Index

Paper titles are in ‘single quotes’; book and journal titles are in italics; FTNS is ‘The Fundamental Theorem of Natural Selection’; GTNS is The Genetical Theory of Natural Selection; AWFE is A.W.F. Edwards; AWFE citations are in the form ‘year [paper number]’; single asterisk * denotes joint papers with Cavalli-Sforza; double asterisk ** for other multi-authored work; all other citations are in the form Name (year). Page numbers in bold locate the Selected Papers.

AAA see American Anthropological Association
Aarhus University 349, 455, 463

The ABO Blood Groups: Comprehensive Tables and Maps of World Distribution (Mourant et al. 1954) 516
AWFE unsigned review, 1959 516
Fisher influence 318
Winther interview 428–429, 435, 436
adaptive evolutionary change, Fisher 4, 374
adaptive landscapes, Wright 4
AWFE 1971 presentation 131, 454 and FTNS 371
Okasha commentary 371, 373
Winther interview 408, 410, 412, 454
Wright (1932) 395, 396, 410
see also ‘Review of Evolution . . . ‘, 1971 [49]
adaptive seascapes 408, 451
additive genetic variance 372
additive-tree methods see distance matrix methods; least squares additive trees
Adelaide archives 416
Adelaide, Fisher 518
Advances in Applied Probability 1974 [59], ‘On Kimura’s . . . ‘ 390
‘Affinity as revealed by differences in gene frequencies’, 1972 [53] 2, 139, 469
Africa, migration routes out of 344
ALGOL 436
algorithmic methods, distinction 431
allele frequencies 1963 [25]*, ‘The reconstruction . . . ‘ 349
Ewens commentary 365, 369
Gaussian model 339

Nielsen commentary 335, 339–340
Okasha commentary 372–373
population genetics 335
Rosenberg commentary 400
selective advantage, favored allele 369
Thompson commentary 347, 349
see also gene frequencies
allelic variants, modern data 349
American Anthropological Association (AAA), race statement 423
American Journal of Human Genetics 1967 [37]*, ‘Phylogenetic analysis . . . ‘ 82, 468
American Naturalist 439
1998 [164], ‘Natural selection . . . ‘ 318, 476
American Philosophical Society archive 386
AWFE note 309
FTNS clarification 4
Grodwohl commentary 395
AWFE Ph.D. 317
Fisher’s comments on 317, 513, 514
‘Analysis of human evolution’, 1965 [29]* 2, 41, 467
Bodmer commentary 319
Felsenstein commentary 327–328
likelihood difficulties 327–328
topologically distinct tree 3
‘Analysis of human evolution under random genetic drift’, 1964 [28]** 28, 467
Bodmer commentary 320
cartographic representations 3
Euclidean space 430

522
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>327</td>
<td>Felsenstein commentary</td>
</tr>
<tr>
<td>339</td>
<td>Nielsen commentary</td>
</tr>
<tr>
<td>430, 432</td>
<td>Winther interview</td>
</tr>
<tr>
<td>274</td>
<td>analysis of variance, Fisher</td>
</tr>
<tr>
<td>363</td>
<td>AWFE note</td>
</tr>
<tr>
<td>430</td>
<td>Winther interview</td>
</tr>
<tr>
<td>449</td>
<td>Anti-reductionism, Fisher</td>
</tr>
<tr>
<td>15, 467</td>
<td>*Annals of Hum...</td>
</tr>
<tr>
<td>79</td>
<td>draft paper</td>
</tr>
<tr>
<td>191</td>
<td>Price (1972)</td>
</tr>
<tr>
<td>317–318</td>
<td>Natural selection...</td>
</tr>
<tr>
<td>322–323</td>
<td>Human genetic diversity...</td>
</tr>
<tr>
<td>2003 [192]</td>
<td></td>
</tr>
<tr>
<td>1998 [164]</td>
<td></td>
</tr>
<tr>
<td>2001 [173], 2003 [192]</td>
<td>Human genetic diversity...</td>
</tr>
<tr>
<td>1986 [96]</td>
<td>Are Mendel’s results really too close?</td>
</tr>
<tr>
<td>163, 472</td>
<td>Bodmer commentary</td>
</tr>
<tr>
<td>321–322</td>
<td>history of science</td>
</tr>
<tr>
<td>225, 475</td>
<td>Brownian motion papers</td>
</tr>
<tr>
<td>349</td>
<td>Monte Carlo methods</td>
</tr>
<tr>
<td>349</td>
<td>Thompson commentary</td>
</tr>
<tr>
<td>521</td>
<td>see also molecular phylogenetic reconstruction (1990s)</td>
</tr>
<tr>
<td>139</td>
<td>Assessment of Population Affinities in Man (Weiner and Huizinga)</td>
</tr>
<tr>
<td>423</td>
<td>averaging fallacy</td>
</tr>
<tr>
<td>337</td>
<td>Avise (2000)</td>
</tr>
<tr>
<td>510–511, 517</td>
<td>Balfour Professorship</td>
</tr>
<tr>
<td>382</td>
<td>barbarian communities, Fisher</td>
</tr>
<tr>
<td>401</td>
<td>Barbujani and Colonna (2010)</td>
</tr>
<tr>
<td>349</td>
<td>Barndorff-Nielsen, Professor</td>
</tr>
<tr>
<td>28*</td>
<td>Barraí, I., 1964 **</td>
</tr>
<tr>
<td>512</td>
<td>‘Bases of Genetics’ (Fisher lectures)</td>
</tr>
<tr>
<td>445–447</td>
<td>Bayes’ inference, postulate and theorem</td>
</tr>
<tr>
<td>478</td>
<td>Bayes, Thomas 1,</td>
</tr>
<tr>
<td>478</td>
<td>‘Bayesian’ concept and term</td>
</tr>
<tr>
<td>358, 445–447</td>
<td>Fisher’s original</td>
</tr>
<tr>
<td>359</td>
<td>modern usage</td>
</tr>
<tr>
<td>320</td>
<td>Bayesian methods</td>
</tr>
<tr>
<td>321</td>
<td>‘Estimation ...’ 7, 8, 330, 348, 352, 446</td>
</tr>
<tr>
<td>1974 [60]</td>
<td>‘The history of likelihood’</td>
</tr>
<tr>
<td>320</td>
<td>Bodmer commentary</td>
</tr>
<tr>
<td>330, 331</td>
<td>Felsenstein commentary</td>
</tr>
<tr>
<td>350–356, 368</td>
<td>Markov chain Monte Carlo</td>
</tr>
<tr>
<td>348</td>
<td>Thompson commentary</td>
</tr>
<tr>
<td>446</td>
<td>Winther interview</td>
</tr>
<tr>
<td>see also Yang commentary</td>
<td></td>
</tr>
<tr>
<td>355, 359</td>
<td>Bayesian phylogenetics see Yang commentary</td>
</tr>
<tr>
<td>323</td>
<td>BEAST program</td>
</tr>
<tr>
<td>323</td>
<td>Behavioral Ecology and Sociobiology</td>
</tr>
<tr>
<td>274, 480</td>
<td>‘Mathematising Darwin’</td>
</tr>
<tr>
<td>79, 372</td>
<td>Bennett, J. H. (1956)</td>
</tr>
<tr>
<td>378, 390, 389</td>
<td>Bennett, J. H. (Henry)</td>
</tr>
<tr>
<td>445</td>
<td>Bernoulli, James [extit{Jacob}]</td>
</tr>
<tr>
<td>438–440</td>
<td>big data</td>
</tr>
<tr>
<td>510</td>
<td>binomial distribution</td>
</tr>
<tr>
<td>465, 466, 481</td>
<td>AWFE papers</td>
</tr>
<tr>
<td>353–514</td>
<td>two-parameter beta-binomial</td>
</tr>
<tr>
<td>433</td>
<td>Winther interview</td>
</tr>
<tr>
<td>440–441</td>
<td>biochemical data</td>
</tr>
<tr>
<td>249</td>
<td>BioEssays</td>
</tr>
<tr>
<td>173</td>
<td>‘Darwin and Mendel ...’</td>
</tr>
<tr>
<td>241</td>
<td>1994 [140], 1990 [121], 2001 [173], 1986 [96], 1972 [54], 1974 [60], 2003 [192]</td>
</tr>
<tr>
<td>440–441</td>
<td>biochemical data</td>
</tr>
<tr>
<td>440</td>
<td>1994 [140], 1996 [146], 1990 [121], 2001 [173], 1986 [96], 1972 [54], 1974 [60], 2003 [192]</td>
</tr>
<tr>
<td>301</td>
<td>‘A method for cluster analysis’</td>
</tr>
<tr>
<td>53, 467</td>
<td>1990 [121], ‘R. A. Fisher ...’</td>
</tr>
<tr>
<td>474, 512</td>
<td>1995 [145], ‘Fiducial inference ...’</td>
</tr>
<tr>
<td>388, 475</td>
<td>blood-group data, ABO</td>
</tr>
<tr>
<td>510</td>
<td>AWFE unsigned review, 1959</td>
</tr>
<tr>
<td>319</td>
<td>Bodmer commentary</td>
</tr>
<tr>
<td>401</td>
<td>Cavaalli-Sforza idea</td>
</tr>
<tr>
<td>344, 428</td>
<td>Bindon interview 428</td>
</tr>
<tr>
<td>311, 512</td>
<td>molecular phylogenetic reconstruction</td>
</tr>
<tr>
<td>460, 466</td>
<td>AWFE interviews see Winther interviews with AWFE</td>
</tr>
<tr>
<td>388, 392</td>
<td>AWFE (A.W.F. Edwards Papers)</td>
</tr>
<tr>
<td>389</td>
<td>AWFE see Edwards, A. W. F.</td>
</tr>
<tr>
<td>390, 446</td>
<td>Bennett, J. H. (1956)</td>
</tr>
<tr>
<td>423</td>
<td>Fisher influence</td>
</tr>
<tr>
<td>435, 436</td>
<td>Mourant, Arthur 435, 436</td>
</tr>
<tr>
<td>429, 435, 436</td>
<td>biographical data</td>
</tr>
<tr>
<td>385, 467</td>
<td>blood-group system, Rhesus</td>
</tr>
<tr>
<td>389</td>
<td>Bodmer (2009)</td>
</tr>
<tr>
<td>322–323</td>
<td>Bodmer and Edwards (1960)</td>
</tr>
<tr>
<td>378</td>
<td>Bodmer commentary (AWFE contributions to science)</td>
</tr>
<tr>
<td>317–323</td>
<td>1970 [46]</td>
</tr>
<tr>
<td>320–321</td>
<td>1972 [54], ‘Likelihood’</td>
</tr>
<tr>
<td>321</td>
<td>1974 [60], ‘History of likelihood’</td>
</tr>
<tr>
<td>319</td>
<td>Barbujani and Colonna (2010)</td>
</tr>
<tr>
<td>311, 318</td>
<td>1998 [164], ‘Natural selection ...’</td>
</tr>
<tr>
<td>322–323</td>
<td>2003 [192], ‘Human genetic diversity ...’</td>
</tr>
</tbody>
</table>
Bodmer commentary (cont.)
2007 [217], ‘R. A. Fisher’s 1943 …’ 321
2008 [223], ‘G. H. Hardy …’ 321
2013 … 443, 519
civilizations, rise and fall 379
civilized societies, Fisher 383
cladistic phylogenetic inference 524

