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1 The Orbits of One-Dimensional
Maps

In this chapter we introduce one-dimensional dynamical systems and analyze

some elementary examples. A study of the iteration in Newton’s method leads

naturally to the notion of attracting fixed points for dynamical systems. New-

ton’s method is emphasized throughout as an important motivation for the

study of dynamical systems. The chapter concludes with various criteria for

establishing the stability of the fixed points of a dynamical system.

1.1 Iteration of Functions and Examples of Dynamical
Systems
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Chaotic dynamical systems has its origins in Henri Poincaré’s memoir on

celestial mechanics and the three-body problem (1890s). Poincaré’s memoir

arose from his entry in a competition celebrating the 60th birthday of King

Oscar of Sweden. His manuscript concerned the stability of the solar system

and the question of how three bodies, with mutual gravitational interaction,

behave. This was a problem that had been solved for two bodies by Isaac

Newton. Although Poincaré was not able to determine exact solutions to the

three-body problem, his study of the long term behavior of such dynamical

systems resulted in a prize winning manuscript. In particular, he claimed that

the solutions to the three-body problem (restricted to the plane) are stable, so

that a solar system such as ours would continue orbiting more or less as it does,

forever. After the competition, and when his manuscript was ready for publi-

cation, he noticed it contained a deep error which showed that instability may

arise in the solutions. In correcting the error, Poincaré discovered chaos and his

memoir became one of the most influential scientific publications of the past

century [10]. Aspects of dynamical systems were already evident in the study

of iteration in Newton’s method for approximating the zeros of functions. The

work of Cayley and Schroeder concerning Newton’s method in the complex

domain appeared during the 1880s, and interest in this new field of complex

dynamics continued in the early 1900s with the work of Fatou and Julia. Their

work lay dormant until the invention of the electronic computer. In the 1960s

the subject exploded into life with the work of Sharkovsky and Li and Yorke on
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2 The Orbits of One-Dimensional Maps

one-dimensional dynamics, and with that of Kolmogorov, Smale, Anosov and

others on differentiable dynamics and ergodic theory. The advent of computer

graphics allowed for the resurgence of complex dynamics and the depiction of

fractals (Devaney and Mandelbrot).

This book is mainly concerned with one-dimensional dynamical systems for

real and complex mappings and their connections with fractal geometry. We

also treat certain symbolic dynamical systems in detail; in particular we look

at substitution dynamical systems and the fractals they generate.

Dynamical systems involves the study of how things change over time.

Examples include the growth of populations, the change in the weather,

radioactive decay, mixing of liquids such as the ocean currents, motion of the

planets, the interest in a bank account. Some of these dynamical systems are

well behaved and predictable; for example, if you know how much money you

have in the bank today, it should be possible to calculate how much you will

have next month (based on how much you deposit, the interest rate etc.). How-

ever, some dynamical systems are inherently unpredictable and so are called

chaotic. An example of this is weather forecasting, which is generally unre-

liable in predicting the weather beyond the next three or four days. Intuition

tells us that chaotic behavior will happen provided we have some degree of ran-

domness in the system. However, chaos can happen even when the dynamical

system is deterministic, that is, its future behavior is completely determined

by its initial conditions. To quote Edward Lorenz, who was the first to real-

ize that deterministic chaos is present in weather forecasting: chaos occurs

“when the present determines the future, but the approximate present does not

approximately determine the future.” In theory, if we could measure exactly

the weather at some instant in time at every point in the Earth’s atmosphere,

we could predict how it will behave in the future. But because we can only

approximately measure the weather (wind speed and direction, temperature

etc.), the future weather is unpredictable.

Throughout we use R to denote the set of real numbers, Z = {. . . ,

−1, 0, 1, 2, 3, . . .} is the set of integers, N = {0, 1, 2, . . .} are the natural num-

bers, Z+ = {1, 2, 3, . . .} are the positive integers and Q is the set of rational

numbers.

