OPTIMIZATION FOR CHEMICAL AND BIOCHEMICAL ENGINEERING

Discover the subject of optimization in a new light with this modern and unique treatment. Includes a thorough exposition of applications and algorithms in sufficient detail for practical use, while providing you with all the necessary background in a self-contained manner. Features a deeper consideration of optimal control, global optimization, optimization under uncertainty, multiobjective optimization, mixed-integer programming and model predictive control. Presents a complete coverage of formulations and instances in modelling where optimization can be applied for quantitative decision-making. As a thorough grounding to the subject, covering everything from basic to advanced concepts and addressing real-life problems faced by modern industry, this is a perfect tool for advanced undergraduate and graduate courses in chemical and biochemical engineering.

Vassilios S. Vassiliadis is a senior lecturer in the Department of Chemical Engineering at the University of Cambridge. He is also the CEO and CTO of the spin-out company, Cambridge Simulation Solutions LTD.

Antonio del Rio-Chanona works as a research fellow at the Centre for Process Systems Engineering at Imperial College London.

Ye Yuan is currently a professor at Huazhong University of Science and Technology.

Walter Kähm is a process engineer at LANXESS Deutschland GmbH.

CAMBRIDGE SERIES IN CHEMICAL ENGINEERING

Series Editor Arvind Varma, *Purdue University*

Editorial Board

Juan de Pablo, University of Chicago Michael Doherty, University of California-Santa Barbara Ignacio Grossman, Carnegie Mellon University Jim Yang Lee, National University of Singapore Antonios Mikos, Rice University

Books in the Series

Baldea and Daoutidis, *Dynamics and Nonlinear Control of Integrated Process* Systems

Chamberlin, Radioactive Aerosols

Chau, Process Control: A First Course with MATLAB

Cussler, Diffusion: Mass Transfer in Fluid Systems, Third Edition

Cussler and Moggridge, Chemical Product Design, Second Edition

De Pablo and Schieber, Molecular Engineering Thermodynamics

Deen, Introduction to Chemical Engineering Fluid Mechanics

Denn, Chemical Engineering: An Introduction

Denn, Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer

Dorfman and Daoutidis, *Numerical Methods with Chemical Engineering Applications*

Duncan and Reimer, *Chemical Engineering Design and Analysis: An Introduction 2E*

Fan, Chemical Looping Partial Oxidation Gasification, Reforming, and Chemical Syntheses

Fan and Zhu, Principles of Gas-Solid Flows

Fox, Computational Models for Turbulent Reacting Flows

Franses, Thermodynamics with Chemical Engineering Applications

> Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes

Lim and Shin, Fed-Batch Cultures: Principles and Applications of Semi-Batch Bioreactors

Litster, Design and Processing of Particulate Products

Marchisio and Fox, Computational Models for Polydisperse Particulate and Multiphase Systems

Mewis and Wagner, Colloidal Suspension Rheology

Morbidelli, Gavriilidis, and Varma, Catalyst Design: Optimal Distribution of Catalyst in Pellets, Reactors, and Membranes

Nicoud, Chromatographic Processes

Noble and Terry, *Principles of Chemical Separations with Environmental Applications*

Orbey and Sandler, *Modeling Vapor-Liquid Equilibria: Cubic Equations of State and their Mixing Rules*

Pfister, Nicoud, and Morbidelli, *Continuous Biopharmaceutical Processes: Chromatography, Bioconjugation, and Protein Stability*

Petyluk, Distillation Theory and its Applications to Optimal Design of Separation Units

Ramkrishna and Song, Cybernetic Modeling for Bioreaction Engineering

Rao and Nott, An Introduction to Granular Flow

Russell, Robinson, and Wagner, Mass and Heat Transfer: Analysis of Mass Contactors and Heat Exchangers

Schobert, Chemistry of Fossil Fuels and Biofuels

Shell, Thermodynamics and Statistical Mechanics

Sirkar, Separation of Molecules, Macromolecules and Particles: Principles, Phenomena and Processes

Slattery, Advanced Transport Phenomena

Varma, Morbidelli, and Wu, Parametric Sensitivity in Chemical Systems

Wolf, Bielser, and Morbidelli, *Perfusion Cell Culture Processes for Biopharmaceuticals*