Index

‘Carl Düsing (1884) on The Regulation of the Sex Ratio’, 2000 [170]
Bodmer commentary 318
Winther interview 412
Cartesian spaces 2, 429
cartographic representations
1964 [27]*, ‘Reconstruction …’ 3, 344, 441–442
1984 [89], Likelihood 12
Bodmer commentary 319
Cavalli-Sforza ABO/geography idea 2, 428–429
linkage analysis/maps 443–444
modern geneticists 443
Nielsen commentary 337–338
Pagel commentary 344
phylogeny 337–338, 354
tree 443
Winther interview 3, 428–429, 437, 443
world map tree 17, 28, 344
causation vs correlation 458
Cavalli-Sforza (1966) 322, 323
Cavalli-Sforza and Bodmer (1971) 320
Cavalli-Sforza and Edwards, joint articles 1, 2
1963 [25]*, ‘The reconstruction …’ see main entry
1964 [27]*, ‘Reconstruction …’ see main entry
1964 [28]**, ‘Analysis of …’ see main entry
1965 [29]*, ‘Analysis of human evolution’ see main entry
1965 [30]*, ‘A method for cluster analysis’ 6, 53
1966 [35]*, ‘Estimation procedures …’ 2, 72, 82, 327, 467
1967 [37]*, ‘Phylogenetic analysis …’ see main entry
1972 [53]* ‘Affinity …’ 2, 139, 469
Cavalli-Sforza, L. L. (Luca)
Blood-group geography idea 2, 428–429
Grodwohl commentary 389
Least-squares additive trees 319, 329, 344, 430
major scientific contributions 323, 330–332
molecular data 331
Pavia facilities 72
wife 518
Cavalli-Sforza, L. L., relationships
AWFE 1, 72, 82, 330–332, 437, 439, 440, 441, 442, 443, 518
Bodmer 317, 320
Felsenstein commentary 325–332
Fisher 429
Thompson 349
Chakraborty (1978) 400,
Charlesworth (1970) 366
Charlesworth (1980) 414
chi square goodness-of-fit tests 163
Christian faith, Fisher 417
Christmas 1958 516
chromosomes 439, 443, 519
civilizations, rise and fall 379
civilized societies, Fisher 383
cladistic phylogenetic inference

Bodmer, Walter AWFE fellow research student
AWFE relationship 7, 317–318, 515
Cavalli-Sforza relationship 7, 317
Fisher relationship 7
Grodwohl commentary 389,
Boos and Stefanski (2011) 351
Box (1978) (Fisher’s daughter, Joan Fisher) 363, 387, 450
Boyd, W.C. (1950) 429
branching process see ‘Estimation of the branch points …’, 1970 [46]; Yule branching process
British Library 386
brother see Edwards, J. H.
Brownian motion 334
Brownian motion approximation of random genetic drift see 2
1964 [28]**, ‘Analysis of …’ 326
1970 [46], ‘Estimation …’ 330
allele frequency transformations 339–340
attributions 2
drift parameter 354, 358
Edwards-Cavalli papers 2
Felsenstein commentary 7, 326, 328, 330–332
model disappearance 331
Nielsen commentary 334, 339–340
Thompson commentary 348
Yang commentary 352, 354–355, 356, 358
Bull and Charnov (1988) 389
Bulletin of the Institute of Mathematics and its Applications
1972 [56], ‘Likelihood’ 151, 469
Bulletin of the International Statistical Institute
1966 [35]*, ‘Estimation procedures …’ 72, 327, 467
Bye-Fellowship, Gonville and Caius College, Cambridge 104, 463
calculating machine 434, 513
Cambridge Natural Sciences Tripos 347, 390, 463, 510, 513
Camin and Sokal (1965) 325, 331
Campbell, R. C. 512
cancer and smoking links, Fisher 458–459
Cannings, Christopher (AWFE student) 456, 468,
cladistics 334
Hennig, W. 331, 428, 444–445
Nielsen commentary 3, 7–8, 336, 340–341
Winther interview 428, 444–445
Winther perspective 3, 11
Cladistic Theory and Methodology (Duncan and Staaesy 1985) 17
evolutionary models, Yang commentary 353
Clarendon Press 378
Clark see Hartl and Clark (1989)
classes and features, Appendix 1 483–487
classification and clustering see clustering analysis and
classification
clausens, 1960s systematists 326
Cleghorn, T. E. 519
Clinical Genetics
1989 [117], ‘Probability and . . . ’ 182, 473
classification and analysis 1, 5, 6–7
1965 [30]*, ‘A method for cluster analysis’ 6, 53
Bodmer commentary 319–320
Felsenstein commentary 325, 331
Appendix 1 483–487
Winther paper 488
see also race entries; Rosenberg commentary
coevolution methods 338
coevolution theory 335, 336–337
coevolution tree 335, 336
Cold Spring Harbor Symposium on Quantitative Biology
1964 [28]**, ‘Analysis of . . . ’ 28, 467
Comparative Method in Evolutionary Biology (Harvey
and Pagel 1991) 8, 343–345
comparative methods 343
comparing methods 340–341
computer-based calculations, early
1950s calculating machine 434, 513
1966 [62], ‘Studying human . . . ’ 68, 467
2004 [197], ‘Parsimony . . . ’ 254, 478
Aberdeen University 437–438
ALGOL 436
Cambridge University Press
cluster analysis, early 53
EOTREE 2, 436
first programs 429, 436, 519
FORTRAN 436, 438
funds/technology shortage 437–438
machine language (1GL) 436
minimum evolution trees 432
Pavia, Italy 72
Stanford University 72, 435
computer scientists 438–439
computers, introduction of 319, 429, 519
conceptual confusion and clarification 5, 11
conic sections 407, 408
continuous time, Fisher 191
continuous time vs discrete time
AWFE note 191
Okasha commentary 373