Dynamical systems with continuously varying time, which are called flows,

arise from the solutions to differential equations. In this text, we will study

discrete dynamical systems, arising from discrete changes in time. For exam-

ple, we might model a population by measuring it daily. Suppose that xn is the

number of members of a population on day n, where x0 is the initial population.

We look for a function f : R → R, for which

x1 = f (x0), x2 = f (x1), and generally xn = f (xn−1), n = 1, 2, . . .

This leads to the iteration of functions in the following way:
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3 1.1 Iteration of Functions and Examples of Dynamical Systems

Definition 1.1.1 Given x0 ∈ R, the orbit of x0 under f is the set

O(x0) = {x0, f (x0), f 2(x0), . . .},

where f 2(x0) = f (f (x0)), f 3(x0) = f (f 2(x0)), continuing indefinitely, so that

f n(x) = f ◦ f ◦ f ◦ · · · ◦ f (x) (n-times composition).

For each n ∈ N, set xn = f n(x0); then x1 = f (x0), x2 = f 2(x0), and in general

xn+1 = f n+1(x0) = f (f n(x0)) = f (xn).

More generally, f may be defined on some subinterval I of R, but in order

for the iterates of x ∈ I under f to be defined, we need the range of f to be

contained in I, so f : I → I (both the domain and the codomain of f are the

same set).

Thus we are studying the iterations of one-dimensional maps (as opposed

to higher dimensional maps f : Rn → Rn, n > 1, some of which will be

considered in Chapter 13).

Definition 1.1.2 A (one-dimensional) dynamical system is a pair (I, f ), where

f is a function f : I → I and I is a subset of R.

Almost always, I will be a subinterval of R, which includes the possibility

that I = R.

Often we will talk about the dynamical system f : I → I, or just f when

the domain is clear. Usually, f is assumed to be a continuous function, but we

occasionally relax this requirement. For example, f : [0, 1] → [0, 1], f (x) = x2

and g : [0, 1] → [0, 1], g(x) = 2x if 0 ≤ x < 1/2 and g(x) = 2x − 1 if

1/2 ≤ x ≤ 1 are dynamical systems (the latter is not continuous), but h :

[0, 2] → [0, 4], h(x) = x2 is not a dynamical system, since the domain and

codomain are different.

Given a dynamical system f , equations of the form xn+1 = f (xn) are

examples of difference equations. These arise from one-dimensional dynam-

ical systems. For example, xn may represent the number of bacteria in a

culture after n hours, or the mass of radioactive material remaining after n

days of an experiment. There is an obvious correspondence between one-

dimensional maps and these difference equations. For example, a difference
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4 The Orbits of One-Dimensional Maps

equation commonly used for calculating square roots,

xn+1 =
1

2

(

xn +
2

xn

)

,

corresponds to the function f (x) = 1
2 (x + 2

x
). If we start by setting x0 = 2 (or

in fact any real number), and then find x1, x2, . . . etc., we get a sequence which

rapidly approaches
√

2 (see p. 9 of Sternberg [122]). One of the issues we

examine in this chapter is how this difference equation arises and its usefulness

in calculating square roots.

Examples 1.1.3 Dynamical Systems

1. The Trigonometric Functions Consider the iterations of the trigonomet-

ric function f : R → R, f (x) = sin x. Select x0 ∈ R at random, e.g., x0 = 2

and set xn+1 = sin xn, n = 0, 1, 2, . . . What happens to xn as n increases? One

way to investigate this type of dynamical system is to use a graphing utility:

enter Sin(2), followed by ENTER, and then Sin(ANSWER), and then con-

tinue this process. You will need to do this many times to get a good idea of

what is happening. It may be easier to use a computer algebra system to carry

out the computations.

Now replace the sine function with the cosine function and repeat the pro-

cess. How do we explain what appears to be happening in each case? These

are questions that will be answered in this chapter.

2. Linear Maps These are possibly the simplest dynamical systems for mod-

eling population growth and also the easiest to deal with from a dynamical

point of view, since we can obtain a clear description of their long term behav-

ior. Every linear map f : R → R is of the form f (x) = ax for some a ∈ R.

