1.1 Aircraft data set variables and brief descriptions.

Variable name Description

1 Year 1987–2008

2 Month 1–12

3 DayofMonth 1–31

4 DayOfWeek 1 (Monday) – 7 (Sunday)

5 DepTime Actual departure time (local, hhmm)

6 CRSDepTime Scheduled departure time (local, hhmm)

7 ArrTime Actual arrival time (local, hhmm)

8 CRSArrTime Scheduled arrival time (local, hhmm)

9 UniqueCarrier Unique carrier code

10 FlightNum Flight number

11 TailNum Plane tail number

12 ActualElapsedTime In minutes

13 CRSElapsedTime In minutes

14 AirTime In minutes

15 ArrDelay Arrival delay, in minutes

16 DepDelay Departure delay, in minutes

17 Origin Origin IATA airport code

18 Dest Destination IATA airport code

19 Distance In miles

20 TaxiIn Taxi in time, in minutes

21 TaxiOut Taxi out time, in minutes

22 Cancelled 1 = yes, 0 = no

23 CancellationCode Reason for cancellation (A = carrier,

B = weather, C = NAS, D = security)

24 Diverted 1 = yes, 0 = no

25 CarrierDelay In minutes

26 WeatherDelay In minutes

27 NASDelay In minutes

28 SecurityDelay In minutes

29 LateAircraftDelay In minutes

Definition 1.5.2 — Sample Mean. For a sample of data, x1, . . . ,xn, the sample mean x̄ is

calculated as

x̄ =
1

n

n

∑
i=1

xi.

The difference between the population mean µ and the sample mean x is subtle, but important. The

population mean µ is the average across all units in the population. Usually µ is unknown, but it is

important to have a symbol for it because estimating it is an important problem in statistics. The sample

mean x is usually known, because it is the result of an observed sample. We often use x to estimate µ .

More on this idea of estimation in Chapter 9.

� Example 1.1 — Calculating the sample mean. Calculate the mean for the following sample

of data: {2.3, 8.1, 5.5, 9.0, 7.8}.
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