Optimization for Chemical and Biochemical Engineering

Theory, Algorithms, Modeling and Applications

Vassilios Vassiliadis

University of Cambridge

Ye Yuan Huazhong University of Science and Technology

E. Antonio del Rio Chanona

Imperial College London

Walter Kähm

LANXESS Deutschland GmbH

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107106833 DOI: 10.1017/9781316227268

© Vassilios Vassiliadis, Ye Yuan, E. Antonio del Rio Chanona, Walter Kähm 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2020

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Vassiliadis, Vassilios S., author. | Rio Chanona, E. Antonio del, author. | Yuan, Ye (Chemical engineer), author. | Kähm, Walter, author.

Title: Optimization : theory, algorithms and applications in chemical engineering / Vassilios S. Vassiliadis, Ehecatl Antonio del Rio Chanona, Ye Yuan, Walter Kähm.

Description: New York : Cambridge University Press, 2020. | Series: Cambridge series in chemical engineering | Includes bibliographical references and index.

Identifiers: LCCN 2020017896 (print) | LCCN 2020017897 (ebook) | ISBN 9781107106833 (hardback) | ISBN 9781316227268 (ebook)

Subjects: LCSH: Chemical engineering. | Mathematical optimization. | Algorithms. | Nonlinear functional analysis.

Classification: LCC TP155 .V38 2020 (print) | LCC TP155 (ebook) | DDC 660–dc23 LC record available at https://lccn.loc.gov/2020017896

LC ebook record available at https://lccn.loc.gov/2020017897

ISBN 978-1-107-10683-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-107-10683-3 — Optimization for Chemical and Biochemical Engineering Vassilios S. Vassiliadis , Ehecatl Antonio del Rio Chanona , Ye Yuan , Walter Kähm Frontmatter More Information

Contents

	Not Prefa	ation ace	þage xii xiii
	PAF	T I OVERVIEW OF OPTIMIZATION: APPLICATIONS AND PROBLEM FORMULATIONS	I
I	Intr	oduction to Optimization	3
	1.1	Statement of General Mathematical Programming (MP)	
		(Optimization) Problem	3
	1.2	Applications in Technological and Scientific Problems	6
	1.3	Algorithms and Complexity	14
	1.4	Generalized Optimization Problems	20
	1.5	Chapter Summary	25
	1.6	References	25
	1.7	Further Reading Recommendations	26
	PAF	T II FROM GENERAL MATHEMATICAL BACKGROUND TO GENERAL NONLINEAR PROGRAMMING PROBLEMS (NLP)	29
r	Gar	our Concente	21
2	3 U	"Size of Vectors"	21
	2.1	Size of vectors Minimization versus Maximization	32
	2.2	Types of Extrema of a Eurotion (Stationary Points)	32
	2.5	Contours of $f(x)$	32
	2.1	Vectors and Derivatives Involving Matrices and Vectors	34
	2.6	Further Reading Recommendations	37
3	Cor	wexity	38
	3.1	Definition of Convex Function	38
	3.2	Convex Sets	41
	3.3	Further Reading Recommendations	42
	3.4	Exercises	42