Suppose that xn = size of a population at time n, with the property

xn+1 = axn,

for some constant a > 0. This is an example of a linear model for the growth

of the population.

If the initial population is x0 > 0, then x1 = ax0, x2 = ax1 = a2x0, and

in general xn = anx0 for n = 0, 1, 2, . . . This is the exact solution (or closed

form solution) to the difference equation xn+1 = axn. Clearly f (x) = ax is

the corresponding dynamical system. We can use the solution to determine the

long term behavior of the population:

The sequence (xn) is very well behaved since:

(i) if a > 1, then xn → ∞ as n → ∞,

(ii) if 0 < a < 1 then xn → 0 as n → ∞ (i.e., the population becomes

extinct),

(iii) if a = 1, then the population remains unchanged.
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5 1.1 Iteration of Functions and Examples of Dynamical Systems

3. Affine maps These are functions f : R → R of the form f (x) = ax + b

(a 
= 0), for constants a and b. Consider the iterates of such maps:

f 2(x) = f (ax + b) = a(ax + b) + b = a2x + ab + b,

f 3(x) = a3x + a2b + ab + b,

f 4(x) = a4x + a3b + a2b + ab + b,

and generally

f n(x) = anx + an−1b + an−2b + · · · + ab + b.

Let x0 ∈ R and set xn = f n(x0); then we have

xn = anx0 + (an−1 + an−2 + · · · + a + 1)b

= anx0 + b

(

an − 1

a − 1

)

, if a 
= 1,

or

xn =
(

x0 +
b

a − 1

)

an +
b

1 − a
, if a 
= 1,

is the closed form solution. Here we have used the formula for the sum of a

finite geometric series:

n−1
∑

k=0

rk =
rn − 1

r − 1
,

when r 
= 1. If a = 1, the solution is xn = x0 + nb.

We can use these equations to determine the long term behavior of xn. We

see that:

(i) if |a| < 1 then an → 0 as n → ∞, so that

lim
n→∞

xn =
b

1 − a
,

(ii) if a > 1, then limn→∞ xn = ∞ for b, x0 > 0,

(iii) if a = 1, then limn→∞ xn = ∞ if b > 0.

The limit does not exist if a ≤ −1 (unless x0 + b/(a − 1)) = 0.

1.1.4 Recurrence Relations Many sequences can be defined recursively by

specifying the first few terms, and then stating a general rule which specifies

how to obtain the nth term from the (n − 1)th term (or other additional terms),

and using mathematical induction to see that the sequence is “well defined”

for every n ∈ N. For example, n! = n-factorial can be defined in this way by
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6 The Orbits of One-Dimensional Maps

specifying 0! = 1 and n! = n(n − 1)!, for n ∈ Z+. The Fibonacci sequence

(Fn) can be defined by setting

F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn, for n ≥ 0,

so that F2 = 1, F3 = 2, giving the sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

The orbit of a point x0 ∈ R under a function f is then defined recursively as

follows:

xn = f (xn−1), for n ∈ Z+,

with a given starting value x0. The principle of mathematical induction tells us

that xn is defined for every n ≥ 0, since it is defined for n = 0. Assuming it has

been defined for k = n − 1 then xn = f (xn−1) defines it for k = n.

Ideally, given a recursively defined sequence (xn), we would like to have a

specific formula for xn in terms of elementary functions (a so called closed

form solution). This is often very difficult or impossible to achieve. In the case

of affine maps and certain logistic maps, however, there is a closed form solu-

tion. One can use these ideas to study certain problems, as illustrated in the

following examples.

Example 1.1.5 An amount $T is deposited in your bank account at the end of

each month. The interest is r% per month. Find the amount A(n) accumulated

at the end of n months (assume A(0) = T).

Answer A(n) satisfies the difference equation

A(n + 1) = A(n) + A(n)r/100 + T , where A(0) = T ,

or

A(n + 1) = A(n)(1 + r/100) + T .

