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Preliminaries

1.1 Measure and integral

1.1.1 Borel sets and measures

Most of the “measuring” in this book will take place on the unit circle T = {z ∈
C : |z| = 1}. Since we assume that the reader has a background in graduate

analysis, we quickly review the standard definitions without much fanfare.

We let m := dθ/2π denote Lebesgue measure on T, normalized so that

m(T) = 1. A subset of T is called a Borel set if it is contained in the Borel

σ-algebra, the smallest σ-algebra of subsets of T that contains all of the open

arcs of T. A Borel measure on T is a countably additive function that assigns

a complex number to each Borel subset of T. Unless otherwise stated, our

measures will always be finite. A Borel measure is positive if it assigns a non-

negative number to each Borel set. We let M(T) denote the set of all complex

Borel measures on T and we let M+(T) denote the set of all positive Borel

measures on T. A function f : T → Ĉ (where Ĉ denotes the Riemann sphere

C ∪ {∞}) satisfying the condition that f −1(U) is a Borel set for any open set

U ⊂ Ĉ is called a Borel function.

We often need to distinguish between the “support” and a “carrier” of a

measure. For μ ∈ M+(T), consider the union U of all the open subsets U ⊂ T
for which μ(U) = 0. The complement T \ U is called the support of μ. On the

other hand, a Borel set E ⊂ T for which

μ(E ∩ A) = μ(A) (1.1)

for all Borel subsets A ⊂ T is called a carrier of μ. The support of μ is certainly

a carrier, but a carrier need not be the support. Indeed, a carrier of a measure

might not even be closed. For example, if f � 0 is continuous and dμ = f dm,

then a carrier of μ is T \ f −1({0}) (which is open) while the support of μ is the

closure of this set. The support of a measure is unique while a carrier is not.
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2 Preliminaries

The Hahn–Jordan Decomposition Theorem says that each μ ∈ M(T) can be

written uniquely as

μ = (μ1 − μ2) + i(μ3 − μ4), μj ∈ M+(T), (1.2)

in which μ1, μ2 and μ3, μ4, respectively, are carried on disjoint sets.

Since T is a compact Hausdorff space, each Borel measure μ on T is regular

in the sense that each positive measure μj in the Hahn–Jordan Decomposition

of μ satisfies

inf{μj(U) : U ⊃ E,U open} = sup{μj(F) : F ⊂ E, F closed} (1.3)

for each Borel set E ⊂ T [158, p. 48]. Moreover, the quantity above is equal to

μj(E).

Recall that μ ∈ M+(T) is absolutely continuous with respect to m (written

μ ≪ m) if μ(A) = 0 whenever m(A) = 0. We say that μ is singular with

respect to m (written μ ⊥ m) if there are disjoint Borel sets A and B such that

T = A∪B and μ(A) = m(B) = 0. Also recall that the Radon–Nikodym Theorem

says that μ ≪ m if and only if dμ = f dm, where f is a Lebesgue integrable

function on T (that is,
∫
| f | dm < ∞). By this we mean that μ(A) =

∫
A

f dm

for each Borel set A ⊂ T. The function f is unique up to a set of Lebesgue

measure zero and is called the Radon–Nikodym derivative of μ (with respect

to m). It is denoted by dμ/dm. One can also obtain dμ/dm as a “derivative” as

follows.

Definition 1.1 For μ ∈ M(T), the symmetric derivative (Dμ)(w) of μ at w ∈ T
is defined to be

(Dμ)(w) := lim
t→0+

μ
(
(e−itw, eitw)

)

m
(
(e−itw, eitw)

) , (1.4)

whenever this limit exists. Here (e−itw, eitw) denotes the arc of T subtended by

the points e−itw and eitw.

Theorem 1.2 For each μ ∈ M(T), we have:

(i) (Dμ)(w) exists for m-almost every w ∈ T and

Dμ =
dμ

dm

m-almost everywhere;

(ii) μ ⊥ m if and only if Dμ = 0 m-almost everywhere;

(iii) If μ ∈ M+(T) and μ ⊥ m, then Dμ = ∞ μ-almost everywhere. Moreover,

μ is carried by the set {ζ : (Dμ)(ζ) = ∞}.
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1.1 Measure and integral 3

The Lebesgue Decomposition Theorem says that every μ ∈ M(T) can be

decomposed uniquely as

μ = μa + μs, (1.5)

where μa ≪ m and μs ⊥ m. The measure μa is called the absolutely continuous

part of μ while μs is called the singular part of μ. Furthermore, the singular

part μs can be decomposed as μs = νd + νc, where

νd =
∑

n�1

cnδζn

is a measure with distinct atoms at ζn ∈ T (that is to say, for each Borel set

E ⊂ T, δζn (E) = 1 if ζn ∈ E and zero otherwise) and weights cn = νd({ζn}), and

where νc is a singular measure with no atoms (that is, νc({ζ}) = 0 for all ζ ∈ T).