Contents

4	Quadratic Functions	44
	4.1 Construction of the Matrix Form of a Quadratic Function by Example	44
	4.2 Eigenvalues of <i>Q</i> for Quadratic Functions and Convexity	45
	4.3 Geometrical Interpretation of Eigenvalues and Eigenvectors	49
	4.4 Solution of an Unconstrained Quadratic Program (QP)	50
	4.5 Least Squares Fitting and Its Relation to QP	51
	4.6 Further Reading Recommendations	56
	4.7 Exercises	56
5	Minimization in One Dimension	57
	5.1 Bisection	57
	5.2 Golden Section Search	57
	5.3 Newton's Method	60
	5.4 Other Methods	61
	5.5 Further Reading Recommendations	61
	5.6 Exercises	62
6	Unconstrained Multivariate Gradient-Based Minimization	63
	6.1 Minimum Stationary Points	63
	6.2 Calculating Derivatives	64
	6.3 The Steepest Descent Method	66
	6.4 Newton's Method	67
	6.5 Rate of Convergence	69
	6.6 The Newton Family of Methods	72
	6.7 Optimization Termination Criteria	73
	6.8 Linesearch Methods	74
	6.9 Summary of the Chapter	77
	6.10 References	77
	6.11 Exercises	77
7	Constrained Nonlinear Programming Problems (NLP)	81
	7.1 Convexity of Constraint Set	81
	7.2 Convex Programming Problem	81
	7.3 Lagrange Multipliers	82
	7.4 Necessary Conditions of Optimality (KKT Conditions)	85
	7.5 Sufficient Conditions	85
	7.6 Discussion and Solution Procedures	87
	7.7 References	88
	7.8 Further Reading Recommendations	88
	7.9 Exercises	89
8	Penalty and Barrier Function Methods	91
	8.1 Penalty Functions	91
	8.2 Barrier Methods: Logarithmic Barriers	94
	8.3 Penalty-Multiplier Method (Augmented Lagrangian Method)	96
	8.4 Further Reading Recommendations	99
	8.5 Exercises	99
9	Interior Point Methods (IPM's): A Detailed Analysis	101
	9.1 NLP Formulations and Lagrangians	101
	9.2 Logarithmic Barrier Functions for Inequality Constrained NLPs	102

viii

Contents

	9.3	Reformulating NLP Problems into Canonical Form	105
	9.4	Newton's Method for NLP with Equality Constraints Only	106
	9.5	Logarithmic Barriers for NLPs with Equalities and Bounds	107
	9.6	Summary of Interior Point Methods	111
	9.7	References	112
	9.8	Further Reading Recommendations	112
	PAR	T III FORMULATION AND SOLUTION OF LINEAR PROGRAMMING (LP) PROBLEMS	113
10	Intro	Douction to LP Models	115
	10.1	General LP Problem Model	115
	10.2	Further Reading Recommendations	116
11	Nun	nerical Solution of LP Problems Using the Simplex Method	123
	11.1	Introduction	123
	11.2	Rectangular Systems of Linear Equations	123
	11.3	Rectangular Systems and the Objective Function of the LP Problem	125
	11.4	The Simplex Method	126
	11.5	Revisiting the Use of Artificial Variables for an Initial Basic Solution	128
	11.6	Numerical Examples of the Simplex Method	128
	11.7	References	130
	11.8	Further Reading Recommendations	130
	11.9	Exercises	131
12	A Sa	mpler of LP Problem Formulations	133
	12.1	Product Mix Problem	133
	12.2	Diet Problem	134
	12.3	Blending Problem	135
	12.4	Transportation Problem	136
	12.5	Linear ODE Optimal Control Problem (OCP)	138
	12.6	Further Reading Recommendations	143
	12.7	Exercises	144
13	Reg	ression Revisited: Using LP to Fit Linear Models	146
	13.1	l ₂ / Euclidean Norm Fitting (Least Squares)	146
	13.2	l ₁ Norm Fitting	147
	13.3	l_∞ Norm Fitting	148
	13.4	Application: Antoine Vapor Pressure Correlation Fitting	148
	13.5	Further Reading Recommendations	150
14	Net	work Flow Problems	151
	14.1	Network, Arcs, Graphs	151
	14.2		152
	14.3	Integrality of Solution Theorem	153
	14.4	Capacitated Minimum Cost Network How Problem	154
	14.5	Shortest Path (or Minimum Distance) Problem	154
	14.6	Iransportation Problem	155
	14./	iranssnipment Problem	15/

ix

CAMBRIDGE

Cambridge University Press 978-1-107-10683-3 — Optimization for Chemical and Biochemical Engineering Vassilios S. Vassiliadis , Ehecatl Antonio del Rio Chanona , Ye Yuan , Walter Kähm Frontmatter <u>More Information</u>

