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Introduction

A New Kind of Philosophy

Some people think that philosophy never makes progress. In fact, professional philoso-

phers might think that more frequently – and feel it more acutely – than anyone else.

At the beginning of the twentieth century, some philosophers were so deeply troubled

that they decided to cast all previous philosophy on the scrap heap and to rebuild from

scratch. “Why shouldn’t philosophy be like science?” they asked. “Why can’t it also

make genuine progress?”

Now, you might guess that these philosophers would have located philosophy’s prob-

lems in its lack of empirical data and experiments. One advantage of the empirical

sciences is that bad ideas (such as “leeches cure disease”) can be falsified through

experiments. However, this wasn’t the diagnosis of the first philosophers of science; they

didn’t see empirical testability as the sine qua non of a progressive science. Their guid-

ing light was not the empirical sciences, but mathematics, and mathematical physics.

The nineteenth century had been a time of enormous progress in mathematics, not

only in answering old questions and extending applications, but but also in clarifying

and strengthening the foundations of the discipline. For example, George Boole had

clarified the structure of logical relations between propositions, and Georg Cantor had

given a precise account of the concept of “infinity,” thereby setting the stage for the

development of the new mathematical theory of sets. The logician Gottlob Frege had

proposed a new kind of symbolic logic that gave a precise account of all the valid

argument forms in mathematics. And the great German mathematician David Hilbert,

building on a rich tradition of analytic geometry, proposed an overarching axiomatic

method in which all mathematical terminology is “de-interpreted” so that the correctness

of proofs is judged on the basis of purely formal criteria.

For a younger generation of thinkers, there was a stark contrast between the ever

more murky terminology of speculative philosophy and the rising standards of clarity

and rigor in mathematics. “What is the magic that these mathematicians have found?”

asked some philosophically inclined scientists at the beginning of the twentieth century.

“How is it that mathematicians have a firm grip on concepts such as ‘infinity’ and

‘continuous function,’ while speculative philosophers continue talking in circles?” It

was time, according to this new generation, to rethink the methods of philosophy as an

academic discipline.
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2 Introduction

The first person to propose that philosophy be recreated in the image of nineteenth-

century mathematics was Bertrand Russell. And Russell was not at all modest in what he

thought this new philosophical method could accomplish. Indeed, Russell cast himself

as a direct competitor with the great speculative philosophers, most notably with Hegel.

That is, Russell thought that, with the aid of the new symbolic logic, he could describe

the fundamental structure of reality more clearly and accurately than Hegel himself did.

Indeed, Russell’s “logical atomism” was intended as a replacement for Hegel’s monistic

idealism.

Russell’s grand metaphysical ambitions were cast upon the rocks by his student

Ludwig Wittgenstein. In essence, Wittgenstein’s Tractatus Logico Philosophicus was

intended to serve as a reductio ad absurdum of the idea that the language of math-

ematical logic is suited to mirror the structure of reality in itself. To the extent that

Russell himself accepted Wittgenstein’s rebuke, this first engagement of philosophy

and mathematical logic came to an unhappy end. In order for philosophy to become

wedded to mathematical logic, it took a distinct second movement, this time involving a

renunciation of the ambitions of traditional speculative metaphysics. This second move-

ment proposed not only a new method of philosophical inquiry but also a fundamental

reconstrual of its aims.

As mentioned before, the nineteenth century was a golden age for mathematics in the

broad sense, and that included mathematical physics. Throughout the century, Newto-

nian physics has been successfully extended to describe systems that had not originally

been thought to lie within its scope. For example, prior to the late nineteenth century,

changes in temperature had been described by the science of thermodynamics, which

describes heat as a sort of continuous substance that flows from one body to another.

But then it was shown that the predictions of thermodynamics could be reproduced

by assuming that these bodies are made of numerous tiny particles obeying the laws

of Newtonian mechanics. This reduction of thermodynamics to statistical mechanics

led to much philosophical debate over the existence of unobservable entities, e.g., tiny

particles (atoms) whose movement is supposed to explain macroscopic phenomena such

as heat. Leading scientists such as Boltzmann, Mach, Planck, and Poincaré sometimes

took opposing stances on these questions, and it led to more general reflection on the

nature and scope of scientific knowledge.