The measure νd is called the discrete part of μs while νc is called the singular

continuous part of μs. See below for a more classical approach to measures

using functions of bounded variation.

We now review the weak-∗ topology on M(T). Let C(T) denote the algebra

of complex-valued continuous functions on T endowed with the sup-norm

‖ f ‖∞ := sup
ζ∈T
| f (ζ)|.

Note that C(T) is complete with respect to this norm and hence a Banach space.

For each μ ∈ M(T), the linear functional

ℓμ : C(T)→ C, ℓμ( f ) :=

∫

T

f dμ

is bounded. The norm of ℓμ is defined by

‖ℓμ‖ := sup
{ |ℓμ( f )| : f ∈ C(T) : ‖ f ‖∞ � 1

}

and is equal to

‖μ‖ := |μ|(T), (1.6)

where |μ|(T) is the supremum of
∑

n�1 |μ(En)| as {En}n�1 runs over all finite

partitions of T into disjoint Borel subsets. The quantity ‖μ‖ is called the

total variation norm of μ. In terms of the Hahn decomposition (1.2) of μ, it

satisfies

1
√

2

∑

1� j�4

μj(T) � ‖μ‖ �
∑

1� j�4

μj(T).

Theorem 1.3 (Riesz Representation Theorem) If ℓ is a bounded linear

functional on C(T), then ℓ = ℓμ for some unique μ ∈ M(T).
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4 Preliminaries

This allows us to define the weak-∗ topology on M(T). A sequence {μn}n�1 ⊂
M(T) converges weak-∗ to μ if

lim
n→∞

∫

T

f dμn =

∫

T

f dμ ∀ f ∈ C(T). (1.7)

The following tells us that closed balls in M(T) are weak-∗ compact.

Theorem 1.4 (Banach–Alaoglu) If {μn}n�1 is a sequence in M(T) for which

sup
n�1

‖μn‖ < ∞,

then there is a measure μ ∈ M(T) and a subsequence μnk
that converges to μ in

the weak-∗ topology.

We will also need a version of the Hahn–Banach Theorem for C(T) and

M(T).

Theorem 1.5 Suppose thatM is a linear manifold in C(T) whose annihilator

{
μ ∈ M(T) :

∫

T

f dμ = 0 ∀ f ∈ M
}

is zero. Then M is dense in C(T). Furthermore, suppose that N is a linear

manifold in M(T) whose pre-annihilator

{
f ∈ C(T) :

∫

T

f dμ = 0 ∀μ ∈ N
}

is zero. Then N is weak-∗ dense in M(T).

1.1.2 Classical approach to measures

The following classical approach to measure theory requires a discussion of

functions of bounded variation and the Lebesgue–Stieltjes integral. We cover

this material not only for students to reconnect with the classical roots of

analysis, but to also help out with several proofs and examples later on.

Definition 1.6 A function F : [0, 2π]→ C is of bounded variation if

‖F‖BV := sup
P

∑

0� j�nP−1

|F(x j+1) − F(x j)| < ∞, (1.8)

where the supremum is taken over all partitions P = {x0, x1, . . . , xnP
} of [0, 2π],

where 0 = x0 < x1 < x2 · · · < xnP
= 2π.
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1.1 Measure and integral 5

The expression (1.8) defines a semi-norm ‖F‖BV , the total variation (semi)-

norm, on the set BV of all functions of bounded variation. Notice that ‖F‖BV is

not a true norm since ‖F‖BV = 0 if F is a constant function. We gather together

some important facts about BV .

Proposition 1.7 If F ∈ BV, then:

(i) F′(x) exists for m-almost every x ∈ [0, 2π];

(ii) The one-sided limits

F(x+) := lim
t→x+

F(t), F(x−) := lim
t→x−

F(t)

exist for every x ∈ (0, 2π). Moreover, F(0+) and F(2π−) exist;

(iii) F has at most a countable number of discontinuities;

(iv) F = (F1 − F2) + i(F3 − F4), where each F j is increasing.

For F ∈ BV and right continuous (that is, F(x) = lim
t→x+

F(t) for all x), define

μF on the set of half-open intervals

{
[a, b) : a, b ∈ [0, 2π], a � b

}

by

μF

(
[a, b)

)
:= F(b) − F(a).

