TOPOLOGICAL PHASES OF MATTER

Topological phases of matter are an exceptionally dynamic field of research: several of the most exciting recent experimental discoveries and conceptual advances in modern physics have their origins in this field. These have generated new – topological – notions of order, interactions, and excitations. This text provides an accessible, unified, and comprehensive introduction to the phenomena surrounding topological matter, with detailed expositions of the underlying theoretical tools and conceptual framework, alongside accounts of the central experimental breakthroughs. Among the systems covered are topological insulators, magnets, semimetals, and superconductors. The emergence of new particles with remarkable properties such as fractional charge and statistics is discussed alongside possible applications such as fault-tolerant topological quantum computing. Suitable as a textbook for graduate or advanced undergraduate students, or as a reference for more experienced researchers, the book assumes little prior background, providing self-contained introductions to topics as varied as phase transitions, superconductivity, and localization.

RODERICH MOESSNER is director at the Max Planck Institute for the Physics of Complex Systems in Dresden. His theoretical discoveries include classical and quantum spin liquids, emergent magnetic monopoles, and nonequilibrium spatiotemporal ordering phenomena. He is recipient of the Leibniz Prize and the Europhysics Prize, and an Honorary Fellow of Hertford College, Oxford.

JOEL E. MOORE is Chern-Simons Professor of Physics at the University of California, Berkeley, and Senior Faculty Scientist at Lawrence Berkeley National Laboratory. His research interests include topological insulators, semimetals, and semiconductors, along with the application of quantum information concepts to many-body physics. He is a Simons Investigator and a Fellow and former elected Member-at-Large of the American Physical Society.

TOPOLOGICAL PHASES OF MATTER

RODERICH MOESSNER

Max-Planck-Institut für Physik komplexer Systeme, Dresden

JOEL E. MOORE

University of California, Berkeley, and Lawrence Berkeley National Laboratory

Cambridge University Press 978-1-107-10553-9 — Topological Phases of Matter Roderich Moessner , Joel E. Moore Frontmatter <u>More Information</u>

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi – 110002, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107105539 DOI: 10.1017/9781316226308

© Roderich Moessner and Joel E. Moore 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-107-10553-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List o	of Tables	<i>page</i> viii
	List of Boxes Preface		ix xi
	Ackn	owledgments	xiii
1	Intro	duction	1
2	Basic Concepts of Topology and Condensed Matter		11
	2.1	Berry Phases in Quantum Mechanics	12
	2.2	One Electron in a Magnetic Field: Landau Levels	20
	2.3	One Electron in a Crystal: Bloch's Theorem	24
	2.4	The Simplest Tight-Binding Model	26
	2.5	Dirac Band Structure of the Honeycomb Lattice	29
	2.6	Landau Theory of Symmetry-Breaking Phases	32
	2.7	Two Mathematical Approaches to Topology	40
	2.8	Topological Defects in Symmetry-Breaking Phases	50
3	Integer Topological Phases: The Integer Quantum Hall Effect and		
	Торс	logical Insulators	58
	3.1	IQHE: Basic Phenomena and Theory	60
	3.2	Two Lattice Models of the IQHE, and Chern Number	69
	3.3	Time-Reversal Symmetry in Classical and Quantum	
		Physics	74
	3.4	Topological Insulators in 2D: Basic Phenomena and	
		Theory	76
	3.5	A Lattice Model of the 2D Topological Insulator	82
	3.6	3D Topological Insulators: Basic Phenomena	84
	3.7	Skyrmions in the Quantum Hall Effect	88