These scientists couldn’t have predicted what would happen to physics at the begin-

ning of the twentieth century. The years 1905–1915 saw no fewer than three major

upheavals in physics. These upheavals began with Einstein’s publication of his special

theory of relativity, and continued with Bohr’s quantum model of the hydrogen atom,

and then Einstein’s general theory of relativity. If anything became obvious through

these revolutions, it was that we didn’t understand the nature of science as well as we

thought we did. We had believed we understood how science worked, but people like

Einstein and Bohr were changing the rules of the game. It was high time to reflect on

the nature of the scientific enterprise as a whole.

The new theories in physics also raised further questions, specifically about the role of

mathematics in physical science. All three of the new theories – special and general rela-

tivity, along with quantum theory – used highly abstract mathematical notions, the likes
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Introduction 3

of which physicists had not used before. Even special relativity, the most intuitive of

the three theories, uses four-dimensional geometry and a notion of “distance” that takes

both positive and negative values. Things only got worse when, in the 1920s, Heisenberg

proposed that the new quantum theory make use of non-commutative algebras that had

no intuitive connection whatsoever to things happening in the physical world.

The scientists of the early twentieth century were decidedly philosophical in outlook.

Indeed, reading the reflections of the young Einstein or Bohr, one realizes that the

distinction between “scientist” and “philosopher” had not yet been drawn as sharply

as it is today. Nonetheless, despite their philosophical proclivities, Einstein, Bohr, and

the other scientific greats were not philosophical system builders, if only because they

were too busy publicizing their theories and then working for world peace. Thus, the job

of “making sense of how science works” was left to some people who we now consider

to be philosophers of science.

If we were to call anybody the first “philosopher of science” in the modern sense

of the term, then it should probably be Moritz Schlick (1882–1936). Schlick earned

his PhD in physics at Berlin under the supervision of Max Planck and thereafter began

studying philosophy. During the 1910s, Schlick became one of the first philosophical

interpreters of Einstein’s new theories, and in doing so, he developed a distinctive view

in opposition to Marburg neo-Kantianism. In 1922, Schlick was appointed chair of

Naturphilosophie in Vienna, a post that had earlier been held by Boltzmann and then

by Mach.

When Schlick formulated his epistemological theories, he did so in a conscious

attempt to accommodate the newest discoveries in mathematics and physics. With

particular reference to mathematical knowledge, Schlick followed nineteenth-century

mathematicians – most notably Pasch and Hilbert – in saying that mathematical claims

are true by definition and that the words that occur in the axioms are thereby implicitly

defined. In short, those words have no meaning beyond that which accrues to them by

their role in the axioms.

While Schlick was planting the roots of philosophy of science in Vienna, the young

Hans Reichenbach (1891–1953) had found a way to combine the study of philosophy,

physics, and mathematics by moving around between Berlin, Göttingen, and Munich –

where he studied philosophy with Cassirer, physics with Einstein, Planck, and Sommer-

feld; and mathematics with Hilbert and Noether. He struggled at first to find a suitable

academic post, but eventually Reichenbach was appointed at Berlin in 1926. It was in

Berlin that Reichenbach took on a student named Carl Hempel (1905–1997), who would

later bring this new philosophical approach to the elite universities in the United States.

Hempel’s students include several of the major players in twentieth-century philosophy

of science, such as Adolf Grünbaum, John Earman, and Larry Sklar. Reichenbach him-

self eventually relocated to UCLA, where he had two additional students of no little

renown: Wesley Salmon and Hilary Putnam.

However, back in the 1920s, shortly before he took the post at Berlin, Reichenbach

had another auspicious meeting at a philosophy conference in Erlangen. Here he met a

young man named Rudolf Carnap who, like Reichenbach, found himself poised at the

intersection of philosophy, physics, and mathematics. Reichenbach introduced Carnap
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4 Introduction

to his friend Schlick, the latter of whom took an eager interest in Carnap’s ambition to

develop a “scientific philosophy.” A couple of short years later, Carnap was appointed

assistant professor of philosophy in Vienna – and so began the marriage between math-

ematical logic and philosophy of science.