By the Carathéodory Extension Theorem, μF extends to a unique Borel

measure on [0, 2π]. Moreover

‖μF‖ = ‖F‖BV ,

that is to say, the total variation norm of μF defined in (1.6) equals the bounded

variation norm of F defined in (1.8). The integral
∫

[0,2π]

f dF =

∫

[0,2π]

f dμF , (1.9)

defined for every f ∈ C[0, 2π] (continuous functions on [0, 2π]), is called the

Lebesgue–Stieltjes integral of f with respect to F.

In this classical setting, the Lebesgue Decomposition Theorem says that

every F ∈ BV can be written as

F = Fa + Fs,

where Fa is absolutely continuous (that is, f is the anti-derivative of a Lebesgue

integrable function) on [0, 2π] and Fs is singular (that is, F′s = 0 almost every-

where with respect to Lebesgue measure). Note that μF = μFa
+ μFs

is the
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6 Preliminaries

Figure 1.1 The Cantor devil’s staircase function

decomposition of the measure μF into its absolutely continuous and singular

parts from (1.5). Furthermore, Fs can be decomposed as

Fs = Fd + Fc,

where

Fd(x) =
∑

y�x

(
F(y+) − F(y−)

)

is a jump function and Fc is continuous with F′c = 0 almost everywhere with

respect to Lebesgue measure on [0, 2π]. This gives us the decomposition μFs
=

μFd
+ μFc

of μFs
into its discrete part μFd

and its continuous part μFc
.

For example, to produce a singular measure with no atoms one could take

F to be the Cantor “devil’s staircase” function (Figure 1.1). Note that F is

continuous and F′ = 0 almost everywhere with respect to Lebesgue measure

on [0, 2π]. Thus F = Fc. The desired singular continuous measure is then μF .

The Riesz Representation Theorem tells us that every continuous linear

functional on C[0, 2π] takes the form

f �→
∫

[0,2π]

f dF

for some unique (up to an additive constant) F ∈ BV . Moreover, the norm of

this linear functional is ‖F‖BV .
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1.1 Measure and integral 7

The Banach–Alaoglu Theorem (Theorem 1.4) now takes the form of the

Helly Selection Theorem: if {Fn}n�1 ⊂ BV and supn�1 ‖Fn‖BV < ∞, then there is

an F ∈ BV and a subsequence Fnk
such that

lim
k→∞

∫

[0,2π]

f dFnk
=

∫

[0,2π]

f dF ∀ f ∈ C[0, 2π].

1.1.3 Lebesgue spaces

Let L2 := L2(T,m) denote the space of m-measurable (that is, Lebesgue

measurable) functions f : T→ Ĉ such that

‖ f ‖ :=

(∫

T

| f |2dm

) 1
2

< ∞. (1.10)

Retaining tradition, we equate two measurable functions which are equal

almost everywhere. With this norm, L2 is a Hilbert space endowed with the

inner product

〈 f , g〉 :=

∫

T

f g dm.

From time to time we will need the spaces Lp (0 < p < ∞) of measurable

functions for which

‖ f ‖p :=

(∫

T

| f |pdm

) 1
p

< ∞.

We also require the space L∞ := L∞(T) of all essentially bounded measurable

functions on T, equipped with the essential supremum norm

‖ f ‖∞ := ess-supζ∈T | f (ζ)|.

Here,

ess-supζ∈T | f (ζ)| := sup
{
a � 0 : m({ζ ∈ T : | f (ζ)| > a}) > 0

}

is the essential supremum of | f |.
For μ ∈ M+(T), we will also need the corresponding Lp(μ) (0 < p < ∞)

spaces of Borel measurable functions f on T such that

‖ f ‖Lp(μ) :=

(∫

T

| f |pdμ

) 1
p

< ∞.

The identity

∫

T

ζn dm(ζ) =

∫

[0,2π]

einθ dθ

2π
=

⎧⎪⎪⎨⎪⎪⎩
1 if n = 0,

0 otherwise,
(1.11)
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8 Preliminaries

shows that the family of functions {ζ �→ ζn : n ∈ Z} is an orthonormal set in

L2. The coefficients

f̂ (n) := 〈 f , ζn〉 =
∫

T

f (ζ)ζ
n
dm(ζ)

of an f ∈ L2 with respect to this orthonormal set are called the (complex)

Fourier coefficients of f .

Theorem 1.8 (Parseval’s Theorem) For each f ∈ L2,

‖ f ‖2 =
∑

n∈Z
| f̂ (n)|2.

Furthermore,

lim
N→∞

∥∥∥∥ f −
∑

−N�n�N

f̂ (n)ζn
∥∥∥∥ = 0.

