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6.1 The Erdős–Stone theorem 124
6.2 Even cycles 125
6.3 Complete bipartite graphs 130
6.4 Graphs containing no K2,s 132
6.5 A probabilistic construction of graphs containing no Kt,s 134
6.6 Graphs containing no K3,3 135
6.7 The norm graph 137
6.8 Graphs containing no K5,5 140
6.9 Exercises 144

7 MDS codes 147
7.1 Singleton bound 147
7.2 Linear MDS codes 148
7.3 Dual MDS codes 151
7.4 The MDS conjecture 152
7.5 Polynomial interpolation 154
7.6 The A-functions 155
7.7 Lemma of tangents 157
7.8 Combining interpolation with the lemma of tangents 162
7.9 A proof of the MDS conjecture for k � p 164
7.10 More examples of MDS codes of length q + 1 165
7.11 Classification of linear MDS codes of length q + 1 for

k � p 167
7.12 The set of linear forms associated with a linear MDS code 172

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-10799-1 - Finite Geometry and Combinatorial Applications
Simeon Ball
Frontmatter
More information

http://www.cambridge.org/9781107107991
http://www.cambridge.org
http://www.cambridge.org


Contents vii

7.13 Lemma of tangents in the dual space 174
7.14 The algebraic hypersurface associated with a linear

MDS code 177
7.15 Extendability of linear MDS codes 182
7.16 Classification of linear MDS codes of length q + 1 for

k < c
√

q 184
7.17 A proof of the MDS conjecture for k < c

√
q 189

7.18 Exercises 189

Appendix A Solutions to the exercises 191
A.1 Fields 191
A.2 Vector spaces 200
A.3 Forms 206
A.4 Geometries 213
A.5 Combinatorial applications 229
A.6 The forbidden subgraph problem 233
A.7 MDS codes 238

Appendix B Additional proofs 242
B.1 Probability 242
B.2 Fields 243
B.3 Commutative algebra 247

Appendix C Notes and references 263
C.1 Fields 263
C.2 Vector spaces 264
C.3 Forms 264
C.4 Geometries 264
C.5 Combinatorial applications 266
C.6 The forbidden subgraph problem 269
C.7 MDS codes 270
C.8 Appendices 271

References 272
Index 282

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-10799-1 - Finite Geometry and Combinatorial Applications
Simeon Ball
Frontmatter
More information

http://www.cambridge.org/9781107107991
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-10799-1 - Finite Geometry and Combinatorial Applications
Simeon Ball
Frontmatter
More information

http://www.cambridge.org/9781107107991
http://www.cambridge.org
http://www.cambridge.org


Preface

This book is essentially a text book that introduces the geometrical objects
which arise in the study of vector spaces over finite fields. It advances rapidly
through the basic material, enabling the reader to consider the more interesting
aspects of the subject without having to labour excessively. There are over a
hundred exercises which contain a lot of content not included in the text. This
should be taken into consideration and even though one may not wish to try to
solve the exercises themselves, they should not be ignored. There are detailed
solutions provided to all the exercises.

The first four chapters treat the algebraic and geometric aspects of finite vec-
tor spaces. The following three chapters consist of combinatorial applications.
There is a chapter containing a brief treatment of applications to groups, real
geometry, codes, graphs, designs and permutation polynomials. Then there is a
chapter that gives a more in-depth treatment of applications to extremal graph
theory, specifically the forbidden subgraph problem, and then a chapter on
maximum distance separable codes.

This book is self-contained in the sense that any theorem or lemma which
is subsequently used is proven. The only exceptions to this are Bombieri’s the-
orem and the Huxely–Iwaniec theorem concerning the distribution of primes,
which are used in the chapter on the forbidden subgraph problem, the Hasse–
Weil theorem, which is used to bound the number of points on a plane algebraic
curve at the end of the chapter on maximum distance separable codes, and
Hilbert’s Nullstellensatz, which is used in the appendix on commutative alge-
bra. Although there are almost no prerequisites, it would be helpful to have
studied previously some basic algebra and linear algebra, since otherwise the
first couple of chapters may appear somewhat brief. There are some theorems
that are quoted without proof, but in all cases these appear at the end of some
branch and are not built upon. There are some theorems whose proof appears

ix
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x Preface

in Appendix B. This is done when the proof of some particular theorem may
interrupt the flow of the book.