Carnap

Having been a student of Frege’s in Jena, Rudolf Carnap (1891–1970) was an early

adopter of the new logical methods. He set to work immediately trying to employ these

methods in the service of a new style of philosophical inquiry. His first major work – Der

Logische Aufbau der Welt (1928) – attempted the ultra-ambitious project of construct-

ing all scientific concepts out of primitive (fundamental) concepts. What is especially

notable for our purposes was the notion of construction that Carnap employed, for it

was a nearby relative to the notion of logical construction that Russell had employed,

and which descends from the mathematician’s idea that one kind of mathematical object

(e.g., real numbers) can be constructed from another kind of mathematical object (e.g.,

natural numbers). What’s also interesting is that Carnap takes over the idea of explica-

tion, which arose in mathematical contexts – e.g., when one says that a function f is

“continuous” just in case for each ǫ > 0, there is a δ > 0 such that . . .

When assessing philosophical developments such as these, which are so closely tied

to developments in the exact sciences, we should keep in mind that ideas that are now

clear to us might have been quite opaque to our philosophical forebears. For example,

these days we know quite clearly what it means to say that a theory T is complete. But to

someone like Carnap in the 1920s, the notion of completeness was vague and hazy, and

he struggled to integrate it into his philosophical thoughts. We should keep this point in

mind as we look toward the next stage of Carnap’s development, where he attempted a

purely “syntactic” analysis of the concepts of science.

In the late 1920s, the student Kurt Gödel (1906–1978) joined in the discussions of

the Vienna circle, and Carnap later credited Gödel’s influence for turning his interest to

questions about the language of science. Gödel gave the first proof of the completeness

of the predicate calculus in his doctoral dissertation (1929), and two years later, he

obtained his famous incompleteness theorem, which shows that there is some truth of

arithmetic that cannot be derived from the first-order Peano axioms.

In proving incompleteness, Gödel’s technique was “metamathematical” – i.e., he

employed a theory M about the first-order theory T of arithmetic. Moreover, this

metatheory M employed purely syntactic concepts – e.g., the length of a string of

symbols, or the number of left parentheses in a string, or being the last formula in a

valid proof that begins from the axioms of arithmetic. This sort of approach proved to

be fascinating for Carnap, in particular, because it transformed questions that seemed

hopelessly vague and “philosophical” into questions that were tractable – and indeed

tractable by means of the very methods that scientists themselves employed. In short,

Gödel’s approach indicated the possibility of an exact science of the exact sciences.

And yet, Gödel’s inquiry was restricted to one little corner of the exact sciences:

arithmetic. Carnap’s ambitions went far beyond elementary mathematics; he aspired to

www.cambridge.org/9781107110991
www.cambridge.org


Cambridge University Press
978-1-107-11099-1 — The Logic in Philosophy of Science
Hans Halvorson 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

Introduction 5

apply these new methods to the entire range of scientific theories, and especially the new

theories of physics. Nonetheless, Carnap quickly realized that he faced additional prob-

lems beyond those faced by the metamathematician, for scientific theories – unlike their

mathematical cousins – purport to say something contingently true – i.e., something that

could have been otherwise. Hence, the logical approach to philosophy of science isn’t

finished when one has analyzed a theory T qua mathematical object; one must also say

something about how T latches on to empirical reality.

Carnap’s first attempts in this direction were a bit clumsy, as he himself recognized.