Setting x0 = T , a = 1 + r/100 and b = T in the formula of Example 1.1.3(3),

the solution is

A(n) = (1 + r/100)nT + T

(

(1 + r/100)n − 1

1 + r/100 − 1

)

= (1 + r/100)nT + 100
T

r
((1 + r/100)n − 1).

1.1.6 The Logistic Map In the late 1940s, John von Neumann proposed that

the map given by f (x) = 4x(1 − x) could be used as a pseudo-random number

generator. Maps of this type were amongst the first to be studied using elec-

tronic computers. Paul Stein and Stanislaw Ulam did an extensive computer

study of f (x) and related maps in the early 1950s, but much about these maps

remained mysterious.
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7 1.1 Iteration of Functions and Examples of Dynamical Systems

More generally, maps of the form

Lµ : R → R, Lµ(x) = µx(1 − x),

were proposed to model a certain type of population growth (see the work of

Robert May [87]). Here µ is a real parameter which is fixed. Note that if 0 <

µ ≤ 4, then Lµ is a dynamical system of the interval [0, 1], i.e. Lµ : [0, 1] →
[0, 1]. For example, when µ = 4, L4(x) = 4x(1 − x), with L4([0, 1]) = [0, 1];

the graph is given in the figure below. If µ > 4, Lµ is no longer a dynamical

system of [0, 1] as Lµ([0, 1]) is not a subset of [0, 1].

Historically, population biologists were interested in those values of µ that

give rise to stable populations after long term iteration. However, we shall see

that as µ becomes close to 4, the long term behavior becomes highly unsta-

ble. The chaotic nature of this behavior was first pointed out by James Yorke

in 1975. During a visit to Yorke at the University of Maryland, Robert May

mentioned that he did not understand what happens to Lµ as µ approaches 4.

Shortly after this, the seminal works of Li and Yorke ([84], 1975) and May

([87], 1976), appeared.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

The logistic map with µ = 4.

Remark 1.1.7 It is conjectured that closed form solutions for the difference

equation arising from the logistic map are only possible when µ = −2, µ = 2

or µ = 4 (see Exercises 1.1 # 3 for the cases where µ = 2, µ = 4 and 1.1 # 13

for the case where µ = −2, and also [128] for a discussion of this conjecture).
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8 The Orbits of One-Dimensional Maps

Exercises 1.1

1. If Lµ(x) = µx(1 − x) is the logistic map, calculate L2
µ(x) and L3

µ(x).

2. Use Example 1.1.3(3) for affine maps to find the solutions to the

difference equations

(i) xn+1 −
xn

3
= 2, x0 = 2,

(ii) xn+1 + 3xn = 4, x0 = −1.

3. A logistic difference equation is one of the form xn+1 = µxn(1 − xn) for

some fixed µ ∈ R. Find exact (closed form) solutions to the following

logistic difference equations:

(i) xn+1 = 2xn(1 − xn). (Hint: Use the substitution xn = (1 − yn)/2

to transform the equation into a simpler equation that is easily

solved.)

(ii) xn+1 = 4xn(1 − xn). (Hint: Set xn = sin2 θn and simplify to get an

equation that is easily solved.)

4. You borrow $P at r% per annum, and pay off $M at the end of each sub-

sequent month. Write down a difference equation for the amount owing

A(n) at the end of each month (so A(0) = P). Solve the equation to find

a closed form for A(n). If P = 100 000, M = 1000 and r = 4, after how

long will the loan be paid off?

5. At 70.5 years of age, you have $A invested in a pre-tax retirement

account. It is earning interest at r1% per annum. The tax laws require you

to take out r2% per annum of what is remaining in the account (r2 > r1,

where in practice r2 = 3.65). How much is remaining after n years?

Solve this problem with $A = $500 000, r1 = 3%, r2 = 3.65% and

n = 15 years.

6. If Tµ(x) =
{

µx; 0 ≤ x < 1/2,

µ(1 − x); 1/2 ≤ x ≤ 1,

show that Tµ is a dynamical system of [0, 1], for µ ∈ (0, 2].