Contributions to Mathematical Statistics (Fisher 1950) 445, 517
correlation vs causation 458
Cotterman (1940) 347
Crawley, Charles (Trinity Hall tutor) 511
Crick, Francis 418
Crow, J. E. (1990) 377
cultural differences, scientists 393, 416–418
Crawley, Charles (Trinity Hall tutor) 511
cultural elements, Fisher 382
curriculum vitae (AWFE) 463–464
Darwin and Mendel united: the contributions of
Fisher, Haldane and Wright up to 1932
445, 517
Data science, modern 11
de Finetti diagrams 407
de Finetti diagrams 407
de Fermat, Pierre 1, 471
determinism 4
Dempster, Laird and Rubin (1977) 348
Denniston (1978) 366
Distance Between Populations (genetic) 319, 326, 327
distance matrix methods
Dawkins (1976), The Sel
Darwin Research Fellowship, Eugenics Society 517
dimensional analysis 4–517
Ewens commentary 368
Ewens commentary 368
Grodwohl commentary 390, 394,
diploid organisms 407
discrete time vs continuous time
AWFE note 191
Grodwohl commentary 392
Okasha commentary 373
Winther interview 440–441
distance between populations (genetic) 319, 326, 327
distance matrix methods
Dawkins (1976), The Sel
Darwin Research Fellowship, Eugenics Society 517
determinism 4
dimensional analysis 4–517
Ewens commentary 368
Grodwohl commentary 390, 394,
diploid organisms 407
discrete time vs continuous time
AWFE note 191
Grodwohl commentary 392
Okasha commentary 373
Winther interview 440–441
distance between populations (genetic) 319, 326, 327
distance matrix methods
Felsenstein commentary 329, 331
evolutionary methods
DNA sequences
Felsenstein commentary 331
DNA sequences (cont.)
Nieelsen commentary 337, 338, 339
Winther interview 440
Yang commentary 356, 357
Doll and Hill (1950), smoking and lung cancer 458,
Dove, William. F. 377, 480
drift, random 2, 4
see also ‘Analysis of human evolution under . . .’,
1964 [28] *, Brownian motion approximation of
random genetic drift
Drosophila
Esposito commentary 379
Felsenstein commentary 325
Grodwohl commentary 386
Lock, Robert Heath 322
sex ratios 1961 [14] 466, 519
Winther interview 439, 440,
Duncan and Stuessy (eds.1985) 17
Düsing, Carl 318, 412
ecology, new areas of 12
Edge and Rosenberg (2015) 402
Edge, Michael (biologist, “Doc”) 10
Edinburgh Group of the Royal Statistical Society,
presentation 131, 454
Edwards (1960) see Bodmer and Edwards (1960)
Edwards and Cavalli-Sforza, joint articles 1, 2
1963 [25]*, ‘The reconstruction . . . see main entry
1964 [27]*, ‘Reconstruction . . . see main entry
1964 [28] *, ‘Analysis of . . . see main entry
1965 [29]*, ‘Analysis of . . . see main entry
1965 [30]*, ‘A method for cluster analysis’ 6, 53
1966 [35]*, ‘Estimation procedures . . .’ 2, 72, 82,
327, 467
1967 [37]*, ‘Phylogenetic analysis . . . see main entry
1972 [53]* ‘Affinity . . .’ 2, 139, 469
Edwards, Ann (first daughter) 516
Edwards, A. W. F. (Anthony William Fairbank)
brother, John see Edwards, J.H.
car 515
daughter, Ann 516
father, Harold 511–512, 514, 516
flying gliders 516
home 516
mother 516
wife, Catharina 516
Edwards, A. W. F. (AWFE), scientific biography 1–9
1956 choosing genetics 510–512
1956–57 genetics 512
1956–57 lecture notes 513
1957–59 genetics 514–517
1958, GTNS first encounter 79
1959–1962 517–518
Aarhus University 349, 455, 463
article numbering 405
Bye-Fellowship, Gonville and Caius College,
Cambridge 104, 463

Index

Cambridge Natural Sciences Tripos 347, 390, 463,
510, 513
character and personality 347, 348, 373, 409, 453
chronology, published articles 465–482
curriculum vitae 463–464
disagreeing with Fisher 454
Fisherian perspective 373–374
geometric visualizations 442, 452–453
history and philosophy of science, education 453
history of population genetics 386–397
interests and motivations 323, 441, 443
Kimura influence 2, 432–433
method vs results, research direction 438, 441
PhD thesis 317, 388, 454, 463, 514, 515
philosophers of science, view of 11
Royal Greenwich Observatory 509–510
school days 407, 452–453, 463, 509
scientific publications 465–482
Stanford University 72, 320, 349, 435
toy model of [192] 422–423
undergraduate 163, 433–434, 510–512
University of Aberdeen 82, 437–438
University of Cambridge, Trinity Hall 463, 509, 510,
511
Winther interview 452–457
Edwards, A. W. F. (AWFE), contributions to science
AWFE quote 386
Winther summary 1
Bodmer commentary 317–318, 323
Esposito commentary 384
Felsenstein commentary 330–332
Grodwohl commentary 386–397
Nieelsen commentary 339–340
Okasha commentary 371, 374
Pagel commentary 345
Rosenberg commentary 402
Thompson commentary 351
Yang commentary 352–353
Edwards, A. W. F. (AWFE), relationships
Bodmer 317–318, 515
Cannings 456, 468,
Cavalli-Sforza 1, 72, 82, 330–332, 437, 439, 440,
441, 442, 445, 518
Edwards, Sir Sam (no relation) 419
Ewens 191, 363
Feldman 392, 414
Felsenstein 110, 325, 392–393
Felsenstein commentary 7, 325–332
Fisher 457–459, 509–519
Hacking 3, 10, 453–454
Haldane 417–418, 515,
Jones, David 514
Karlin 320, 391
Li, C.C. 371, 373
Mandel 408
Robertson, Alan 191
Thompson 347, 349, 351, 456
Wilkins 419–420

© in this web service Cambridge University Press
www.cambridge.org
Wright 515
Yang 357
Yates 513, 516
Edwards, Catharina (wife) 516
Edwards, Harold (father) 511–512, 514, 516
Edwards, J. H. (John, brother) 515
Yang commentary 414
Fellow of the Royal Society 323, 464
Felsenstein (1968) 110
Felsenstein (1973) 328–329, 339, 356, 357
Index 527

evolution, human, Fisher perspective 9
evolution, mutation vs natural selection 364
‘Evolution of Dominance’, Fisher (1931 paper) 426
evolution, reconstruction see ‘The reconstruction . . . ’, 1963 [25]*
Evolution (Ridley 1997) 68
evolutionary biology, comparative method 343–345
evolutionary genetics 4, 372, 378, 447
subfield split 335–336, 447
see also population genetics; quantitative genetics
evolutionary systematics 326
evolutionary theory 11–12, 396
evolutionary trees see phylogenetic trees
EVOTREE program (AWFE) 2, 436
Ewens and Lessard (2015) 366
Ewens commentary (Fisher GTNS 1930, 1958) 4, 8–9,
363–369
Darwinian theory 363–364
decay of genetic variance 368
denniston (1978) 366
FTNS, problems with 364–365
genome case 366
genotype fitness 365–366, 412
GTNS (1930) 363–365
GTNS (1958) 365, 367–369
Hardy–Weinberg random-mating ratios 364
Kimura equation (1957) 369
kolmogorov equation 368, 369
Markov chain Monte Carlo methods 368
Mendelism theory 363–364
preservation of variation 363–364
rate of decay of variation 368
selective advantage, favored allele 369
stochastic theory 367–369
Winther interview 411–412
Wright–Fisher Markov chain model 368
Ewens, Warren J.
relationship with AWFE 191, 363
relationship with Winther 415
Winther interview 412
Expectation-Maximization (“EM”) algorithm
(Thompson 1975) 348
extra-genetic factors, Fisher 376, 379, 380–382,
415–417
fallacy concepts 420–421, 423
father see Edwards, Harold
features and classes, Appendix 1 483–487
Feldman and Lewontin (2008) 401
Feldman, Marcus W. 392, 414
Felsenstein (1968) 110
Felsenstein (1973) 328–329, 339, 356, 357