The previous theorem tells us several things. First, {ζn : n ∈ Z} is an

orthonormal basis for L2. Second, the Fourier series
∑

n∈Z
f̂ (n)ζn

converges to f in the norm of L2. In general, the Fourier series of an L2 function

need not converge pointwise. However, a deep theorem of Carleson says that

it converges pointwise m-a.e. to f [17]. Although we will not use this fact,

the reader should be aware that such delicate matters exist. Finally, Theorem

1.8 tells us that the L2 norm of f coincides with the norm of the sequence

{ f̂ (n) : n ∈ Z} of Fourier coefficients in the Hilbert space

ℓ2(Z) :=
{
a = {an}n∈Z : ‖a‖ℓ2(Z) :=

(∑

n∈Z
|an|2
) 1

2
< ∞
}

of all square-summable sequences of complex numbers, endowed with the

inner product

〈a,b〉 =
∑

n∈Z
anbn.

We therefore identify the Hilbert spaces L2 and ℓ2(Z) via the correspondence

f ↔ { f̂ (n) : n ∈ Z}.

1.2 Poisson integrals

The function

Pz(ζ) :=
1 − |z|2
|ζ − z|2 , ζ ∈ T, z ∈ D,
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1.2 Poisson integrals 9

is called the Poisson kernel of the unit disk D = {z : |z| < 1}. Note that

Pz(ζ) > 0.

A computation verifies that

Pz(ζ) = Re

(
ζ + z

ζ − z

)
(1.12)

and a computation with geometric series yields

Prw(ζ) =
∑

n∈Z
r|n|wnζ

n
, w ∈ T, r ∈ (0, 1). (1.13)

With w = eiθ and ζ = eit, one can also establish the formula

Preiθ (eit) =
1 − r2

1 − 2r cos(θ − t) + r2
. (1.14)

For fixed ζ ∈ T, Pz(ζ) is the real part of the analytic function

z �→ ζ + z

ζ − z
,

which makes z �→ Pz(ζ) a harmonic function on D. Integrating the series in

(1.13) term by term and using the orthogonality relations (1.11), we see that
∫

T

Pz(ζ) dm(ζ) = 1, z ∈ D. (1.15)

An important property of the Poisson kernel is that for fixed δ > 0,

lim
r→1−

(
sup
δ�|t|�π

Pr(e
it)
)
= 0. (1.16)

This is illustrated in Figure 1.2. One can also see this from the estimate

Pr(e
it) �

1 − r2

1 − 2 cos δ + r2
, δ � |t| � π.

For μ ∈ M(T), define the Poisson integral of μ by

P(μ)(z) :=

∫

T

Pz(ζ)dμ(ζ), z ∈ D.

By differentiating under the integral sign, we see that P(μ) is harmonic on D.

Furthermore,

P(μ)(rw) =
∑

n∈Z
μ̂(n)r|n|wn, w ∈ T, r ∈ (0, 1), (1.17)

where

μ̂(n) :=

∫

T

ζ
n
dμ(ζ), n ∈ Z,
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10 Preliminaries

0
t
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6
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10

Pr (e
it)

–π π

Figure 1.2 The graphs of Pr(e
it) for r = 0.2, 0.5, 0.8. Notice that Pr(e

it) > 0.

Furthermore, notice how Pr peaks higher and higher near t = 0, for increasing

values of r, while decaying rapidly away from the origin.

are the Fourier coefficients of the measure μ. We often write P( f ) in place of

the more cumbersome P( f dm) for f ∈ L1.

For f ∈ C(T), we have the Poisson Integral Formula for the solution of the

Dirichlet problem on D−. The classical Dirichlet problem for a planar domain

Ω is: given a continuous function f on the boundary ∂Ω of Ω, find a function

u which is continuous on Ω− that is harmonic on Ω and agrees with f on ∂Ω.

Theorem 1.9 (Poisson Integral Formula) If f ∈ C(T), then P( f ) is harmonic

on D and extends continuously to D−. Furthermore,

lim
z→w

P( f )(z) = f (w)

for every w ∈ T.

Proof Let u :=P( f ) and recall from our earlier discussion that u is

harmonic onD. To complete the proof, we will show that for every fixed w ∈ T,

lim
z→w

u(z) = f (w). (1.18)

Let ε > 0 be given. Use the continuity of f at w to produce a δ > 0 so that

whenever ζ ∈ T and |w − ζ | < δ we have | f (w) − f (ζ)| < ε. From here we get

|u(z) − f (w)| =
∣∣∣∣∣
∫

T

f (ζ)Pz(ζ)dm(ζ) − f (w)

∫

T

Pz(ζ)dm(ζ)

∣∣∣∣∣ (by (1.15))

�

∫

T

| f (ζ) − f (w)|Pz(ζ)dm(ζ)
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