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Preface

Linear algebra and matrix methods are increasingly relevant in a world focused on the

acquisition and analysis of data. Consequently, this book is intended for students of pure

and applied mathematics, computer science, economics, engineering, mathematical biology,

operations research, physics, and statistics. We assume that the reader has completed a lower-

division calculus sequence and a first course in linear algebra.

Noteworthy features of this book include the following:

• Block matrices are employed systematically.

• Matrices and matrix factorizations are emphasized.

• Transformations that involve unitary matrices are emphasized because they are associated

with feasible and stable algorithms.

• Numerous examples appear throughout the text.

• Figures illustrate the geometric foundations of linear algebra.

• Topics for a one-semester course are arranged in a sequence of short chapters.

• Many chapters conclude with sections devoted to special topics.

• Each chapter includes a problem section (more than 600 problems in total).

• Notes sections provide references to sources of additional information.

• Each chapter concludes with a bullet list of important concepts introduced in the chapter.

• Symbols used in the book are listed in a table of notation, with page references.

• An index with more than 1700 entries helps locate concepts and definitions, and enhances

the utility of the book as a reference.

Matrices and vector spaces in the book are over the complex field. The use of complex

scalars facilitates the study of eigenvalues and is consistent with modern numerical linear

algebra software. Moreover, it is aligned with applications in physics (complex wave functions

and Hermitian matrices in quantum mechanics), electrical engineering (analysis of circuits

and signals in which both phase and amplitude are important), statistics (time series and

characteristic functions), and computer science (fast Fourier transforms, convergent matrices

in iterative algorithms, and quantum computing).

While studying linear algebra with this book, students can observe and practice good

mathematical communication skills. These skills include how to state (and read) a theorem

carefully; how to choose (and use) hypotheses; how to prove a statement by induction, by

contradiction, or by proving its contrapositive; how to improve a theorem by weakening its
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xiv Preface

hypotheses or strengthening its conclusions; how to use counterexamples; and how to write a

cogent solution to a problem.

Many topics that are useful in applications of linear algebra fall outside the realm of linear

transformations and similarity, so they may be absent from textbooks that adopt an abstract

operator approach. These include:

• Geršgorin’s theorem

• Householder matrices

• The QR factorization

• Block matrices

• Discrete Fourier transforms

• Circulant matrices

• Matrices with nonnegative entries (Markov matrices)

• The singular value and compact singular value decompositions

• Low-rank approximations to a data matrix

• Generalized inverses (Moore–Penrose inverses)

• Positive semidefinite matrices

• Hadamard (entrywise) and Kronecker (tensor) products

• Matrix norms

• Least squares and minimum norm solutions

• Complex symmetric matrices

• Inertia of normal matrices

• Eigenvalue and singular value interlacing

• Inequalities involving eigenvalues, singular values, and diagonal entries

The book is organized as follows:

Chapter 0 is a review of definitions and results from elementary linear algebra.

Chapters 1 and 2 review complex and real vector spaces, including linear independence,

bases, dimension, rank, and matrix representations of linear transformations.

The “second course” topics begin in Chapter 3, which establishes the block-matrix

paradigm used throughout the book.

Chapters 4 and 5 review geometry in the Euclidean plane and use it to motivate axioms

for inner product and normed linear spaces. Topics include orthogonal vectors, orthogonal

projections, orthonormal bases, orthogonalization, the Riesz representation theorem, adjoints,

and applications of the theory to Fourier series.

Chapter 6 introduces unitary matrices, which are used in constructions throughout the rest of

the book. Householder matrices are used to construct the QR factorization, which is employed

in many numerical algorithms.
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Preface xv

Chapter 7 discusses orthogonal projections, best approximations, least squares/minimum

norm solutions of linear systems, and use of the QR factorization to solve the normal

equations.

Chapter 8 introduces eigenvalues, eigenvectors, and geometric multiplicity. We show that

an n × n complex matrix has between one and n distinct eigenvalues, and use Geršgorin’s

theorem to identify a region in the complex plane that contains them.

Chapter 9 deals with the characteristic polynomial and algebraic multiplicity. We develop

criteria for diagonalizability and define primary matrix functions of a diagonalizable matrix.

Topics include Fibonacci numbers, the eigenvalues of AB and BA, commutants, and simulta-

neous diagonalization.

Chapter 10 contains Schur’s remarkable theorem that every square matrix is unitarily

similar to an upper triangular matrix (with a related result for a commuting family).

Schur’s theorem is used to show that every square matrix is annihilated by its characteristic

polynomial. The latter result motivates introduction of the minimal polynomial and a study of

its properties. Sylvester’s theorem on linear matrix equations is proved and used to show that

every square matrix is similar to a block diagonal matrix with unispectral diagonal blocks.

