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Parametrized families of PDEs arise in various contexts such as inverse prob-
lems, control and optimization, risk assessment, and uncertainty quantifica-
tion. In most of these applications, the number of parameters is large or
perhaps even infinite. Thus, the development of numerical methods for these
parametric problems is faced with the possible curse of dimensionality. This
article is directed at (i) identifying and understanding which properties of
parametric equations allow one to avoid this curse and (ii) developing and
analysing effective numerical methods which fully exploit these properties
and, in turn, are immune to the growth in dimensionality.
Part I of this article studies the smoothness and approximability of the

solution map, that is, the map a �→ u(a), where a is the parameter value
and u(a) is the corresponding solution to the PDE. It is shown that for many
relevant parametric PDEs, the parametric smoothness of this map is typically
holomorphic and also highly anisotropic, in that the relevant parameters are
of widely varying importance in describing the solution. These two properties
are then exploited to establish convergence rates of n-term approximations
to the solution map, for which each term is separable in the parametric and
physical variables. These results reveal that, at least on a theoretical level,
the solution map can be well approximated by discretizations of moderate
complexity, thereby showing how the curse of dimensionality is broken. This
theoretical analysis is carried out through concepts of approximation theory
such as best n-term approximation, sparsity, and n-widths. These notions
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2 A. Cohen and R. DeVore

determine a priori the best possible performance of numerical methods and
thus serve as a benchmark for concrete algorithms.

Part II of this article turns to the development of numerical algorithms
based on the theoretically established sparse separable approximations. The
numerical methods studied fall into two general categories. The first uses
polynomial expansions in terms of the parameters to approximate the solu-
tion map. The second one searches for suitable low-dimensional spaces for
simultaneously approximating all members of the parametric family. The
numerical implementation of these approaches is carried out through adap-
tive and greedy algorithms. An a priori analysis of the performance of these
algorithms establishes how well they meet the theoretical benchmarks.
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1. Overview

1.1. Parametric and stochastic PDEs

Partial differential equations (PDEs) are commonly used to model complex
systems in a variety of physical contexts. When solving a given PDE, one
typically fixes certain parameters: the shape of the physical domain, the
diffusion or velocity field, the source term, the flux or reaction law, etc.

We use the terminology parametric PDEs when some of these parameters
are allowed to vary over a certain range of interest. When treating such
parametric PDEs, one is interested in finding the solution for all parameters
in the range of interest.
To describe such problems in their full generality, we adopt the formula-

tion

P(u, a) = 0, (1.1)
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where a denotes the parameters, u is the unknown of the problem, and

P : V ×X → W (1.2)

is a linear or nonlinear partial differential operator, with (X,V,W ) a triplet
of Banach spaces. We assume that the parameter a ranges over a compact
set A ⊂ X, and that for any a in this range there exists a unique solution
u = u(a) ∈ V to (1.1). This allows us to define the solution map

u : a �→ u(a), (1.3)

which acts from X onto V and is well defined over A. We also define the
solution manifold as the family

M = u(A) = {u(a) : a ∈ A}, (1.4)

which gathers together all solutions as the parameter varies within its range.
One simple guiding example, which will be often used throughout this

article, is the linear elliptic equation

−div(a∇u) = f on D,

u = 0 on ∂D,
(1.5)

set on a Lipschitz domain D ⊂ R
m. Here, we fix the right-hand side f as a

real-valued function and consider real-valued diffusion coefficients a as the
parameter. The corresponding operator P is therefore given by

P(u, a) = f + div(a∇u). (1.6)

A possible choice for the triplet of spaces is then

(X,V,W ) = (L∞(D), H1

0 (D), H−1(D)). (1.7)

Indeed, if u ∈ V , a ∈ X and f ∈ W , one then defines P(u, a) as an element
of W by requiring that