v

vi		Contents	
4	Geometry and Topology of Wavefunctions in Crystals		95
	4.1	Inversion Symmetry, Electrical Polarization, and Thouless	
		Pumping	97
	4.2	The Integer Quantum Hall Effect and Topological Invariants	
		of Energy Bands	104
	4.3	Many-Particle Interpretation of Topological Invariants	107
	4.4	Time-Reversal Invariance and \mathbb{Z}_2 Invariants	109
	4.5	Axion Electrodynamics, Non-Abelian Berry Phase, and	
		Magnetoelectric Polarizability	118
5	Hydrogen Atoms for Fractionalization		124
	5.1	The Fractional Quantum Hall Effect	126
	5.2	Fractionalization, Order, and Topology in $d = 1$	145
	5.3	The Resonating Valence Bond Liquid	156
	5.4	Spin Ice	167
6	Gauge and Topological Field Theories		179
	6.1	Pure Ising Gauge Theory and Absence of Local Order	181
	6.2	Ising Gauge Theory with Matter	187
	6.3	Kitaev's Toric Code	192
	6.4	Maxwell Electromagnetism	194
	6.5	Tensor Gauge Theories and Fractons	198
	6.6	Long-Wavelength and Topological Field Theories	201
	6.7	Mutual Statistics and the Quantum Hall Hierarchy	214
	6.8	<i>BF</i> Theory	215
7	Topology in Gapless Matter		218
	7.1	Geometric Quantities in the Semiclassical Theory of	
		Metals	220
	7.2	Dirac and Weyl Semimetals	225
	7.3	Electromagnetic Response of Topological Semimetals	229
	7.4	Kitaev Honeycomb Model	233
8	Disorder and Defects in Topological Phases		239
	8.1	Introduction to Disorder and Localization	241
	8.2	A Semiclassical Model of Quantum Hall Transitions	247
	8.3	Adding Quantum Mechanics: Network Models	251
	8.4	Basic Ideas of Random Matrix Theory and the Tenfold	
		Way	253
	8.5	Vortices in Conventional Superconductors	260

		Contents	vii
	8.6	Flux and Crystalline Defects in Integer Topological	
		Phases	266
	8.7	Vortices in Quantum Hall States and Composite Fermions	268
	8.8	Spin Liquids and Disorder	271
9	Topol	ogical Quantum Computation via Non-Abelian Statistics	285
	9.1	Quantum Computation: Universality and Complexity	286
	9.2	Error Correction versus Fault-Tolerance	289
	9.3	Nonlocal Operations for Quantum Computing	292
	9.4	Majoranas in One Dimension: The Kitaev Chain	297
	9.5	Majoranas in Two Dimensions	301
	9.6	Universal Computation and the Read–Rezayi States	310
	9.7	Experimental Implementations of Majorana Modes	311
10	Topol	ogy out of Equilibrium	316
	10.1	Time-Dependent and Time-Periodic (Floquet)	
		Hamiltonians	317
	10.2	Floquet Basics	318
	10.3	Floquet Topological Insulators	324
	10.4	Anomalous Floquet–Anderson Insulator	326
	10.5	Driven Kitaev Chain and π -Majorana Fermions	329
	10.6	Many-Body Floquet Discrete Time Crystal	334
11	Symmetry, Topology, and Information		340
	11.1	Symmetry-Protected Topological Phases	341
	11.2	Entanglement Entropy in Topological States	349
	11.3	The Universe of Topological Materials; Closing Remarks	352
	Appen	dix: Useful Sources, Quantities, and Equations	355
	Refere		358
	Index		371

Tables

4.1	Comparison of Berry phase theories of polarization and magnetoelectric	
	polarizability	<i>page</i> 121
8.1	Ten symmetry classes of free-fermion Hamiltonians in dimensions 1–4	
	and their topological possibilities	259
A.1	Some useful quantities and equations	357

Cambridge University Press 978-1-107-10553-9 — Topological Phases of Matter Roderich Moessner , Joel E. Moore Frontmatter <u>More Information</u>