Wright 515
Yang 357
Yates 513, 516
Edwards, Catharina (wife) 516
Edwards, Harold (father) 511–512, 514, 516
Edwards, J. H. (John, brother) 515
Yang commentary 414
Fellow of the Royal Society 323, 464
Felsenstein (1968) 110
Felsenstein (1973) 328–329, 339, 356, 357
Felsenstein (1981) 357
Felsenstein (1985) 340, 344
Felsenstein (1986) 392
work/play balance 516
Fisher, R.A., relationship with AWFE
My Edwards 518–519
528
Index

Fisher and Holt (1944) 515
Fisher and Wright, comparison 4

fidelity probability
1973 [56], ‘Likelihood’ 349
1976 [66], ‘Fiducial probability’ 470
1983 [85], ‘Fiducial distributions’ 471
1995 [145], ‘Fiducial inference . . . ’ 388, 457, 475
Thompson commentary 349
Winther interview 453–454, 455, 457
Fiducial probability’, 1976 [66] 470
de Finetti diagrams 407
Fisher (1912), maximum likelihood 321
Fisher (1918), correlation between relatives 363, 409–410
Fisher (1922), maximum likelihood 439
Fisher (1925), Statistical Methods for Research Workers 433, 509, 510, 513–514
Fisher (1930) see Genetic Theory of Natural Selection
Fisher (1931), ‘Evolution of Dominance’ 426
Fisher (1932), evolutionary modification 396, 410–411
Fisher (1936), Mendel’s data 163, 321–322
Fisher (1941), fitness 372, 394
Fisher (1947), linkage in polygenic inheritance 512, 513
Fisher (1950), Contributions to Mathematical Statistics 445, 517
Fisher (1953) 396
My Fisher, Appendix 3 509–519
Winther interview 457–459
Fisher, R. A., relationships
Cavalli-Sforza 429
Crick 418
Departmental members 389
Gini 513
Haldane 396, 417–418, 518
Hogben 515, 519
Jeffreys 418
Mandel 408
Needham 416, 417
Parsons 518
Sisam 378
Thoday 389
Weiner, 518,
Wright 418
‘Fisher, \(\mathcal{W} \), and the Fundamental Theorem’, 1990 [120] 474
Grodwohl commentary 391
Okasha commentary 373
‘Fisherian’, Winther interview 449
Fisher’s fundamental theorem see fundamental theorem entries
‘Fisher’s fundamental theorem made clear’ (Price 1972) 4, 191
Fitch and Margoliash (1967) 329
Fitch discrete data 443

fitness

Bodmer commentary 321
Charlesworth (1980) 414
Ewens commentary 363, 365, 366
Fisher (1918) 363
Fisher (1930) 191, 371
Fisher/Wright comparison 374, 391–392,
393–394
genotype fitness 365–366, 412
Grodwohl commentary 389–393
GTNS 392–393, 414, 415
inclusive 4, 317
increase 321, 391–392, 393
Malthusian fitness 414
Okasha commentary 371–372, 373
partial change, mean fitness 191, 372, 373
population mean fitness 79, 321, 365, 366, 372,
373
Thoday (1953) 389
Winther interview 412, 414
fitness function (Wright) 374, 394, 412
Fitness landscapes see adaptive landscapes
FORTRAN 436, 438

Foundations of Mathematical Genetics, 1977 [68, 69];
2000 [166]
Grodwohl commentary 388
Okasha commentary 371
Winther interview 407, 408, 413, 454
Friday, Adrian 357

FTNS see Fundamental Theorem of Natural Selection
entries
‘Fundamental Theorem of Natural Selection’, 1967
[36] 4, 79, 468
Felsenstein commentary 327–328
Grodwohl commentary 390
Okasha commentary 371, 373
‘The fundamental theorem of natural selection’, 1994
[140] 4, 191, 475
Ewens commentary 393–394
Grodwohl commentary 393–394
Okasha commentary 371, 372, 373, 374
‘The Fundamental Theorem of Natural Selection’
(Fisher, GTNS 1930, 1958) 1967 [36], ‘Fundamental . . . see main entry
1994 [140], ‘The Fundamental . . . see main entry
2014 [238], ‘R. A. Fisher’s . . . see main entry
2016 [248], ‘Analysing . . . see main entry
analytical model, recast as 411–412
AWFE’s level of understanding 131, 454–455
Edwards ideas, development 9
Esposito commentary 376
Ewens commentary 8, 364–365, 411–412
Grodwohl commentary 389
Okasha commentary 371–374
original formulation (1930) 371
papers exploring 4,
precursor (1918) 363, 409–410
Winther interview 410, 411–412, 415, 454, 456,
457
Wright’s adaptive landscapes 371
see also ‘Analysing nature’s experiment . . .’;
‘R.A. Fisher’s gene-centred . . .’
funds/technology shortage 437–438
future research 11–12
allele frequency transformations 339–340
Bayesian phylogenetics 360
biography of Fisher, need for 8–9, 363, 367, 369
competing methodologies 340–341
discrete time vs continuous time 191, 373
Esposito commentary 384
Ewens commentary 363
Felsenstein commentary 332
Fisher’s gene-centred view of evolution 384
GTNS, overlooked chapters 384
ideas, progressing in science 340–341
Nielsen commentary 340–341
Okasha commentary 373
phylogenetics and population genetics, skills needed
447
pluralistic programs 3, 11
political viewpoints in science 6–7, 416–417
posterior probabilities for trees 359
reproductibility 350
review writing/publishing, AWFE advice 323
skills needed 447
Thompson commentary 350
Yang commentary 359, 360
Galton, Francis 1
Gardner (2009) 374
Gaussian distribution
Nielsen commentary 334, 335, 339
Yang commentary 354
Gavon (1992) 393
Gayan (2004) 379, 393
Geisser’s data on the human sex-ratio
1958 [3], ‘An analysis of Geisser’s . . . ’ 317, 465
AWFE Ph.D. 317
Fisher’s comments on 317, 513, 514
Gelfand and Smith (1990) 350
Genbank 343
gene-centred view of evolution, Fisher’s 2, 4,
Esposito commentary 9, 376, 378, 380, 383
oversimplified 4, 383
see also ‘R. A. Fisher’s gene-centred view . . . ’,
2014 [238]
gene frequencies
1963 [25]*, ‘The reconstruction . . . ’ 349
2014 [238], ‘R. A. Fisher’s . . . ’ 4
Bodmer commentary 318–320
Cavalli (1966) 322
Esbens commentary 365, 369
Felsenstein commentary 331
least-squares method 430
Nielsen commentary 339–340
Okasha commentary 372–373
Pagen commentaries 344
population genetics context 447
selective advantage, favored allele 369
Thompson commentary 347, 349
variance 322
Winther interview 429–430
see also allele frequencies; blood group data
and Mournant; ‘Review of Evolution . . . ’, 1971 [49]
gene frequencies and space 429–431
gene genealogy 335, 336
gene interactions, Fisher 4
gene sequence repository 343
gene tree 335, 336
gene trees and species trees see Nielsen commentary
gene’s-eye view see gene-centred view
genetic counselling
1989 [117], ‘Probability and . . . ’ 182
genetic distance between populations 319, 326, 327
see also distance matrix methods
genetic reification of “race”, Appendix 2 488
genetic variance 372
Genetical Society of Great Britain 15, 249, 437
The Genetical Theory of Natural Selection (GTNS)
(Fisher 1930) 8, 514
Bodmer commentary 317, 321
book structure 378–379
Dawkins (1976) 455
Esposito commentary 376–384
evolution and society 415–417
Index

Shaw, Richard 388
Wright and Fisher debates 393–394
Wrightian world 389
Grodwohl, Jean-Baptiste see Grodwohl commentary
group selection 4
GTNS see The Genetical Theory of Natural Selection
(Fisher 1930)