〈P(u, a), v〉 = 〈f, v〉+

∫

D

a∇u · ∇v, v ∈ V, (1.8)

where 〈·, ·〉 is the duality bracket between V ′ = W and V . Lax–Milgram
theory ensures the existence and uniqueness of a solution u(a) to (1.1) from
V if, for some r > 0, the diffusion a satisfies the ellipticity condition

a(x) ≥ r, x ∈ D. (1.9)

Therefore, a typical parameter range is a set A ⊂ {a ∈ L∞(D) : a ≥ r},
which in addition is assumed to be compact in L∞.
Although elementary, the above example gathers important features that

are present in other relevant examples of parametric PDEs. In particular,
the solution map a �→ u(a) acts from an infinite-dimensional space into
another infinite-dimensional space. Also note that, while the operator P
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of (1.6) is linear both in a and u (up to the constant additive term f),
the solution map is nonlinear. Because of the high-dimensionality of the
parameter space X, such problems represent a significant challenge when
trying to capture this map numerically. One objective of this article is to
understand which properties of this map allow for a successful numerical
treatment. Concepts such as holomorphy, sparsity, and adaptivity are at
the heart of our development.

The solution map may also be viewed as a function

(x, a) �→ u(x, a) (1.10)

of both the physical variable x ∈ D and the parametric variable a ∈ A. The
parametric variable has a particular status because its different instances
are uncoupled: for any fixed instance a = a0, we may solve the PDE exactly
or approximately and therefore compute u(x, a0) for all values of x, while
ignoring all other values a �= a0. This plays an important role for certain
numerical methods which are based on solving the parametric PDE for
different particular values of a, since this task can be parallelized.

Parametric PDEs occur in a variety of modelling contexts. We draw the
following major distinctions in their setting.

• Deterministic modelling. The parameters are deterministic design or

control variables, which may be tuned by the user so that the solution
u, or some quantity of interest Q(u), has prescribed properties. For
instance, if the elliptic equation (1.5) is used to model the heat con-
duction in a component produced by an industrial process, one may
want to design the material in order to minimize the heat flux on a
certain part on the boundary Γ ⊂ ∂D, in which case the quantity of
interest to be optimized is

Q(u) =

∫

Γ

a∇u · n, (1.11)

where n is the outer normal. This amounts to optimizing the function

a �→ F (a) := Q(u(a)) (1.12)

over A.

• Stochastic modelling. The parameters are random variables with pre-
scribed probability laws, which account for uncertainties in the model.
Therefore a has a certain probability distribution µ supported on A.
One is then typically interested in the resulting probabilistic properties
of the solution u, which is itself a random variable over A with values in
V , or in the probabilistic properties of a quantity of interest Q(u). For
instance, if the elliptic equation (1.5) is used to model oil or ground
water diffusion, a common way to deal with the uncertainty of the

www.cambridge.org/9781107112582
www.cambridge.org


Cambridge University Press & Assessment
978-1-107-11258-2 — Acta Numerica 2015
Edited by Arieh Iserles
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

Approximation of high-dimensional parametric PDEs 5

underground porous media is to define a as a random field with some
prescribed law. Then one might want to estimate the mean solution

u := E(u), (1.13)

or its variance

V (u) := E(‖u− u‖2V ), (1.14)

or the average flux through a certain interface Γ, that is, E(Q(u)) with
Q(u) as in (1.11), or the probability that this flux exceeds a certain
quantity, etc.

In both deterministic and stochastic settings, the given application may re
quire evaluation of u(ai) for a large number n � 1 of values {a1, . . . , an} of
the parameter a. This is the case, for instance, when using a descent method
for optimizing a quantity of interest in the deterministic framework, or a
Monte Carlo method for evaluating an expectation in the stochastic frame
work. Since each individual instance u(a) is the solution of a PDE, its exact
evaluation is typically out of reach. Instead, each query for u(ai) is approxi
mately evaluated by a numerical solver, which may itself be computationally
intensive for high accuracy.
In order to significantly reduce the number of computations needed for

attaining a prescribed accuracy, alternative strategies, commonly referred
to as reduced modelling, have been developed. Understanding which of these
strategies are effective in the case where the parameter has large or infinite
dimension, and why, is the subject of this article.