Boxes

2.1	The Berry Phase of the Adiabatic Dynamics of a Spin	page 17
2.2	Topology from Geometry: The Gauss–Bonnet Theorem	40
2.3	The Berezinskii–Kosterlitz–Thouless Transition	53
3.1	One Particle on a Ring Pierced by Magnetic Flux	62
3.2	Modulation Doping	67
4.1	Tight-Binding Chain with Two Orbitals per Unit Cell	102
4.2	The Wess–Zumino–Witten Model	110
5.1	Single-Mode Approximation	134
5.2	Fractional Statistics of Particles in Two Dimensions	140
5.3	Fractional Quantum Numbers	146
5.4	Klein Models	151
5.5	Classical Dimer Models and Their Correlations	162
6.1	Quantum IGT in d Dimensions and Classical IGT in $d + 1$	182
6.2	Bound States of the Dirac Equation: Jackiw-Rebbi Model	202
7.1	Semiclassical Equilibrium	224
8.1	One-Parameter Scaling Approach to Anderson Localization	243
8.2	Bogoliubov-de Gennes Formalism of Superconductivity	254
8.3	The Josephson Effect and Gauge Invariance	263
9.1	The No-Cloning Theorem	290
9.2	What Is a Majorana Fermion or Zero Mode?	294
9.3	The Jordan–Wigner Transformation and Statistics in 1D	299
9.4	Solution and Phase Diagram of the Kitaev Honeycomb Model	306
10.1	Phase Structure in and out of Equilibrium	320

Preface

Topological condensed matter physics presents an embarrassment of riches, both in the bewildering variety of phenomena that fall under this heading and in the sheer volume of publications in the field. In addition, the breadth of the field is reflected in a diversity of backgrounds of its practitioners: it is a place where immigrants from high-energy physics collaborate with materials chemists. This poses the twin challenges of selection and organization of material for a book.

Against this backdrop, the content of this book reflects our vision of the field, in particular what we feel might in the long run form part of the canon of manybody physics. We have tried to emphasize conceptual and historical milestones. We focus on topological phases in solids, rather than on similar phases of neutral atoms in either helium or ultra-low-density atomic gases, which couple very differently to electromagnetic fields, even though these have certainly contributed to central developments of the field.

We have limited ourselves to a relatively small number of references. Given that the material of the book corresponds to such a vast body of work, we would otherwise have ended up with an unpalatably long but necessarily still woefully incomplete list of references. We have tried to include scholarly review articles where hundreds more references can be found in a more structured fashion. We apologize to those objecting to this or any other aspect of the presentation for our shortcomings; they are warmly encouraged to contribute their own versions, as condensed matter physics does not have the literature it deserves.

Few are the book projects that are swiftly concluded, and ours is not one of them. Without the collapse of our travel schedules due to the present pandemic, perhaps this manuscript would still not be finished. Of course, had we completed the book more swiftly, we would have missed a number of exciting developments, such as the discoveries of Floquet time crystals and Weyl and Dirac semimetals. At any rate, we do not expect a letup of the sequence of discoveries any time soon.

Cambridge University Press 978-1-107-10553-9 — Topological Phases of Matter Roderich Moessner , Joel E. Moore Frontmatter <u>More Information</u>

xii

Preface

Indeed, overall condensed matter physics continues to have a refreshingly unmodern flavor to it. Most of its discoveries are made by small collaborations of creative individuals, often entirely serendipitously – just think of the integer quantum Hall effect, the cuprate superconductors, the isolation of graphene, or the prediction of topological insulators. This is a far cry from purportedly goaloriented large-scale research programs, the organization of which both of us are admittedly also guilty of. At the same time, it is undeniably true that the use of large-scale facilities like modern neutron and light sources has advanced the field tremendously.

The passage of time has also asserted itself in several other ways. Topological condensed matter physics has in the meantime been recognized by the 2016 Nobel Prize for Duncan Haldane, Michael Kosterlitz, and David Thouless. Neither was sad news in short supply, with Thouless passing away only a few months after the untimely death of Shoucheng Zhang. The passing of Phil Anderson in March 2020 concluded the extraordinary career of arguably the most influential scientist of the second half of the twentieth century.

Finally, it might be useful to explain our approach to pedagogy, since it is intended that this book will be useful also for courses of self-study. Our feeling is that an encyclopedic list of results without derivations is unlikely to help readers understand the material for themselves, while too detailed a presentation tends to obscure the underlying conceptual structure of the material. In compromise, we have tried to explain a moderate number of central results, with a key example where appropriate; most of these do not require a great deal of technical background or impose greatly on the reader's patience. We would like to think, of course, that the book can thus also be useful as an initial reference that can be consulted for the basics of a subject and as a source for more comprehensive reading.