In the 1920s and 1930s, philosophers of science were just learning the basics of formal

logic. It would take another forty years until “model theory” was a well-established

discipline, and the development of mathematical logic continues today (as we hope to

make clear in this book). However, when mathematical logic was still in its infancy,

philosophers often tried the “most obvious” solution to their problems – not realizing

that it couldn’t stand up to scrutiny. Consider, for example, Carnap’s attempt to specify

the empirical content of a theory T . Carnap proposes that the vocabulary � in which

a theory T is formulated must include an empirical subvocabulary O ⊆ �, in which

case the empirical content of T can be identified with the set T |O of consequences

of T restricted to the vocabulary O. Similarly, in attempting to cash out the notion

of “reduction” of one theory to another, Carnap initially said that the concepts of the

reduced theory needed to be explicitly defined in terms of the concepts of the reducing

theory – not realizing that he was thereby committing to a far more narrow notion of

reduction than was being used in the sciences.

In Carnap’s various works, however, we do find the beginnings of an approach that

is still relevant today. Carnap takes a “language” and a “theory” to be objects of his

inquiries, and he notes explicitly that there are choices to be made along the way. So, for

example, the classical mathematician chooses a certain language and then adopts certain

transformation rules. In contrast, the intuitionistic mathematician chooses a different

language and adopts different transformation rules. Thus, Carnap allows himself to

ascend semantically – to look at scientific theories from the outside, as it were. From this

vantage point, he is no longer asking the “internal questions” that the theorist herself is

asking. He is not asking, for example, whether there is a greatest prime number. Instead,

the philosopher of science is raising “external questions” – i.e., questions about the

theory T , and especially those questions that have precise syntactic formulations. For

example, Carnap proposes that the notion of a sentence’s being “analytic relative to T ”

is an external notion that we metatheorists use to describe the structure of T .

The twentieth-century concern with analytic truth didn’t arise in the seminar rooms

of philosophy departments – or at least not in philosophy departments like the ones

of today. In fact, this concern began rather with nineteenth-century geometers, faced

with two parallel developments: (1) the discovery of non-Euclidean geometries, and

(2) the need to raise the level of rigor in mathematical arguments. Together, these two

developments led mathematical language to be disconnected from the physical world.

In other words, one key outcome of the development of modern mathematics was the

de-interpretation of mathematical terms such as “number” or “line.” These terms were

replaced by symbols that bore no intuitive connection to external reality.
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6 Introduction

It was this de-interpretation of mathematical terms that gave rise to the idea that

analytic truth is truth by postulation, the very idea that was so troubling to Russell, and

then to Quine. But in the middle of the nineteenth century, the move that Russell called

“theft” enabled mathematicians to proceed with their investigations in absence of the

fear that they lacked insight into the meanings of words such as “line” or “continuous

function.” In their view, it didn’t matter what words you used, so long as you clearly

explained the rules that governed their use. Accordingly, for leading mathematicians

such as Hilbert, mathematical terms such as “line” mean nothing more nor less than

what axioms say of them, and it’s simply impossible to write down false mathematical

postulates. There is no external standard against which to measure the truth of these

postulates.

It’s against this backdrop that Carnap developed his notion of analytic truth in

a framework; and that Quine later developed his powerful critique of the analytic–

synthetic distinction. However, Carnap and Quine were men of their time, and their

thoughts operated at the level of abstraction that science had reached in the 1930s.

The notion of logical metatheory was still in its infancy, and it had hardly dawned on

logicians that “frameworks” or “theories” could themselves be treated as objects of

investigation.

Quine

If one was a philosophy student in the late twentieth century, then one learned that

Quine “demolished” logical positivism. In fact, the errors of positivism were used as

classroom lessons in how not to commit the most obvious philosophical blunders. How

silly to state a view that, if true, entails that one cannot justifiably believe it!

During his years as an undergraduate student at Oberlin, Willard van Orman Quine

(1908–2000) had become entranced with Russell’s mathematical logic. After getting his

PhD from Harvard in 1932, Quine made a beeline for Vienna just at the time that Carnap

was setting his “logic of science” program into motion. Quine quickly became Carnap’s

strongest critic. As the story is often told, Quine was single-handedly responsible for

the demise of Carnap’s program, and of logical positivism more generally.

Of course, Quine was massively influential in twentieth-century philosophy – not only

for the views he held, but also via the methods he used for arriving at those views. In

short, the Quinean methodology looks something like this:

1. One cites some theorem φ in logical metatheory.

2. One argues that φ has certain philosophical consequences, e.g., makes a certain

view untenable.