Hacking, Ian (AWFE peer, philosopher) 3, 10, 453–454
Haldane and Wright, analytical perspective 4, 274, 410–411
Haldane, J. B. S.
2001 [173], ‘Darwin and Mendel . . .’ 241
Fisher’s relationship with 396, 417–418, 518
GTNS review 377
Hamilton (1967) 389
Hamilton, William D.
British Library archive 386
Grodwohl commentary 388, 389
haplotypic variants 349
Hardy, G. H. (1908) 321
Hardy–Weinberg equilibrium 321
Hardy–Weinberg random-mating ratios 364
Harl and Clark (1989) 407, 414
Harvey and Pagel (1991) 8, 343–345
Hasegawa see Kishino and Hasegawa (1989)
Heath Lock, Robert 285, 322, 415, 481
Hennig (1966) 444
Hennig, William 11, 331, 428, 444–445
Heredity
1961 [14], ‘The population genetics of sex-ratio in Drosophila pseudoobscura’ 519
1963 [25]*, ‘The reconstruction . . .’ 15, 467
heterozygosity approach
Bodmer commentary 322
Rosenberg commentary 401
Wright, Sewall 368
heterozygotes, Mendel data 321
‘Hierarchical grouping to optimize an objective function’ (Ward 1963) 53
historian perspectives, GTNS 377, 378,
‘History of likelihood’, 1974 [60] 155, 469
Bodmer commentary 321
Brownian motion papers 2
history of population genetics see Grodwohl commentary
history of science 1, 2
1977 [68,69], Foundations of . . . 388
AWFE papers 1, 323
cladistic ideology 3, 340–341
Hodge (1992) 393, 395,
Hogben’s Edwards 519
Holt see Fisher and Holt (1944)
Homo sapiens

Fisher perspective 380
genetic reification of “race”, Appendix 2 488
linkage maps 444
Okasha commentary 380
Winther interview 424, 444
see also under human
Horai, S. et al. (1992) 358
Horne, Sandra (1967) 329
Hubby, Jack (University of Chicago) 325
Hudson (1983) 336
Huizinga, J. and Weiner, J. S. (1972) 139
human and natural sciences, connecting 376, 379, 383
human differences, racial prejudice 322
evolution, Fisher perspective 4, 9
see also under evolution
Human Evolutionary Trees (Thompson 1975) 355–356, 456–457
‘Human genetic diversity: Lewontin’s fallacy’, 2003
[192] 5, 6, 249, 478
Bodmer commentary 7, 322–323
Cavalli-Sforza (1966) 322, 323
discussion summary 6–7
to model 422
Felsenstein, Joe 422
Lewontin’s calculations and conclusions 249, 322–323, 419
Najmi, geometric interpretation, Appendix 1 6, 483–487
Neel commentary (1981) 400
phenotypic extension of [192] 9, 402
principal component analysis 419
Rosenberg commentary 5, 6, 9, 399–402
Thompson commentary 349
toy model 422–423
Winther interview 418–427
see also ‘Human genetic variation’
human genetics and phylogenetic inference, Winther
Interview 2, 440–447
1964 [27]*, ‘Reconstruction . . .’ 441–442
biochemical data 440–441
cartographic representations 441–442
discrete-time vs continuous time 440–441
gene frequencies 441
initial data 440–441
linkage analysis 443–444
non-human data 440–441
human race see Homo sapiens
human science 379
see also Esposito commentary
humanist interests 379
Il sesso del punto di vista statistico (Gini, 1908) 513
incidental parameters 110
inclusive fitness 4, 317
incomplete lineage sorting 337
indifference principle 453
induction, statistical 410–411, 453, 510
inductive approach, Fisher 4
AWFE note 274
Grodwohl commentary 395
Thompson commentary 348
Winther interview 409, 410–412, 457
see also ‘Analysing nature’s experiment . . . ’, 2016 [248]
inferring phylogenies see phylogenetic inference
Inferring Phylogenies, Felsenstein (2004) 344
infertility, social promotion of, Fisher 383
intellectual discussions, styles of 416–418
intelligence characteristic 379, 383
interdemic selection 4
International Biometrics Conference 53, 440
International Congress of Genetics 410–411
International Statistical Review 1974 [60], ‘The history of likelihood’ 155, 469
International Statistics Institute 72
interviews with AWFE see Winther interviews with
AWFE
inverse probability, Fisher perspective 358, 445, 446
irrelevance principle 454
isogene maps 429
Jeffreys, Harold 418, 453
Jenkin, Fleeming 364
Jones, David (fellow student) 514
Jones, Sir Harold Spencer (Astronomer Royal) 509
Journal of Pathology and Bacteriology 1959 [unsigned], ‘Review of A. E. Mourant . . . ’ 516
Karlin (1975), anonymous review 391
Karlin, Samuel (Sam), Stanford University 320
Kempthorne, O., and Fisher 79
Kimura (1958) 79, 372, 390,
Kimura equation (1957) 369
Kimura gene frequency model, Winther interview 443
Kimura, Motoo, influence on AWFE 2, 432–433
‘On Kimura’s maximum principle in the genetical
Kingman (1961a/b) 408
Kingman (1982) 336
Kishino and Hasegawa (1989) 356
Kolmogorov equation, Ewens commentary 368, 369
Laboratorio Internazionale di Genetica e Biofisica 432
Laird see Dempster, Laird and Rubin (1977)
latent variables 348
least squares additive trees
Cavalli-Sforza idea 7, 319, 329, 344, 430
Felsenstein commentary 329, 331
Pagel commentary 344
Thompson commentary 348

Index
Winther interview 429–430, 431, 448
levels of selection 4, 456
Lewontin (1972) 5,
Bodmer commentary 322
Rosenberg commentary 9, 399, 400,
variance-partitioning question 399
see also ‘Human genetic diversity . . . ’, 2003 [192]
Lewontin (1978) 400
Lewontin and Feldman (2008) 401
Lewontin Papers, Philadelphia (RCLP) 386
Lewontin, Richard
American Philosophical Society archive 386
Felsenstein commentary 325,
Grodwohl commentary 392
Lewontin, Richard, relationships
AWFE 6, 422
Felsenstein 325, 392, 422
Mitton 421
Winther 10, 11
Wright, letter to 396
Li, C. C., perspective on the FTNS 79, 371, 373
Li, S. et al. (2000) 359
Li, Shuying 356
Likelihood, 1972 [54] 469
AWFE note 163
Bodmer commentary 321
Bye-Fellowship, Cambridge 104
dust jacket illustration 433
Felsenstein commentary 325, 327, 343, 345
Felsenstein commentary 2001 327
Grodwohl commentary 320
Jenkins commentary 369
Kempthorne commentary 422
Kimura commentary 369
Kingman commentary 345
Lewontin commentary 433–438
Lewontin interview 433, 447
‘Likelihood’, 1972 [56] paper 151, 469
Brownian motion 2
Likelihood function 45
Lewontin commentary 348–349
Likelihood, 1984 12, 472
likelihood and probability, distinction between
Bodmer’s commentary 320
likelihood function 327
Felsenstein commentary 329
Winther interview 433, 434–435, 446–447
Yang commentary 352, 354, 356
likelihood inference see under likelihood; Thompson
commentary
likelihood methods, Edwards 1, 3
Bodmer commentary 320–321
and The Comparative Method in Evolutionary
Biology 343–345
difficulty with 110, 327–328
Felsenstein commentary 2–3, 327–328, 331
Pagel commentary 344–345
see also maximum likelihood
Lindley, D. V. 110
lineage sorting 337
linear regression and the analysis of variance 274
linkage analysis/maps 443–444
linkage, Fisher lecture 512
Linnean taxonomic classifications 343
Index

Linnik, Yu. V. 72
LLCS see Cavalli-Sforza, L. L.
Lock see Heath Lock, Robert
Logic of Statistical Inference (Hacking, 1965) 453–454
logical models and mathematical models 413
López Beltrán, Carlos (historian) 10
lung cancer and smoking links, Fisher 458–459
Lynch (1991) 344

Maddox, John (editor of Nature) 104
Malthusian fitness 414
Mandel, S.P.H. (Steve, fellow student)
Grodwohl commentary 389
Winther interview 408
maps (statistical) see cartographic representations
Markov chain Monte Carlo (MCMC) methods
Ewens commentary 368
Felsenstein commentary 330
Thompson commentary 349–350
Yang commentary 356, 357, 360
mathematical models, in GTNS 412
mathematical population genetics 4, 410–411
mathematical theory, Winther interview 414
mathematics, history of I
‘Mathematising Darwin’ 2011 [227] 274, 480
Esposito commentary 4, 384
gene’s-eye view, Fisher 4, 384
statistical inference 3
Mathier (1949), Biometrical Genetics 512
Mathier, K., relationship with Fisher 512
Mau and Newton (1997) 359
Mau, Bob 356
maximum likelihood 1, 2, 7
application to evolutionary trees 72, 104
AWFE note 72, 110
difficulties with 110, 327–328
Felsenstein contribution 72, 436
first generation computer program 436, 519
Fisher (1912 paper) 321
Fisher (1922) 439
Thompson commentary 348
Winther interview 413, 454, 436, 439
see also ‘Estimation . . .’ 1970 [46]; likelihood;
likelihood function
Maynard Smith, John
British Library archive 386
Grodwohl commentary 387, 391
Mayr, Ernst 326
MCMC (Markov chain Monte Carlo) methods
Ewens commentary 368
Felsenstein commentary 330
Thompson commentary 349–350
Yang commentary 356, 357, 360
mean–fitness function, Wright 394, 412
mean fitness, partial vs total change 191, 372, 373
mean fitness, population, Fisher
AWFE note 79