Contents

	14.8 The Assignment Problem14.9 References14.10 Further Reading Recommendations14.11 Exercises	58 59 59 59
15	LP and Sensitivity Analysis, in Brief 15.1 The Value of Lagrange Multipliers 15.2 Lagrange Multipliers in LP 15.3 Example of Sensitivity Analysis 15.4 Summary of Chapter 15.5 Further Reading Recommendations	6 6 63 66 67
16	Multiobjective Optimization16.1Problem Statement16.2Pareto Optimality Theory16.3Solution Procedures Generating Pareto Points16.4Pareto Solution Sets16.5Conclusions and further reading16.6Problems16.7References16.8Further Reading	168 168 170 173 185 189 190 191 193
17	Optimization under Uncertainty17.1Introduction17.2Different Approaches to Address Optimization Under Uncertainty17.3Robust Optimization17.4Sample Average Approximation Method17.5Scenario Generation and Sampling Methods17.6Sampling Methods for Scenario Generation17.7Solutions on Average Approximation Algorithm17.8Flexibility Analysis of Chemical Processes17.9References17.10Further Reading Recommendations17.11Exercises	195 197 203 205 208 212 218 218 218 224 225 226
18	 Mixed-Integer Programming Problems 18.1 Preliminaries to Solving Mixed-Integer Programming Problems 18.2 Solution Techniques for Mixed-Integer Linear Programming Problems (MILP) 18.3 Solution Techniques for MINLP Problems 18.4 References 18.5 Further Reading Recommendations 18.6 Exercises 	228 229 233 244 258 259 260
19	Global Optimization19.1Introduction19.2Problem Statement19.3Reducing the Domain for a Branch and Reduce Approach19.4Underestimators19.5Tunneling	261 261 262 267 273 280

x

Contents

	19.6	Pseudocode for a Global Optimization Algorithm	282
	19.7	References	283
	19.8	Further Reading Recommendations	284
	19.9	Exercises	285
20	Opti	mal Control Problems (Dynamic Optimization)	287
	20. I	Problem Statement, Single-Stage and Multistage Problems	287
	20.2	Pontryagin's Minimum (Maximum) to Solve Single-Stage Dynamics	292
	20.3	Transcription to NLP Problems via Discretization	296
	20.4	Control and State Parameterization via Orthogonal Collocation	304
	20.5	References	310
	20.6	Further Reading Recommendations	311
	20.7	Exercises	311
21	Syst	em Identification and Model Predictive Control	312
	21.1	Introduction	312
	21.2	Dynamical Systems	313
	21.3	Introduction to System Identification	319
	21.4	Introduction to Model Predictive Control (MPC)	326
	21.5	Discussion on the Impact of Optimization Algorithms on Identification	
		and MPC	332
	21.6	References	332
	21.7	Exercises	334
	Index	< compared with the second s	336

Notation

AFM	atomic force microscope
AKPZ	anisotropic KPZ equation
a_0	lattice constant
$c_q(\ell)$	q-th order correlation function
$d_{ m E}$	embedding dimension
d_f	fractal dimension
Ľ	system size
≡	<i>defined</i> to be equal
\sim	<i>asymptotically</i> equal (in scaling sense)
\approx	approximately equal (in numerical value)

Preface

This book is the result of a decade of teaching the Masters course "Optimization" at the University of Cambridge, during which period a lot of material has been collected and taught. The philosophy behind the lecture notes and now this book is that teaching and research are strongly connected and should never be separated. As such, upcoming research topics in literature have to be included always, especially in such a fast-moving area of research as the one dealt with in this book.

In addition to the standard lecture notes of the Masters course, a deeper consideration of optimal control, global optimization, optimization under uncertainty, multiobjective optimization, mixed-integer programming and model predictive control are included here, which are the areas of increased interest in recent years. The mathematics of the topics covered in this book can be complex in their own right, but it is attempted to give enough information to be applied to chemical engineering problems.

The use of optimization techniques in chemical engineering has a long history, with a profound impact by Professor Roger Sargent. Since the inception of Process Systems Engineering (PSE) by Professor Roger Sargent, the field has expanded to areas outside classical chemical engineering, e.g. biotechnology. This is possible due to the flexible nature with which the concepts of PSE can be used for problems with real-world application. This book tries to teach these fundamental concepts.

The preparation of this book took longer than initially planned, but nevertheless it is with great pleasure that we can now share what we think is an exciting and extremely interesting area of research, for industry and academia. Each chapter presenting new concepts and ideas is followed by exercises for the reader to test the understanding. None of the topics shown in this book can be covered in extensive detail, as this would exceed the scope. As such, further reading recommendations are given to guide the reader. In addition, the material covered is backed with references from recent literature to put into context how the concepts presented in this book are used in "the real world."