QUANTUM GRAVITY AND THE FUNCTIONAL RENORMAIZATION GROUP

The Road towards Asymptotic Safety

During the past two decades the gravitational Asymptotic Safety scenario has undergone a major transition from an exotic possibility to a serious contender as a realistic theory of quantum gravity. It aims at a mathematically consistent quantum description of the gravitational interaction and the geometry of spacetime within the realm of quantum field theory, keeping its predictive power at the highest energies. This volume provides a self-contained pedagogical introduction to Asymptotic Safety and introduces the functional renormalization group techniques used in its investigation, along with the requisite computational techniques. The foundational chapters are followed by an accessible summary of the results obtained thus far. It is the first detailed exposition of Asymptotic Safety, providing a unique introduction to quantum gravity. The text assumes no previous familiarity with the renormalization group and thus serves as an important resource for both practicing researchers and graduate students entering this maturing field.

Martin Reuter is a professor of Theoretical Physics at the Johannes Gutenberg University Mainz. He previously worked at the European Laboratory for Particle Physics, CERN, in Geneva, the DESY laboratory in Hamburg, and the Leibniz University of Hanover. In the 1990s, he initiated the exploration of quantum gravity and the Asymptotic Safety scenario using the functional renormalization group and subsequently played a key role in developing the program into its present form.

Frank Saueressig is an assistant professor at the Radboud University Nijmegen. Before his appointment, he held research positions at Utrecht University, the Institut de Physique Théorique at CEA/Saclay, and an Emmy Noether fellowship at the Johannes Gutenberg University Mainz. With more than 70 scientific publications in the field of quantum gravity he is among the leading young talents in the field.
Quantum Gravity and the Functional Renormalization Group

The Road towards Asymptotic Safety

MARTIN REUTER
Johannes Gutenberg Universität Mainz

FRANK SAUERESSIG
Radboud Universiteit Nijmegen
Contents

Preface xi
List of Abbreviations xiii

1 A Quantum Field Theory of Gravity 1
1.1 Renormalizing the Unrenormalizable 1
1.2 Background Independence 3
1.3 All Backgrounds Is No Background 6
1.4 Asymptotic Safety in a Nutshell 8
1.5 Continuum or “Atoms of Spacetime”? 17

2 The Functional Renormalization Group 19
2.1 The Concept of the Effective Average Action 19
2.2 Theory Space and Its Truncation 28
2.2.1 The Space of Actions 28
2.2.2 The FRGE in Component Form 29
2.2.3 Truncations of Theory Space 31
2.2.4 The Local Potential Approximation 35
2.2.5 Adjusted Cutoffs 45
2.3 Decoupling 45
2.4 Background Fields 48

3 The Asymptotic Safety Mechanism 54
3.1 Geometry and RG Dynamics on Theory Space 54
3.1.1 The Beta Functional 55
3.1.2 From the Beta Functional to the Beta Functions 56
3.1.3 The Cutoff Scale as a Unit 56
3.1.4 The Geometric Interpretation 61
3.2 Fixed Points 66
3.2.1 The Zeros of β 66
3.2.2 The Linearized Flow 67
3.2.3 Universality of the Critical Exponents 69
3.2.4 The Ultraviolet Critical Hypersurface 70
3.2.5 Gaussian vs. non-Gaussian Fixed Points 71
3.2.6 Linearization about the Scalar GFP 71
3.3 Asymptotic Safety: The Basic Idea

3.3.1 The Input: \mathcal{T} and β
3.3.2 The Quest for Complete Trajectories
3.3.3 The “Asymptotic Safety Scenario” of the UV Limit
3.3.4 Predictive Power
3.3.5 Generalizations and Refinements

3.4 A First Example: Gravity in $2 + \varepsilon$ Dimensions

4 A Functional Renormalization Group for Gravity

4.1 What is “Metric” Quantum Gravity?
4.2 What is “Coarse Graining” in Gravity?
4.2.1 Background Independence
4.2.2 Gauge Invariance
4.2.3 Toward a Notion of Coarse Graining
4.2.4 The Background Field Method
4.3 Introducing an EAA for Gravity
4.3.1 The Gauge-Fixed Functional Integral
4.3.2 Classical BRST Invariance
4.3.3 Background-Type Gauge-Fixing Conditions
4.3.4 Generalized Harmonic Gauges
4.3.5 The Mode Suppression Term
4.3.6 Sources and Expectation Values
4.3.7 Formal Definition of the Gravitational EAA
4.4 Properties of the Gravitational EAA