Bodmer commentary 321
Ewens commentary 365, 366
Okasha commentary 372, 373
see also fitness
medical perspective, genetic screening 323
Medical Research Council 437
medicine, new areas of 12
Mendelian system
Esposito commentary 376
Ewens commentary 363–364
Grodwohl commentary 396
Nielsen commentary 335
Winther interview 445, 446–447
Mendel’s data
1986 [96], ‘Are Mendel’s results really too close?’ 163, 321–322
2001 [173], ‘Darwin and Mendel . . . ’ 241
Bodmer commentary 321–322
merger of gene trees and species trees see Nielsen commentary
Method of Support
AWFE note 163
Bodmer commentary 320
method vs model 413
methodologies, competing 340–341
metric maps see cartographic representations
migration
population genetics 335
routes out of Africa 344
and trees, single analysis 327
Milestones in Systematics (Williams and Forey 2004) 254, 478
minimum evolution methods, parsimony 2
AWFE note 15, 41, 68
Bodmer commentary 319
Felsenstein commentary 327
linkage analysis/maps 443
Pagel commentary 344
Thompson commentary 348
Winther interview 430, 437, 443
world map tree 17, 28, 344
see also ‘Analysis of human evolution’, 1965 [29]*;
parsimony methods; ‘Reconstruction of evolutionary trees’, 1964 [27];
minimum evolution principle 319, 350
misclassification probability 6, 423, 487
missing variables 348
Mitchison (2003) 396
Mitchison, Avrion (Haldane’s nephew) 396
Mitton (1977) 400, 421
Mitton (1978) 400, 421
Mitton, J.B., Lewontin relationship 421
model-based inference, AWFE influence 8, 348
model testing, Winther interview 432, 436–437
Models and Analogues in Biology
Models and Analogues in Biology (cont.)

1960 [9], ‘Models in Genetics’ 413
models, functions and types, Winther interview 413–415
‘Models in Genetics’, 1960 413
Mohler see Shaw and Mohler (1953)
molecular clock 359
Molecular Ecology 337
molecular evolutionists and phylogenies 332
molecular phylogenetic reconstruction (1990s) 1970 [46], ‘Estimation . . . ’ 8, 353
Thompson commentary 348
Yang commentary 8, 359, 360
see also ‘Assessing molecular phylogenies’, 1995 [141]; Yang commentary
Monte Carlo methods
Felsenstein commentary 330
Thompson commentary 349–350
Yang commentary 356, 357, 360
moral fallacy 421
Mourant, Arthur, Winther interview 435, 436
Mourant et al. (1954)
Bodmer commentary 318
Edwards review (1959) 516
Fisher influence 318
Winther interview 428–429, 435, 436
MrBayes program 359
Mulholland and Smith (1959) 408
Mullis, Kary 343
multilocus genotypes
Nielsen commentary 7, 337, 340
Rosenberg commentary 5, 399–400
Winther interview 414–415
multiple competing methodologies 340–341
multivariate classification model (Edwards) 9
multivariate statistics, Fisher 395
mutation 364
mutation, Fisher perspective 4
Ewens commentary 364, 367, 368
Nielsen commentary 335
My Edwards 518–519
My Fisher, Appendix 3 509–519
1956 choosing genetics 510–512
1956–57 genetics 512
1956–57 lecture notes 513
1957–59 genetics 514–517
1959–1962 517–518
My Edwards 518–519
naïveté, political, Fisher’s 417
Najmi, Amir 10
2003 [192], geometric interpretation 6, 483–487
dimensionality 485–487
features and classes 483–487
misclassification probability 487
Pythagorean theorem 483, 486–487
natural and human sciences, connecting 376, 379, 383