1.2. Affine representation of the parameters

So far our description of the set A of parameters allows it to be any compact
subset of X. An important ingredient in both our theoretical and numerical
developments is to identify any a ∈ A through a sequence of real numbers.
We are especially interested in affine representations of A. We say that
a sequence (ψj)j≥1 of functions ψj ∈ X is an affine representer for A, or
representer for short, if we can write each a as

a = a(y) = a+
∑

j≥1

yjψj , y := (yj)j≥1, yj = yj(a), (1.15)

where the yj are real numbers, a is a fixed function from X, and the series
converges in the norm of X for each a ∈ A. We are making a slight abuse
of notation here since we use a to represent a general element of A and also
use a to represent the map

a : y �→ a(y), (1.16)

from R
N to X. However, the meaning will always be clear from the context.
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It is easy to see that for any compact set A in a Banach space X, affine
representers exist. For example, if X has a Schauder basis then any such
basis will be a representer. Even if X does not admit a Schauder basis,
as is the case for our example X = L∞(D), we can still find representers
as follows. Choose any ā ∈ A. Since K := A − ā is compact, there exist
finite-dimensional spaces (Xn)n≥0, with dim(Xn) = n, such that

dist(K, Xn)X := sup
a∈K

min
b∈Xn

‖a− b‖X → 0 as n → ∞. (1.17)

We can also take the spaces Xn to be nested, that is

Xn ⊂ Xn+1, n ≥ 0. (1.18)

Let (φj,n)j=1,...,n be any basis for Xn and define Nn := n(n − 1)/2. The
sequence

ψj := φj−Nn
, n, j = Nn, . . . , Nn+1, (1.19)

contains each of the bases (φj,n)j=1,...,n for all n ≥ 1. Given any a ∈ A, let
an be a best approximation in X to a− ā from Xn, with a0 := 0. Then we
can write

a = ā+
∞∑

n=1

(an − an−1). (1.20)

Each term an − an−1 is in Xn and hence can be written as a linear combi-
nation of the ψj . Therefore, (ψj)j≥1 is a representer for A.
Affine representations (1.15) often occur in the natural formulation of the

parametric problem. For instance, if the diffusion coefficient a in (1.5) is
piecewise constant over a fixed partition {Dj}j=1,...,d of the physical domain
D, then it is natural to set

a(y) = a+

d∑

j=1

yjχDj
, (1.21)

where a is a constant and the χDj
are the characteristic functions of the

subdomains Dj . Similarly, if the parameter a describes the shape of the
boundary of the physical domain in a computer-aided design setting, a typ-
ical format is

a(y) = a+
d∑

j=1

yjBj , (1.22)

where a represents a nominal shape and the Bj are B-spline functions as-
sociated to control points. In these two examples, d is finite, yet possibly
very large.
In the statistical context, if a is a second-order random field over a do-

main D, a frequently used choice in (1.15) is a := E(a), the average field,
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and (ψj)j≥0, the Karhunen–Loève basis, that is, the eigenfunctions of the
covariance operator

v �→ Rav :=

∫

D

Ca(·, x)v(x) dx, Ca(z, x) := E((a(z)− a(z))(a(x)− a(x)).

(1.23)

Then the resulting scalar variables are centred and uncorrelated, that is,
E(yi) = 0 and E(yiyj) = 0 when i �= j.