Several of Quine’s arguments follow this pattern, even if he doesn’t always explicitly

mention the relevant theorem from logical metatheory. One case where he is explicit

is in his 1940 paper with Nelson Goodman, where he “proves” that every synthetic

truth can be converted to an analytic truth. Whatever one may think of Quine’s

later arguments against analyticity, there is no doubt, historically speaking, that this

metatheoretical result played a role in Quine’s arriving at the conclusion that there is no
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Introduction 7

analytic–synthetic distinction. And it would only be reasonable to think that our stance

on the analytic–synthetic distinction should be responsive to what this mathematical

result can be supposed to show.

As the story is typically told, Quine’s “Two Dogmas of Empiricism” dealt the death

blow to logical positivism. However, Carnap presented Quine with a moving target,

as his views continued to develop. In “Empiricism, Semantics, and Ontology” (1950),

Carnap further developed the notion of a framework, which bears striking resemblances

both to the notion of a scientific theory and, hence, to the notion of a theory T in first-

order logic. Here Carnap distinguishes two types of questions – the questions that are

internal to the framework and the questions that are external to the framework. The

internal questions are those that can be posed in the language of the framework and

for which the framework can (in theory) provide an answer. In contrast, the external

questions are those that we ask about a framework.

Carnap’s abstract idea can be illustrated by simple examples from first-order logic. If

we write down a vocabulary � for a first-order language, and a theory T in this vocabu-

lary, then a typical internal question might be something like, “Does anything satisfy the

predicate P (x)?” In contrast, a typical external question might be, “How many predicate

symbols are there in �?” Thus, the internal–external distinction corresponds roughly to

the older distinction between object language and metalanguage that frames Carnap’s

discussion in Logische Syntax der Sprache (1934).

The philosophical point of the internal–external distinction was supposed to be that

one’s answers to external questions are not held to the same standards as one’s answers

to internal questions. A framework includes rules, and an internal question should be

answered in accordance with these rules. So, to take one of Carnap’s favorite exam-

ples, “Are there numbers?” can naturally construed as an external question, since no

mathematician is actively investigating that question. This question is not up for grabs

in mathematical science – instead, it’s a presupposition of mathematical science. In

contrast, “Is there a greatest prime number?” is internal to mathematical practice; i.e., it

is a question to which mathematics aspires to give an answer.

Surely most of us can grasp the intuition that Carnap is trying to develop here. The

external questions must be answered in order to set up the game of science; the internal

questions are answered in the process of playing the game of science. But Carnap wants

to push this idea beyond the intuitive level – he wants to make it a cornerstone of his

theory of knowledge. Thus, Carnap says that we may single out a certain special class

of predicates – the so-called Allwörter – to label a domain of inquiry. For example,

the number theorist uses the word “number” to pick out her domain of inquiry – she

doesn’t investigate whether something falls under the predicate “x is a number.” In

contrast, a number theorist might investigate whether there are numbers x,y,z such that

x3 + y3 = z3; and she simply doesn’t consider whether some other things, which are

not themselves numbers, satisfy this relation.

Quine (1951a, 1960) takes up the attack against Carnap’s internal–external distinc-

tion. While Quine’s attack has several distinct maneuvers, his invocation of hard log-

ical facts typically goes unquestioned. In particular, Quine appeals to the supposedly

hard logical fact that every theory in a language that has several distinct quantifiers
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8 Introduction

(i.e., many-sorted logic) is equivalent to a theory in a language with a single unrestricted

quantifier.

It is evident that the question whether there are numbers will be a category question only with

respect to languages which appropriate a separate style of variables for the exclusive purpose of

referring to numbers. If our language refers to numbers through variables that also take classes

other than numbers as values, then the question whether there are numbers becomes a subclass

question . . . Even the question whether there are classes, or whether there are physical objects

becomes a subclass question if our language uses a single style of variables to range over both

sorts of entities. Whether the statement that there are physical objects and the statement that

there are black swans should be put on the same side of the dichotomy, or on opposite sides,

comes to depend upon the rather trivial consideration of whether we use one style of variables

or two for physical objects and classes. (Quine, 1976, p. 208)

Thus, suggests Quine, there is a metatheoretical result – that a many-sorted theory

is equivalent to a single-sorted theory – that destroys Carnap’s attempt to distinguish

between Allwörter and other predicates in our theories.