Index

natural selection vs mutation 364
Nature 1967 [36], ‘Fundamental . . . ’ 79, 390, 468
1969 [42], ‘Statistical methods . . . ’ 104, 468
1971 [51], ‘Science, statistics and society’ 104, 469
1987 [99], ‘Evolution and optimization’ 992
Grodwohl commentary 392–393
Needham, Joseph, and Fisher 416, 417
Neel (1981) 400
Nei and Roychoudhury (1972, 1974) 400,
Nei and Saitou (1987) 329
neighbor-joining method (Saitou and Nei) 329
neo-Darwinism, Esposito commentary 380
New Scientist 1966 [32], ‘Studying human . . . ’ 68, 467
Newman, J. (1971) 360
Newsom, Rose (Fisher’s daughter) 363, 514
Newton, Michael 356
Neyman–Fisher controversy 1
Neyman–Pearson frequentist approach 349
Nielsen commentary (gene trees and species trees) 3,
7–8, 334–335
1967 [37]*, ‘Phylogenetic analysis . . . ’ 339
cladistic ideology 3, 7–8, 336, 340–341
coalescence methods, modern 338
coalescence theory 335, 336–337
definitions 334–335
Edwards and Cavalli-Sforza 339–340
ideas, progress in science 340–341
merger of gene trees and species trees 338–339
phylogeography 337–338
split of gene trees and species trees 335–336
Nielsen, Rasmus, Winther interview 447
non-human data, Winther interview 440–441
normative fallacy 421
number theory 323
numerical system, AWFE articles 405
The Observatory 1957 [1], ‘The proportion of . . . ’ 465, 509–510
Ockham’s razor 428, 431, 443
O’Donnell (1980) 389
Okasha commentary (AWFE on FTNS) 9, 371–374
1967 [36], ‘Fundamental . . . ’ 371, 373
1971 [49], ‘Review of Evolution . . . ’ 371, 373
1990 [120], ‘Fisher . . . ’ 373
2014 [238], ‘R. A. Fisher’s . . . ’ 371
allele frequencies 372–373
AWFE own perspective 373–374
Darwinian theory 374,
discrete-time vs continuous time 373
FTNS (Fisher 1930, 1958) 371–374
GTS (Fisher 1930) 371
Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>372, 373</td>
<td>partial change, mean fitness, Fisher</td>
</tr>
<tr>
<td>374, 392</td>
<td>optimization, and evolution</td>
</tr>
<tr>
<td>375</td>
<td>‘The origin and early development of the method of minimum evolution for the reconstruction of evolutionary trees’, 1996 [146]</td>
</tr>
<tr>
<td>379</td>
<td>Bodmer commentary</td>
</tr>
<tr>
<td>381</td>
<td>Nielson commentary</td>
</tr>
<tr>
<td>382</td>
<td>statistical inference</td>
</tr>
<tr>
<td>383–395</td>
<td>Thompson commentary</td>
</tr>
<tr>
<td>448</td>
<td>Winther interview</td>
</tr>
<tr>
<td>376</td>
<td>Origins of Species (Darwin)</td>
</tr>
<tr>
<td>389, 314</td>
<td>Owen, George (Dr Owen)</td>
</tr>
<tr>
<td>8, 343–345</td>
<td>Pagel and Harvey (1991)</td>
</tr>
<tr>
<td>3, 8, 343–345</td>
<td>Pagel commentary (likelihood and the comparative method)</td>
</tr>
<tr>
<td>15, 467</td>
<td>1964 [27]*, ‘Reconstruction . . .’</td>
</tr>
<tr>
<td>3</td>
<td>1964 [27]*, ‘Reconstruction . . .’</td>
</tr>
<tr>
<td>3</td>
<td>1970 [46], ‘Estimation . . . see main entry’</td>
</tr>
<tr>
<td>254, 478</td>
<td>2004 [197] ‘Parsimony and computers’</td>
</tr>
<tr>
<td>15, 68</td>
<td>AWFE note 15</td>
</tr>
<tr>
<td>319</td>
<td>Bodmer commentary</td>
</tr>
<tr>
<td>327, 331</td>
<td>Felsenstein commentary 2–3</td>
</tr>
<tr>
<td>344, 345</td>
<td>Pagel commentary 344</td>
</tr>
<tr>
<td>350–351</td>
<td>Thompson commentary 350–351</td>
</tr>
<tr>
<td>428</td>
<td>Winther interview 428</td>
</tr>
<tr>
<td>352</td>
<td>Yang commentary 352</td>
</tr>
<tr>
<td>339–345, 334, 350</td>
<td>see also minimum evolution methods</td>
</tr>
<tr>
<td>319</td>
<td>parsimony principle</td>
</tr>
<tr>
<td>389, 518</td>
<td>Parsons, Peter (Fisher fellow student)</td>
</tr>
<tr>
<td>372, 373</td>
<td>partial change, mean fitness, Fisher</td>
</tr>
<tr>
<td>372, 373</td>
<td>Okasha commentary</td>
</tr>
<tr>
<td>372, 373</td>
<td>partial change and total change 372</td>
</tr>
<tr>
<td>434</td>
<td>partitioning see variance-partitioning</td>
</tr>
<tr>
<td>477, 478</td>
<td>Pascal, Blaise 1, 471, 473, 476, 477, 478</td>
</tr>
<tr>
<td>478</td>
<td>Pascal’s triangle 323, 472, 473, 478</td>
</tr>
<tr>
<td>518</td>
<td>Pavia, Italy 72, 82, 318</td>
</tr>
<tr>
<td>513</td>
<td>Pearson’s method of moments 434</td>
</tr>
<tr>
<td>467</td>
<td>Phenetic and Phylogenetic Classification 1964 [27]*, ‘Reconstruction . . .’</td>
</tr>
<tr>
<td>9, 402</td>
<td>phenotypic extension of 2003 [192]</td>
</tr>
<tr>
<td>512, 513</td>
<td>Philosophical Transactions of the Royal Society (Fisher 1947)</td>
</tr>
<tr>
<td>424–426</td>
<td>philosophies, cultural difference</td>
</tr>
<tr>
<td>11–12</td>
<td>philosophy, modern</td>
</tr>
<tr>
<td>394</td>
<td>philosophy of evolution, debate</td>
</tr>
<tr>
<td>359</td>
<td>PhyloBayes program</td>
</tr>
<tr>
<td>344</td>
<td>‘Phylogenetic analysis: models and estimation procedures’, 1967 [37]*</td>
</tr>
<tr>
<td>430</td>
<td>allele frequency transformations</td>
</tr>
<tr>
<td>339–340</td>
<td>Brownian motion 2, 339</td>
</tr>
<tr>
<td>325, 326, 327, 330</td>
<td>Felsenstein commentary 325–327</td>
</tr>
<tr>
<td>334–335</td>
<td>Nielsen commentary 334–335</td>
</tr>
<tr>
<td>329–330</td>
<td>Nielsen commentary 334–335</td>
</tr>
<tr>
<td>320, 323</td>
<td>Bodmer commentary 320, 323</td>
</tr>
<tr>
<td>344, 345</td>
<td>statistical methods 344–345</td>
</tr>
<tr>
<td>345–447</td>
<td>population genetics 447–451</td>
</tr>
<tr>
<td>350, 359</td>
<td>Thompson commentary 350</td>
</tr>
<tr>
<td>350–351</td>
<td>uncertainty 350–351</td>
</tr>
<tr>
<td>428–451</td>
<td>Winther interview 428–451</td>
</tr>
<tr>
<td>3, 8, 335, 336, 1970 [46]; likelihood; statistical;</td>
<td>see also under Bayes: ‘Estimation of the branch points . . .’</td>
</tr>
<tr>
<td>345</td>
<td>Yang commentary</td>
</tr>
<tr>
<td>345</td>
<td>phylogenetic trees (phylogenies)</td>
</tr>
<tr>
<td>345</td>
<td>AWFE note 15</td>
</tr>
<tr>
<td>328–329</td>
<td>Bodmer commentary 328–329</td>
</tr>
<tr>
<td>332</td>
<td>family of statistical methods 428</td>
</tr>
<tr>
<td>332, 326, 327, 330–332</td>
<td>Felsenstein commentary 325–332</td>
</tr>
<tr>
<td>440</td>
<td>human genetics and 440–447</td>
</tr>
<tr>
<td>334–335</td>
<td>Nielsen commentary 334–335</td>
</tr>
<tr>
<td>344</td>
<td>Pagel commentary 344–345</td>
</tr>
<tr>
<td>345</td>
<td>and population genetics 447–451</td>
</tr>
<tr>
<td>350</td>
<td>statistical methods 428–440</td>
</tr>
<tr>
<td>359</td>
<td>Thompson commentary 350, 359</td>
</tr>
<tr>
<td>350–351</td>
<td>uncertainty 350–351</td>
</tr>
<tr>
<td>428–451</td>
<td>Winther interview 428–451</td>
</tr>
<tr>
<td>3, 8, 335, 336,</td>
<td>see also Yang commentary</td>
</tr>
<tr>
<td>339</td>
<td>see also phylogenetics 7–8, 335, 336,</td>
</tr>
<tr>
<td>344</td>
<td>Phylogenetic analysis: models and estimation procedures, 1967 [37]*</td>
</tr>
<tr>
<td>345</td>
<td>AWFE note 15</td>
</tr>
<tr>
<td>328–329</td>
<td>Bodmer commentary 328–329</td>
</tr>
<tr>
<td>332</td>
<td>family of statistical methods 428</td>
</tr>
<tr>
<td>332, 326, 327, 330–332</td>
<td>Felsenstein commentary 325–332</td>
</tr>
<tr>
<td>440–447</td>
<td>human genetics and 440–447</td>
</tr>
<tr>
<td>334–335</td>
<td>Nielsen commentary 334–335</td>
</tr>
<tr>
<td>344</td>
<td>Pagel commentary 344–345</td>
</tr>
<tr>
<td>345</td>
<td>and population genetics 447–451</td>
</tr>
<tr>
<td>350</td>
<td>statistical methods 428–440</td>
</tr>
<tr>
<td>359</td>
<td>Thompson commentary 350, 359</td>
</tr>
<tr>
<td>350–351</td>
<td>uncertainty 350–351</td>
</tr>
<tr>
<td>428–451</td>
<td>Winther interview 428–451</td>
</tr>
<tr>
<td>3, 8, 335, 336,</td>
<td>see also Yang commentary</td>
</tr>
<tr>
<td>339</td>
<td>see also phylogenetics 7–8, 335, 336,</td>
</tr>
<tr>
<td>344</td>
<td>Phylogenetic analysis: models and estimation procedures, 1967 [37]*</td>
</tr>
<tr>
<td>350–351</td>
<td>uncertainty 350–351</td>
</tr>
<tr>
<td>428–451</td>
<td>Winther interview 428–451</td>
</tr>
<tr>
<td>3, 8, 335, 336,</td>
<td>see also Yang commentary</td>
</tr>
<tr>
<td>339</td>
<td>see also phylogenetics 7–8, 335, 336,</td>
</tr>
<tr>
<td>344</td>
<td>Phylogenetic analysis: models and estimation procedures, 1967 [37]*</td>
</tr>
<tr>
<td>350–351</td>
<td>uncertainty 350–351</td>
</tr>
<tr>
<td>428–451</td>
<td>Winther interview 428–451</td>
</tr>
<tr>
<td>3, 8, 335, 336,</td>
<td>see also Yang commentary</td>
</tr>
<tr>
<td>339</td>
<td>see also phylogenetics 7–8, 335, 336,</td>
</tr>
<tr>
<td>344</td>
<td>Phylogenetic analysis: models and estimation procedures, 1967 [37]*</td>
</tr>
<tr>
<td>350–351</td>
<td>uncertainty 350–351</td>
</tr>
<tr>
<td>428–451</td>
<td>Winther interview 428–451</td>
</tr>
<tr>
<td>3, 8, 335, 336,</td>
<td>see also Yang commentary</td>
</tr>
<tr>
<td>339</td>
<td>see also phylogenetics 7–8, 335, 336,</td>
</tr>
</tbody>
</table>
polymerase chain reaction methods (Mullis) 343
polymorphism data (genetic polymorphisms)
early studies 318
Fisher’s suggestion 2
Lewontin (1972) 322
Mourant data 318
optimal evolutionary tree 318
population clustering and classification see clustering
analysis and classification
population genetics 335
origins 336
and phylogenetic inference 7–8, 447–451
split with quantitative genetics 335–336, 447
and statistical inference theory 448
see also Grodwohl commentary
population mean fitness, Fisher
AWFE note 79
Bodmer commentary 321
Ewens commentary 365, 366
Okasha commentary 372, 373
population trees 339
posterior probability distribution for trees
Felsenstein commentary 330
Thompson commentary 350
Winther interview 446–447
Yang commentary 356–358, 359
Powell and Taylor (1978) 400,
presentation to Royal Statistical Society 110, 131, 320,
348, 349, 454, 509–519
Price (1971) 372
Price (1972) 4, 191
Price, George 390, 391
principal component analysis (PCA)
Bodmer commentary 319–320
Mitton (1978) 400
Winther interview 419
principle of indifference 453
principle of irrelevancy 454
principle of parsimony (minimum evolution) 319, 350
Principles of Numerical Taxonomy (Sokal and Sneath)
1963) 325, 428
prior probability distribution for trees
Bodmer commentary 320
Felsenstein commentary 330
Winther interview 446–447
Yang commentary 358
Pritchard and Pickrell (2012) 339
probability and likelihood, distinction
1974 [60], ‘The history of likelihood’ 321
Bodmer commentary 320
probability density 326, 328, 354, 355, 485
probability theory 1, 2
Proceedings of the 11th International Congress of
Genetics, The Hague 1963 41, 467