Even if an affine representation of the form (1.15) is not given in the
formulation of the problem, one can be derived by taking any representation
system (ψj)j≥1 in the Banach spaceX. For example, ifX admits a Schauder
basis, then one can take any such basis (ψj)j≥1 for X and arrive at such an
expansion. In classical spaces X, such as Lp or Sobolev spaces, standard
systems of approximation, such as Fourier series, splines, or wavelets can
be used.
The advantage of the representation (1.15) is that a can now be identified

through the sequence (yj)j≥1. When considering all a ∈ A, we obtain a
family of such sequences. Note that this family can be quite complicated.
In order to simplify matters, we normalize the ψj , so that for any j,

sup
a∈A

|yj(a)| = 1. (1.24)

Such a renormalization is usually possible because A is compact and yj(a)
depends continuously on a. After this normalization, for each a ∈ A, the
sequence (yj(a))j≥1 belongs to the infinite-dimensional cube

U := [−1, 1]N. (1.25)

Note that taking a general sequence (yj)j≥1 from this cube, there may
not be an a ∈ A with yj = yj(a), j ≥ 1. Also, if {ψj}j≥1 is not a basis, the
representation (1.15) may not be unique. We define

UA :=

{

(yj)j≥1 ∈ U :
∑

j≥1

yjψj ∈ A

}

. (1.26)

We are mainly interested in representers ā, (ψj)j≥1 for which

ā+
∑

j≥1

yjψj (1.27)

converges in X for each (yj) ∈ U . We call such representers complete. In
this case, we may define

a(U) :=

{

a = a(y) = a+
∑

j≥1

yjψj : (yj)j≥1 ∈ U

}

, (1.28)
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so that

A ⊂ a(U). (1.29)

A typical case of a complete representer is when (‖ψj‖X) is a sequence in
�1(N).

Once an affine representation has been chosen, the initial solution map
a �→ u(a) becomes equivalent to the map y �→ u(a(y)) which is defined on
UA. With an abuse of notation, we write this new solution map as

y �→ u(y) := u(a(y)). (1.30)

This is a Banach-space-valued function of an infinite number of variables.
Note that in the case where the affine representation has a finite number d
of terms, the range of y is [−1, 1]d. However, the infinite-dimensional case
subsumes the finite-dimensional case, since the latter may be viewed as a
particular case with ψj = 0 for j > d.
In the case of a complete representer, a(y) is defined on all of U . However,

we do not know whether the solution map u is defined on all of U . To
guarantee this, the following assumption will be used often.

Assumption A. The parameter set A has a complete representer (ψj)j≥1

and the solution map a �→ u(a) is well defined on the whole set a(U), or
equivalently the solution map y �→ u(y) is well defined on the whole set U .

This assumption naturally holds when the set A is exactly defined as
a(U).

1.3. Smoothness of the solution map

One objective of this article is to develop efficient numerical approximations
to the solution maps of (1.3) or (1.30). One of the main difficulties is that
these maps are high- or infinite-dimensional, in the sense that the dimension
of the variable a or y is high or infinite. In order to understand what might
be good strategies for constructing such approximations, we need first to
understand the inherent properties of these maps that might allow us to
circumvent this difficulty.
We initiate such a program in Section 2, where we first analyse the

smoothness of the solution map a �→ u(a). In the case of the elliptic equation
(1.5), it is easily seen that this map is not only infinitely differentiable, but
also admits a holomorphic extension to certain subdomains of the complex-
valued X = L∞(D). We propose two general approaches which allow us
to establish similar holomorphy properties for other relevant instances of
linear and nonlinear parametric PDEs. The first approach is based on the
Ladyzhenskaya–Babuška–Brezzi (LBB) theory. It applies to a range of lin-
ear PDEs where the operator and the right-hand side have holomorphic
dependence in a. These include parabolic and saddle-point problems, such
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as the heat equations or the Stokes problem, with parameter a in the dif-
fusion term, similar to (1.5). The second approach is based on the implicit
function theorem in complex-valued Banach spaces. In contrast to the first
approach, it can be applied to certain nonlinear PDEs.
Using the affine representation (1.15) of a, we then study the solution

map y �→ u(y) under Assumption A, which means that it is defined on the
whole of U . In addition to holomorphy, an important property of u can be
extracted from the affine representation (1.15). The functions ψj appearing
in (1.15) have norms ‖ψj‖X of varying size. Since the variable yj is scaled to
be in [−1, 1], when ‖ψj‖X is small, this variable has a reduced effect on the
variations of u(y). Thus the variables (yj)j≥1 are not democratic, but rather
they have varying importance. In other words, the map y �→ u(y) is highly
anisotropic. More specifically, we derive holomorphic extension results for
this map on certain multivariate complex domains of tensor product type.
In particular, we consider polydiscs of the general form