5 Truncations of Single-Metric Type

5.1 General Classes of Truncations
5.1.1 Freezing the Ghost Sector
5.1.2 A Class of Bi-Metric Truncations
5.1.3 The Class of Single-Metric Truncations
5.2 The Einstein–Hilbert Truncation
5.2.1 Derivation of the β-Functions for g and λ
5.2.2 Structure of the β-Functions for g and λ
5.3 Properties of the Einstein–Hilbert Flow
5.3.1 The Subtruncation of Vanishing λ
5.3.2 The Subtruncation of Constant G
5.3.3 Gaussian and non-Gaussian Fixed Points
5.3.4 The Phase Portrait
5.3.5 Close Relatives of the EH Truncation
5.3.6 Testing the Reliability of Truncations
5.3.7 Evidence for Asymptotic Safety
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Bi-Metric Truncations</td>
<td>175</td>
</tr>
<tr>
<td>6.1</td>
<td>Level Expansion of Γ_{grav}^k</td>
<td>175</td>
</tr>
<tr>
<td>6.2</td>
<td>Level One and the Tadpole Equation</td>
<td>176</td>
</tr>
<tr>
<td>6.3</td>
<td>A Bi-Metric Einstein–Hilbert Ansatz</td>
<td>178</td>
</tr>
<tr>
<td>6.4</td>
<td>The Plethora of Couplings</td>
<td>179</td>
</tr>
<tr>
<td>6.5</td>
<td>Results from the Bi-Metric EH Truncation</td>
<td>181</td>
</tr>
<tr>
<td>6.5.1</td>
<td>The 2D Flow on the “Dyn” Subspace</td>
<td>182</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Screening vs. Antiscreening</td>
<td>183</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Flow on the 4D Parameter Space</td>
<td>184</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Imposing Split Symmetry</td>
<td>184</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Discussion</td>
<td>185</td>
</tr>
<tr>
<td>7</td>
<td>Conformally Reduced Gravity</td>
<td>187</td>
</tr>
<tr>
<td>7.1</td>
<td>From Gravity to ϕ^4 Theory</td>
<td>188</td>
</tr>
<tr>
<td>7.2</td>
<td>The Untruncated Conformally Reduced Theory</td>
<td>190</td>
</tr>
<tr>
<td>7.3</td>
<td>Coarse Graining Operators: Gravity vs. Matter</td>
<td>192</td>
</tr>
<tr>
<td>7.4</td>
<td>The Reduced Einstein–Hilbert Truncation</td>
<td>194</td>
</tr>
<tr>
<td>7.5</td>
<td>An Infinite-Dimensional Truncation</td>
<td>198</td>
</tr>
<tr>
<td>7.6</td>
<td>Bi-Metric Truncations and the Split Ward Identity</td>
<td>204</td>
</tr>
<tr>
<td>8</td>
<td>The Reconstruction Problem</td>
<td>207</td>
</tr>
<tr>
<td>8.1</td>
<td>In Search of a Bare Theory</td>
<td>207</td>
</tr>
<tr>
<td>8.2</td>
<td>The EAA in the Presence of a UV Cutoff</td>
<td>210</td>
</tr>
<tr>
<td>8.3</td>
<td>A One-Loop Reconstruction Formula</td>
<td>212</td>
</tr>
<tr>
<td>8.4</td>
<td>The Twofold Einstein–Hilbert Truncation</td>
<td>215</td>
</tr>
<tr>
<td>8.5</td>
<td>Further Remarks</td>
<td>218</td>
</tr>
<tr>
<td>9</td>
<td>Alternative Field Variables</td>
<td>220</td>
</tr>
<tr>
<td>9.1</td>
<td>Quantum Einstein–Cartan Gravity</td>
<td>220</td>
</tr>
<tr>
<td>9.2</td>
<td>Implementations of Gauge Invariance</td>
<td>223</td>
</tr>
<tr>
<td>9.3</td>
<td>Truncations of Hilbert–Palatini Type</td>
<td>230</td>
</tr>
<tr>
<td>9.4</td>
<td>Quantum Arnowitt–Deser–Misner Gravity</td>
<td>234</td>
</tr>
<tr>
<td>9.5</td>
<td>Quantum ADM Gravity in the Einstein–Hilbert Truncation</td>
<td>238</td>
</tr>
<tr>
<td>9.6</td>
<td>Observables in Quantum ADM Gravity</td>
<td>242</td>
</tr>
<tr>
<td>10</td>
<td>Matter Coupled to Quantum Gravity</td>
<td>245</td>
</tr>
<tr>
<td>10.1</td>
<td>Free Matter Fields in the Einstein–Hilbert Truncation</td>
<td>245</td>
</tr>
<tr>
<td>10.2</td>
<td>Interacting Gravity-Matter Fixed Points</td>
<td>251</td>
</tr>
<tr>
<td>10.2.1</td>
<td>QED on Minkowski Space</td>
<td>251</td>
</tr>
<tr>
<td>10.2.2</td>
<td>QED Coupled to QEG</td>
<td>252</td>
</tr>
<tr>
<td>10.3</td>
<td>Two non-trivial Fixed Points</td>
<td>254</td>
</tr>
<tr>
<td>10.4</td>
<td>Approximate Analytical Solution</td>
<td>255</td>
</tr>
</tbody>
</table>
Contents