7. Let f (x) = x2 + bx + c. Give conditions on b and c for f : [0, 1] →
[0, 1] to be a dynamical system. (Hint: Recall that that the maximum and

minimum values of a continuous function defined on a closed interval
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9 1.1 Iteration of Functions and Examples of Dynamical Systems

[a, b] occur at the end points, or where f ′(x) = 0 or where f ′(x) does not

exist.)

8. Determine whether the functions f defined below can be considered as

dynamical systems f : I → I:

(a) f (x) = x3 − 3x, (i) I = [−1, 1], (ii) I = [−2, 2].

(b) f (x) = 2x3 − 6x, (i) I = [−1, 1], (ii) I =
[

−
√

7
2 ,

√

7
2

]

.

9. If fµ(x) = µx2 1 − x

1 + x
, show that for 0 < µ < (5

√
5 + 11)/2, fµ is a

dynamical system of [0, 1].

10. For the following functions, find f 2(x), f 3(x) and a general formula for

f n(x):

(i) f (x) = x2, (ii) f (x) = |x + 1|, (iii) f (x) =

{

2x; 0 ≤ x < 1/2,

2x − 1; 1/2 ≤ x < 1.

11. Use mathematical induction to show that if f (x) =
2

x + 1
, then

f n(x) =
2n(x + 2) + (−1)n(2x − 2)

2n(x + 2) − (−1)n(x − 1)
.

12. (a) The tribonacci sequence (Tn) is a generalization of the Fibonacci

sequence, defined recursively by

T0 = 0, T1 = 0, T2 = 1, Tn+1 = Tn + Tn−1 + Tn−2, n ≥ 2.

Write down the first 10 terms of Tn.

(b) Let (Fn) be the Fibonacci sequence. Set vn =
(

Fn+1

Fn

)

, and F =
[

1 1

1 0

]

. Show that vn+1 = F · vn, n ≥ 0.

(c) Find a matrix T such that if (Tn) is the tribonacci sequence, and

wn =

⎛

⎝

Tn+2

Tn+1

Tn

⎞

⎠, then wn+1 = T · wn, n ≥ 0.
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10 The Orbits of One-Dimensional Maps

13∗. Show that a closed form solution to the logistic difference equation when

µ = −2 is given by

xn =
1

2

[

1 − f
(

rnf −1(1 − 2x0)
)]

, where r = −2 and

f (θ ) = 2 cos

(

π −
√

3θ

3

)

.

(Hint: Set xn =
1 − f (θn)

2
and use steps similar to those in Exercise 3(ii)

above.)

..............................................................................................

1.2 Newton’s Method and Fixed Points
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Isaac Newton (1669) and Joseph Raphson (1690) gave special cases of what we

now call Newton’s method, with the modern version being given by Thomas

Simpson in 1740. Newton’s method is an algorithm for rapidly finding the

approximate values of zeros of functions.

Given a differentiable function f : R → R and under suitable conditions,

Newton’s method allows us to find good approximations to the zeros of f (x),

i.e., approximate solutions to the equation f (x) = 0. The idea is to start

with a first approximation x0, and look at the tangent line to f (x) at the point

(x0, f (x0)). Suppose this line intersects the x-axis at x1; then

x1 = x0 −
f (x0)

f ′(x0)
, if f ′(x0) 
= 0.

If our initial guess x0 is close enough to the zero, x1 will be a better approxima-

tion to the zero. Repeat the process with the tangent line to f (x) at (x1, f (x1)).

At the (n + 1)th stage we obtain

xn+1 = xn −
f (xn)

f ′(xn)
,

an algorithm in the form of a difference equation, where x0 is a first approxi-

mation to a zero of f (x). The corresponding real function is

Nf (x) = x −
f (x)

f ′(x)
(the Newton function).

For example, if f (x) = x2 − a, then f ′(x) = 2x and

Nf (x) = x −
x2 − a

2x
=

1

2

(

x +
a

x

)

,
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