Uρ := ⊗{|zj | ≤ ρj} = {z = (zj)j≥1 ∈ C
N : |zj | ≤ ρj}, (1.31)

where ρ = (ρj)j≥1 is a positive sequence which serves to describe the
anisotropy of the solution map. We also consider polyellipses, which de-
viate less far from the real axis. These holomorphy domains play a key role
in the derivation of approximation results.

Remark 1.1. While we are generally interested in real-valued solutions u
to the parametric PDE (1.1), corresponding to real-valued parameters a or
y, our analysis of holomorphic smoothness leads us naturally to complex-
valued solutions, corresponding to complex-valued parameters. For this
reason, the spacesX,V,W are always assumed to be complex-valued Banach
spaces throughout this paper.

1.4. Approximation of the solution map

Reduced modelling methods seek to take advantage of the properties of the
solution maps a �→ u(a) or y �→ u(y) such as holomorphy and anisotropy
mentioned above. These properties suggest strategies for approximating
these maps u by simple functions un, in which the physical variables x and
the parametric variables a or y are separated and hence take the form

(x, a) �→ un(x, a) :=

n∑

i=1

vi(x)φi(a), (1.32)

or

(x, y) �→ un(x, y) :=

n∑

i=1

vi(x)φi(y), (1.33)
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where {v1, . . . , vn} are functions of x living in the solution space V and
{φ1, . . . , φn} are functions of a or y with values in R or C.

We may view un as a rank n approximation to u, in analogy with low-rank
approximation of matrices. We adopt the notations

a �→ un(a) = un(·, a) and y �→ un(y) = un(·, y), (1.34)

for the above approximations.
Let us discuss the potential accuracy of separable approximations of the

form (1.32). If our objective is to capture u(a) for all a ∈ A with a prescribed
accuracy ε(n), this means that we search for an error bound in the uniform
sense, that is, of the form

‖u− un‖L∞(A,V ) := sup
a∈A

‖u(a)− un(a)‖V ≤ ε(n). (1.35)

For certain applications, in particular in the stochastic framework, we may
instead decide to measure the error on average, for instance by searching
for an error bound in the mean square sense,

E(‖u− un‖
2
V ) := ‖u− un‖

2
L2(A,V,µ) =

∫

A

‖u(a)− un(a)‖
2
V dµ(a) ≤ ε(n)2,

(1.36)

where µ is the probability measure for the distribution of a over A. Since
µ is a probability measure, we have for any v

‖v‖L2(A,V,µ) ≤ ‖v‖L∞(A,V ). (1.37)

Therefore the uniform bound is stronger than the average bound, in the
sense that (1.35) implies (1.36) with the same value of ε(n).
Likewise, for the approximation of the map y �→ u(y), we may search for

a uniform bound

‖u− un‖L∞(UA,V ) := sup
y∈UA

‖u(y)− un(y)‖V ≤ ε(n) (1.38)

or a mean-square bound

E(‖u− un‖
2
V ) := ‖u− un‖

2
L2(UA,V,µ) =

∫

UA

‖u(y)− un(y)‖
2
V dµ(y) ≤ ε(n)2,

(1.39)
where µ is the probability measure for the distribution of y over UA.

Remark 1.2. We do not indicate the measure µ in our notation L∞(A, V )
or L∞(UA, V ), since in all relevant examples considered in this article we
always consider the exact supremum over a in A or over y in UA, rather
than the essential supremum.

For any a ∈ A, the approximation un(a) belongs to

Vn := span{v1, . . . , vn}, (1.40)
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