10.5 Asymptotic Safety Construction at NGFP$_2$ 258
10.6 Numerical Solution 259
10.7 Can We Compute the Fine-Structure Constant? 260

11 Towards Phenomenology 263
11.1 Scale-Dependent Riemannian Structure 263
11.2 Cutoff Identifications 264
11.3 Structure of “Quantum Spacetime” 266
11.4 Black Holes 271
11.5 Cosmology 276

12 Miscellanea 281

Appendix A: Notation and Conventions 293

Appendix B: Organizing the Derivative Expansion 295
B.1 An Explicit Basis 295
B.2 Prototypical Background Spaces 296

Appendix C: Metric Variations 300

Appendix D: Heat Kernel Techniques 301
D.1 Early Time Expansion 302
D.2 The Off-Diagonal Heat Kernel 304
D.3 Integral Transforms 307

Appendix E: Cutoff- and Threshold Functions 311
E.1 Exponentially Decaying Cutoffs 312
E.2 The Sharp Cutoff 312
E.3 The Optimized Cutoff 315
E.4 Regulators for Complex Frequencies 316
E.5 Mass-Type Cutoff 316

Appendix F: Field Decompositions 317

References 319
Index 339
Preface

This book grew out of a series of lectures the authors have given at various universities and summer schools. Its intention is to provide an easily accessible, pedagogical account of the basic conceptual ideas and methods underlying the asymptotic safety approach to quantum gravity. Knowledge of General Relativity and quantum field theory at a master-course level should suffice to follow the exposition. The necessary technical background is developed from the beginning and no previous familiarity with functional renormalization group methods is assumed. As much as possible we try to supplement formal derivations by intuitive arguments. Our hope is that the book provides a valuable resource for graduate students and researchers, enabling them to follow the cutting-edge research in this field and placing it into the broad context.

It is impossible to thank all people here who directly or indirectly contributed to our work on quantum gravity and to this book ultimately. However, M. R. is particularly grateful to Christof Wetterich for the crucial and highly inspiring collaborations during the early days of the functional renormalization group and more than three decades of creative exchange and to Roberto Percacci for sharing the dream about asymptotic safety right from the start and for his decisive work toward making it a reality. It is also a pleasure to thank Alfio Bonanno for an enjoyable collaboration from very early on in an effort to understand the phenomenological consequences of asymptotic safety. Special heartfelt thanks go to Ennio Gozzi and Walter Dittrich for their support and guidance across all of physics, and well beyond.

F. S. thanks Jan Ambjørn, Renate Loll, and the quantum gravity group at Nijmegen for the continuous exchange of ideas and countless discussions, which have significantly influenced his view on quantum gravity in the last few years. A loving thank you goes to his wife Tetyana and daughter Sophia: without their continuous support and patience this exposition would not have been the same.

Much of the work reported in this book would not have seen the light of the day without the enthusiasm and ingenuity of the students and young researchers who collaborated with us on the asymptotic safety program: N. Alkofer, D. Becker, D. Benedetti, J. Biemans, A. Codello, A. Contillo, J.-E. Daum, M. Demmel, G. D’Odorico, J.-W. Goossens, K. Groh, U. Harst, W. B. Houthoff, A. Kurov, O. Lauscher, P. Machado, E. Manrique, A. Nink, C. Pagani, A. Platania,
Preface

We are particularly indebted to Gregor M. Schollmeyer for his invaluable input and untiring care in typesetting, shaping, and improving this monograph. We are also grateful to Peter van Dongen for suggesting numerous improvements, and Robin Ooijer and Arthur Vereijken for their help in proofreading the (almost) final manuscript.
List of Abbreviations

ADM Arnowitt–Deser–Misner
BRST Becchi–Rouet–Stora–Tyutin
CDT Causal Dynamical Triangulation
CREH conformally reduced Einstein–Hilbert
EAA Effective Average Action
EH Einstein–Hilbert
FRG Functional Renormalization Group
FRGE Functional Renormalization Group Equation
GFP Gaussian fixed point
GR General Relativity
IR infrared
LHS left-hand side
LPA local potential approximation
LQG Loop Quantum Gravity
LSZ Lehmann–Symanzik–Zimmermann
NGFP non-Gaussian fixed point
ODE ordinary differential equation
QCD Quantum Chromodynamics
QED Quantum Electrodynamics
QEG Quantum Einstein Gravity
RG renormalization group
RHS right-hand side
UV ultraviolet