We won’t weigh in on this issue here, in our introduction. It would be premature to

do so, because the entire point of this book is to lay out the mathematical facts in a clear

fashion so that the reader can judge the philosophical claims for herself.

In “Two Dogmas of Empiricism,” Quine argues that it makes no sense to talk about

a statement’s admitting of confirming or infirming (i.e., disconfirming) instances, at

least when taken in isolation. Just a decade later, Hilary Putnam, in his paper “What

Theories Are Not” (Putnam, 1962) applied Quine’s idea to entire scientific theories. Put-

nam, student of the ur-positivist Reichenbach, now turns the positivists’ primary weapon

against them, to undercut the very distinctions that were so central to their program. In

this case, Putnam argues that the set T |O of “observation sentences” does not accurately

represent a theory T ’s empirical content. Indeed, he argued that a scientific theory can-

not properly be said to have empirical content and, hence, that the warrant for believing

it cannot flow from the bottom (the empirical part) to the top (the theoretical part). The

move here is paradigmatic Putnam: a little bit of mathematical logic deftly invoked to

draw a radical philosophical conclusion. This isn’t the last time that we will see Putnam

wield mathematical logic in the service of a far-reaching philosophical claim.

The Semantic Turn

In the early 1930s, the Vienna circle made contact with the group of logicians working

in Warsaw, and in particular with Alfred Tarski (1901–1983). As far as twentieth-

century analytic philosophy is concerned, Tarski’s greatest influence has been through

his bequest of logical semantics, along with his explications of the notions of structure

and truth in a structure. Indeed, in the second half of the twentieth century, analytic

philosophy has been deeply intertwined with logical semantics, and ideas from model

theory have played a central role in debates in metaphysics, epistemology, philosophy

of science, and philosophy of mathematics.
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The promise of a purely syntactic metatheory for mathematics fell into question

already in the 1930s when Kurt Gödel proved the incompleteness of Peano arithmetic.

At the time, a new generation of logicians realized that not all interesting questions about

theories could be answered merely by looking at theories “in themselves”, and without

relation to other mathematical objects. Instead, they claimed, the interesting questions

about theories include questions about how they might relate to antecedently understood

mathematical objects, such as the universe of sets. Thus was born the discipline of

logical semantics. The arrival of this new approach to metatheory was heralded by

Alfred Tarski’s famous definitions of “truth in a structure” and “model of a theory.”

Thus, after Tarski, to understand a theory T , we have more than the theory qua syntactic

object, we also have a veritable universe Mod(T ) of models of T .

Bas van Fraassen was one of the earliest adopters of logical semantics as a tool for

philosophy of science, and he effectively marshaled it in developing an alternative to

the dominant outlook of scientific realism. Van Fraassen ceded Putnam’s argument that

the empirical content of a theory cannot be isolated syntactically. And then, in good

philosophical fashion, he transformed Putnam’s modus ponens into a modus tollens:

the problem is not with empirical content, per se, but with the attempt to explicate is

syntactically. Indeed, van Fraassen claimed that one needs the tools of logical semantics

in order to make sense of the notion of empirical content; and equipped with this new

explication of empirical content, empiricism can be defended against scientific realism.

Thus, both the joust and the parry were carried on within an explicitly metalogical

framework.

Since the 1970s, philosophical discussions of science have been profoundly influ-

enced by this little debate about the place of syntax and semantics. Prior to the

criticisms – by Putnam, van Fraassen, et al. – of the “syntactic view of theories”

philosophical discussions of science frequently drew upon new results in mathematical

logic. As was pointed out by van Fraassen particularly, these discussions frequently

degenerated, as philosophers found themselves hung up on seemingly trivial questions,

e.g., whether the observable consequences of a recursively axiomatized theory are also

recursively axiomatizable. Part of the shift from syntactic to semantic methods was

supposed to be a shift toward a more faithful construal of science in practice. In other

words, philosophers were supposed to start asking the questions that arise in the practice

of science, rather than the questions that were suggested by an obsessive attachment to

mathematical logic.