For the nonexpert reader, although much interesting material has had to be omitted, what has been included may still be hard to navigate initially. To lower the entry bar, besides providing background in Chapter 2 to make the book reasonably self-contained, we have collated the most fundamental material in two chapters, which we recommend as an entry point. These are Chapter 3, on integer topological phases, and Chapter 5, on fractionalization.

Ideally, the book will be useful for active practitioners in the field as well as for newcomers, to whom we would like to extend a heartfelt welcome.

Acknowledgments

The embarrassment of riches of topological condensed matter physics mentioned in the preface is matched by the number and generosity of the people to whom we are indebted on our scientific journey to date. The first mention should be of those scientists who guided our steps during our scientific childhood and adolescence. Added to this are the collaborators with whom we began and sustained a research effort in the field.

In this spirit, J.E.M. thanks Duncan Haldane and Xiao-Gang Wen for explaining the beauty of topological order; Leon Balents and Cenke Xu for collaborations in the early days of topological materials; and Joseph Orenstein and David Vanderbilt for adding a dose of realism, in their distinct ways, later on. Similarly, R.M. is grateful to John Chalker and Shivaji Sondhi, especially for the early work on frustrated magnetism that was finding its place in the fabric of topological condensed matter physics as it was being woven. Since then, he has benefited greatly from the time and enthusiasm of many collaborators. Feeling distinctly uncomfortable singling out any individually, he would like to hide behind the Europhysics Prize Committee to signal his gratitude for satisfying theory–experiment collaborations like the one involving the discovery of emergent magnetic monopoles with Claudio Castelnovo and the groups of Alan Tennant and Santiago Grigera.

Both of us have had the privilege of watching junior scientists from our research groups develop into independent contributors to the field of topological physics. We particularly thank our students and postdocs, too many to list, not just for their collaboration on research but for making the job of professor a worthwhile one. Early versions of this material were inflicted upon students, and refined based on their questions, not just at our institutions but at a number of advanced schools. J.E.M. acknowledges Oxford University Press for permission to reuse material in Section 2.7, Chapter 4 and Section 6.6.1 from his Les Houches lecture notes (Chamon et al., 2017).

xiii

Cambridge University Press 978-1-107-10553-9 — Topological Phases of Matter Roderich Moessner , Joel E. Moore Frontmatter <u>More Information</u>

xiv

Acknowledgments

J.E.M. acknowledges primary research support from the US government, chiefly the Division of Materials Research of the National Science Foundation, currently via grant DMR-1918065, and the Office of Science of the Department of Energy. He is also grateful for support from a Simons Investigator award and the Emergent Phenomena in Quantum Systems program of the Gordon and Betty Moore Foundation, and for the support of his colleagues at the University of California, Berkeley, and Lawrence Berkeley National Laboratory. R.M. thanks the Max Planck Society for providing steadfast support and, to his mind enviable, academic freedom, which underpin the stimulating scientific atmosphere of the Max Planck Institute for the Physics of Complex Systems in Dresden.

For the immediate realization of this manuscript, we are grateful for comments, feedback, encouragement, and help with figures, from Noelle Blose, John Chalker, Tom Fennell, Peter Fulde, Andrew Green, Matteo Ippoliti, Vedika Khemani, Kai Klocke, Yu-Hsuan Lin, Netanel Lindner, Jonathan Nilsson-Hallen, Benedikt Placke, Regine Schuppe, Vijay Shenoy, Kirill Shtengel, Jurgen Smet, Veronika Sunko, and Ruben Verresen, and Kohtaro Yamakawa. Portions of this work were completed at the Kavli Institute for Theoretical Physics, the Aspen Center for Physics, and the Galileo Galilei Institute. We are grateful to the staff of Cambridge University Press, and to Nick Gibbons in particular, for their steady encouragement and patience. Finally, we would like to thank our families for their sacrifices, before and during the writing of this book, toward enabling us to enjoy the life of the mind.

R.M. dedicates this book to the memory of Philip W. Anderson. As the founding pioneer of much of condensed matter physics, his intellectual influence pervades this field, and this book, on many levels. We mourn the loss of an outstanding person who was a role model for many of us, not just as a scientist, and feel privileged to have known him.

J.E.M. dedicates this book to another native of Illinois, William Moore, for his contributions in other spheres, including as a father.