Index

‘Proportion of umbrella in large sunspots, 1878–1954’
The Observatory, 1957 [1] 465, 509–510
Provine (1988) 393
Provine (1989) 392–393, 395
Provine (1992) 393
Punnett, R. C. 517
Pythagorean theorem, Appendix 1 483, 486–487
quadratic mathematics, Winther interview 407
quantitative genetics 335, 447
population genetics split 335–336, 447
see also population genetics
R. A. Fisher Memorial Trust 317, 517
R. A. Fisher: The Life of a Scientist (Box 1978) 363,
387, 450
race and racial classification
AAA statement 423
gene reification of “race”, Appendix 2 488
Lewontin perspective 322, 401–402
Winther interview 423–424
see also Homo sapiens
Race, R. R.
Bodmer commentary 323
Fisher’s letter to 519
racial prejudice, characterisation 322
‘R. A. Fisher: Twice professor of genetics: London and
Cambridge or “A fairly well-known geneticist”’, 1990 [121] 474, 512
‘R. A. Fisher’s 1943 unravelling of the rhesus blood-
group system’, 2007217] 480
Bodmer commentary 321
My Fisher, Appendix 3 512, 518
‘R. A. Fisher’s gene-centred view of evolution and the
Fundamental Theorem of Natural Selection’, 2014 [238] 295, 481
AWFE note 191, 309
Bodmer commentary 321
continuous time vs discrete time 191
Esposito commentary 376, 378
gene frequencies 4
Grodwohl commentary 394
Okasha commentary 371, 372, 373, 374
random genetic drift 2, 4
see also ‘Analysis of human evolution under …’,
1964 [28]**; Brownian motion approximation of
random genetic drift
random variables and parameters, confusion 8, 352
randomisation tests, Pagel commentary 345
Rannala and Yang (1996) 357, 359
Rannala, Bruce 356
rate of decay of variation 368
RCLP (R. C. Lewontin Papers, Philadelphia) 359
‘The reconstruction of evolution’, 1963 [25]* 2, 15,
467
Nielsen commentary 339
a principle of minimum evolution 437
Thompson commentary 349
skin colour, racial prejudice 322
Skipper (2000) 393
Slatkin, Monty 357
Smith, A. F. M. see Gelfand and Smith (1990)
Smith, C. A. B. 79
see also Mulholland and Smith (1959)
Smith, John Maynard see Maynard Smith, John
smoking and lung cancer links, Fisher 458–459
Smouse and Spielman (1976, 1977) 400,
Sneath and Sokal (1963) 325, 428
SNPs (single nucleotide polymorphisms) 332
sociological factors, Fisher
Esposito commentary 379, 380–384
Winther interview 415–417
Sokal and Camin (1965) 325, 331
Sokal and Sneath (1963) 325, 428
Sokal, Robert (University of Chicago) 325
Solar Department, Royal Greenwich Observatory
509–510
sorting lineage 337
space (metric space)
Cartesian spaces 2, 429
Euclidean space 430, 431
gene frequencies and 429–431
species tree 335
species trees and gene trees see Nielsen commentary
speculative mathematics 453
Spielman and Smouse (1976, 1977) 400,
split and merger of gene trees and species trees see
Nielsen commentary
St Petersburg Paradox in probability (Fisher typescript)
518
Stanford University
1960s mathematicians 391
AWFE 72, 320, 349, 435
computer-based calculations 72, 435
Grodwohl commentary 389
Thompson commentary 349
Winther 10
statistical fallacy 421
‘statistical’, Fisher’s use of the word 274, 409–410
statistical induction 410–411, 453, 510
see also inductive approach, Fisher’s
Statistical Inference and the Estimation of Phylogenies
(Felsenstein 1968) 110
statistical inference theory, and population genetics
448
statistical maps see cartographic representations
statistical method development, Winther interview
428–440
computers, need for 429
family of methods 428, 431
Hennigian cladistics 428, 444–445
least-squares additive trees 429–430, 431
likelihood function 433, 434–435, 446–447
maximum likelihood 434
minimum evolution trees 432
model testing 432, 436–437
 Index

Ockham’s razor 428, 431, 443
road builder analogy 437
Statistical Methods (R.A. Fisher) 317, 510, 513, 514
statistical methods, Felsenstein commentary 2–3,
330–332
‘Statistical methods for evolutionary trees’, 2009 [225]
15, 265, 480
AWFE note 15
Brownian motion papers 2
genetic distance 319
Winther interview 449
Statistical Methods for Research Workers (Fisher
1925) 433, 509, 510, 513–514
‘Statistical methods in scientific inference’, 1969 [42]
104, 320, 468
Statistical Tables (Fisher and Yates) 513
The Statistician
1976 [66], ‘Fiducial probability’ 470
statistics, modern 11–12
Stefanski and Boos (2011) 351
Steiner trees 431, 521
stochastic theory, Fisher’s treatment of 8
structural parameters 110
‘Studying human evolution by computer’, 1966 [32] 2,
68, 436, 467
Stuessy and Duncan (eds. 1985) 17
super-computing, modern 11–12
synthetic approach, Fisher 274
Systematic Biology
1996 [146], ‘The origin . . . ’ 227, 475
Systematics Association Publication No. 6 see
‘Reconstruction of evolutionary trees’, 1964 [27]
Systematics Association Special Volume Series 67
2004 [197], ‘ Parsimony and computers’ 254, 478
systematist perspectives 326, 332
taxonomist perspectives 428–429, 439–440
taxonomy 334, 336
Taylor and Powell (1978) 400,
teaching tools, modern 11
technology/funds shortage 437–438
Theoretical Population Biology
1990 [120], ‘Fisher, W, and the Fundamental
Theorem’ 373, 391, 474
2000 [170], ‘Carl Düsng (1884) on The Regulation
of the Sex Ratio’ 318, 412
2016 [248], ‘Analysing nature’s experiment:
Fisher’s inductive theorem of natural selection’
309, 482
Grodwohl commentary 392
Okasha commentary 371
textbook, Winther interview 413–414
Thoday (1953) 389
Thoday, J. M. (Fisher’s successor) 389
Thompson and Edwards, joint papers 472, 476
Thompson commentary (likelihood inference) 8,
347–351
1972 [56], ‘Likelihood’ 348–349
Wright, S. G. (Sewall), relationships
Fisher relationship 418
Lewontin, letter from 396
Wright's mean-fitness function 394, 412

Yang commentary (Bayesian phylogenetics) 8, 352–353
1970 [46], 'Estimation … ' 8, 352, 353, 357, 358
ancestral states at the root 356
Bayesian origins 356–358
Brownian drift parameter 358
Brownian-motion process 352, 354–355
maximum likelihood method 356
MCMC methods 356, 357, 360
model and statistical problem 352–355
model remarks 355–356

modern interpretation 352, 359–360
parameters and random variables, confusion 352
phylogeny estimation and statistical inference 358–359
singularity in the likelihood surface 352, 355, 358, 359
Yule branching process 8, 352, 353–354
Yule branching rate 358
Yule process application 355
Yang, Ziheng 357–358
Yates, Frank (Fisher co-author) 513, 516
Yule branching process
application 355
branching rate 358
Thompson commentary 348
Yang commentary 8, 352, 353–354, 355
Yule, George Udny [162] 476, 477