How to use this book if . . .
. . . you are not teaching a course. For many readers a lot of the material in

Chapter 1 and Chapter 2 will be familiar. However, some of the exercises, those
relating to latin squares, semifields and spreads, may not be and are, although
not generally essential, at least relevant to what appears in later chapters. For
this reason they should not be overlooked. There is no need to read all the
details of Chapter 3. It is enough to read as far as Theorem 3.6, choose one of
the σ -sesquilinear forms to consider in more detail and Section 3.6. The central
chapters of the book are Chapter 4 and Chapter 5.

. . . you are teaching a course. This book is not structured as lecture notes.
However, there is plenty of material to plan a course, even within a pre-
established syllabus. Note that a lot of the material is contained in exercises
that, since the solutions are provided, can be explained as theorems in class.
One could teach the following course.

(1) Latin squares. Definition and exercises from Chapter 1 and use these lec-
tures to (re-)introduce the student to finite fields.

(2) Affine planes. Exercises in Chapter 4, use some as theorems and leave the
rest as exercises.

(3) Projective planes. Text and exercises in Chapter 4, introducing example of
PG2(Fq) and Desargues’ theorem.

(4) Projective spaces. Use Chapter 4.
(5) Polar spaces. Sketch classification of σ -sesquilinear forms, i.e. Chapter 3

as far as Theorem 3.6 and sketch Section 3.6. Then Theorem 4.3.
(6) Quotient spaces. Section 4.3 and Section 4.4.
(7) Generalised polygons. Section 4.5.
(8) Ovals and ovoids. Section 4.8 and include Segre’s theorem, Theorem 4.38.

One could then pick and choose from Chapter 5 and maybe Chapter 6.
Although it may be disheartening to see a full set of solutions, many of the
exercises can be easily adapted so that exercise sheets, which do not have
solutions, can be compiled if necessary.

By no means do I consider the contents of this book to be an unbiased view
of what finite geometry is. There are aspects of the subject that I have barely
touched upon and some I have not mentioned at all. I have stuck, in the main
part, to that which is of interest to me and that I feel confident enough to write
about.
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Notation

C the complex numbers.
char(F) the characteristic of the field F.
det(u1, . . . , uk) the determinant of the matrix whose ijth entry is the

jth coordinate of ui with respect to a canonical basis.
ex(n, H) the maximum number of edges a graph G with n vertices

can have that contains no H as a subgraph.
E(X) the expectation of a random variable X.
Fq the finite field with q elements.
Fix(σ ) the subfield fixed by the automorphism σ of a field.
gcd(a, b) the greatest common divisor of two positive integers a

and b.
In the n × n identity matrix.
im(α) the image of the linear map α.
ker(α) the kernel of the linear map α.
Hk−1(F) the hermitian polar space of rank r, where k = 2r or

k = 2r + 1.
N the set of positive integers.
Normσ the norm map from a field to the subfield Fix(σ ).
PGk−1(F) the (k − 1)-dimensional projective space over F.
Q+

k−1(F) the hyperbolic polar space of rank r, where k = 2r.
Qk−1(F) the parabolic polar space of rank r, where k = 2r + 1.
Q−

k−1(F) the elliptic polar space of rank r, where k = 2r + 2.
R the real numbers.
Sym(n) the symmetric group of permutations on the set {1, . . . , n}.
Trσ the trace map from a field to the subfield Fix(σ ).
〈u1, . . . , ur〉 the subspace spanned by the vectors u1, . . . , ur.
U1 + · · · + Ur the sum of subspaces U1, . . . , Ur.

xi
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xii Notation

U1 ⊕ · · · ⊕ Ur the direct sum of subspaces U1, . . . , Ur.
U⊥ the orthogonal subspace of a subspace U, defined with

respect to some σ -sesquilinear form.
V( f ) the algebraic variety defined by the polynomial f .
Vk(F) the k-dimensional vector space over F.
Wk−1(F) the symplectic polar space of rank r, where k = 2r.
Z the set of integers.
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