The move away from logical syntax has had some healthy consequences in terms of

philosophers engaging more closely with actual scientific theories. It is probably not a

coincidence that since the fall of the syntactic view of theories, philosophers of science

have turned their attention to specific theories in physics, biology, chemistry, etc. As

was correctly pointed out by van Fraassen, Suppes, and others, scientists themselves

don’t demand first-order axiomatizations of these theories – and so it would do violence

to those theories to try to encode them in first-order logic. Thus, the demise of the

syntactic view allowed philosophers to freely draw upon the resources of set-theoretic

structures, such as topological spaces, Riemannian manifolds, Hilbert spaces,

C∗-algebras, etc.
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10 Introduction

Nonetheless, the results of the semantic turn have not been uniformly positive. For

one, philosophy of science has seen a decline in standards of rigor, with the unfortu-

nate consequence that debating parties more often than not talk past each other. For

example, two philosophers of science might take up a debate about whether isomorphic

models represent the same or different possibilities. However, these two philosophers

of science may not have a common notion of “model” or of “isomorphism.” In fact,

many philosophers of science couldn’t even tell you a precise formal explication of the

word “isomorphism” – even though they rely on the notion in many of their arguments.

Instead, their arguments rely on some vague sense that isomorphisms preserve structure,

and an even more vague sense of what structure is.

In this book, we’ll see many cases in point, where a technical term from science

(physics, math, or logic) has made its way into philosophical discussion but has then

lost touch with its technical moorings. The result is almost always that philosophers add

to the stock of confusion rather than reducing it. How unfortunate it is that philosophy of

science has fallen into this state, given the role we could play as prophets of clarity and

logical rigor. One notable instance where philosophers of science could help increase

clarity is the notion of theoretical equivalence. Scientists, and especially physicists,

frequently employ the notion of two theories being equivalent. Their judgments about

equivalence are not merely important for their personal attitudes toward their theories,

but also for determining their actions – e.g., will they search for a crucial experiment

to determine whether T1 or T2 is true? For example, students of classical mechanics are

frequently told that the Lagrangian and Hamiltonian frameworks are equivalent, and on

that basis, they are discouraged from trying to choose between them.

Now, it’s not that philosophers don’t talk about such issues. However, in my expe-

rience, philosophers tend to bring to bear terminology that is alien to science, and

which sheds no further light on the problems. For example, if an analytic philosopher is

asked, “when do two sentences φ and ψ mean the same thing?” then he is likely to say

something like, “if they pick out the same proposition.” Here the word “proposition”

is alien to the physicist; and what’s more, it doesn’t help to solve real-life problems of

synonymy. Similarly, if an analytic philosopher is asked, “when do two theories T1 and

T2 say the same thing?” then he might say something like, “if they are true in the same

possible worlds.” This answer may conjure a picture in the philosopher’s head, but it

won’t conjure any such picture in a physicist’s head – and even if it did, it wouldn’t

help decide controversial cases. We want to know whether Lagrangian mechanics is

equivalent to Hamiltonian mechanics, and whether Heisenberg’s matrix mechanics is

equivalent to Schrödinger’s wave mechanics. The problem here is that space of possible

worlds (if it exists) cannot be surveyed easily, and the task of comparing the subset

of worlds in which T1 is true with the subset of worlds in which T2 is true is hardly

tractible. Thus, the analytic philosopher’s talk about “being true in the same possible

worlds” doesn’t amount to an explication of the concept of equivalence. An explication,

in the Carnapian sense, should supply clear guidelines for how to use a concept.

Now, don’t get me wrong. I am not calling for a Quinean ban on propositions, possible

worlds, or any of the other concepts that analytic philosophers have found so interesting.

I only want to point out that these concepts are descendants, or cousins, of similar
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