Chapter 11 builds on the preceding chapter to show that every square matrix is similar to

a special block diagonal upper bidiagonal matrix (its Jordan canonical form) that is unique

up to permutation of its direct summands. Applications of the Jordan canonical form include

initial value problems for linear systems of differential equations, an analysis of the Jordan

structures of AB and BA, characterizations of convergent and power-bounded matrices, and a

limit theorem for Markov matrices that have positive entries.

Chapter 12 is about normal matrices: matrices that commute with their conjugate transpose.

The spectral theorem says that a matrix is normal if and only if it is unitarily diagonalizable;

many other equivalent characterizations are known. Hermitian, skew-Hermitian, unitary, real

orthogonal, real symmetric, and circulant matrices are all normal.

Positive semidefinite matrices are the subject of Chapter 13. These matrices arise in

statistics (correlation matrices and the normal equations), mechanics (kinetic and potential

energy in a vibrating system), and geometry (ellipsoids). Topics include the square root

function, Cholesky factorization, and the Hadamard and Kronecker products.

The principal result in Chapter 14 is the singular value decomposition, which is at the

heart of many modern numerical algorithms in statistics, control theory, approximation, image

compression, and data analysis. Topics include the compact singular value decomposition and

polar decompositions, with special attention to uniqueness of these factorizations.

In Chapter 15 the singular value decomposition is used to compress an image or data matrix.

Other applications of the singular value decomposition discussed are the generalized inverse

(Moore–Penrose inverse) of a matrix; inequalities between singular values and eigenvalues;

the spectral norm of a matrix; complex symmetric matrices; and idempotent matrices.

Chapter 16 investigates eigenvalue interlacing phenomena for Hermitian matrices that are

bordered or are subjected to an additive perturbation. Related results include an interlacing

theorem for singular values, a determinant criterion for positive definiteness, and inequalities

that characterize eigenvalues and diagonal entries of a Hermitian matrix. We prove Sylvester’s

inertia theorem for Hermitian matrices and a generalized inertia theorem for normal matrices.

A comprehensive list of symbols and notation (with page references) follows the Preface.

A review of complex numbers and a list of references follow Chapter 16. A detailed index is

at the end of the book.
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xvi Preface

The cover art is an image of a 2002 oil painting “Summer Again” (72 × 52 inches) by

Lun-Yi Tsai, a New York City artist whose work has often been inspired by mathematical

themes.

We thank Zachary Glassman for producing many of our illustrations and for answering our

LATEX questions.

We thank Dennis Merino, Russ Merris, and Zhongshan Li for carefully reading a prelimi-

nary draft.

We thank the students who attended the first author’s advanced linear algebra courses at

Pomona College during Fall 2014 and Fall 2015. In particular, we thank Ahmed Al Fares,

Andreas Biekert, Andi Chen, Wanning Chen, Alex Cloud, Bill DeRose, Jacob Fiksel, Logan

Gilbert, Sheridan Grant, Adam He, David Khatami, Cheng Wai Koo, Bo Li, Shiyue Li,

Samantha Morrison, Nathanael Roy, Michael Someck, Sallie Walecka, and Wentao Yuan for

catching several mistakes in a preliminary version of this text.

Special thanks to Ciaran Evans, Elizabeth Sarapata, Adam Starr, and Adam Waterbury for

their eagle-eyed reading of the text.
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Notation

∈, /∈ is / is not an element of

⊆ is a subset of

∅ the empty set

× Cartesian product

f : X → Y f is a function from X into Y

�⇒ implies

⇐⇒ if and only if

x �→ y implicit definition of a function that maps x to y

N = {1, 2, 3, . . .} the set of all natural numbers

Z = {. . . , −2, −1, 0, 1, 2, . . .} the set of all integers

R the set of real numbers

C the set of complex numbers

F field of scalars (F = R or C)

[a, b] a real interval that includes its endpoints a, b

U ,V ,W vector spaces

U , V subsets of vector spaces

a, b, c, . . . scalars

a, b, c, . . . (column) vectors

A, B, C, . . . matrices

δij Kronecker delta (p. 3)

In n × n identity matrix (p. 3)

I identity matrix (size inferred from context) (p. 3)

diag(·) diagonal matrix with specified entries (p. 4)

A0 = I convention for zeroth power of a matrix (p. 4)

AT transpose of A (p. 5)

A−T inverse of AT (p. 5)

A conjugate of A (p. 5)

A∗ conjugate transpose (adjoint) of A (p. 5)

A−∗ inverse of A∗ (p. 5)

tr A trace of A (p. 6)

det A determinant of A (p. 8)

adj A adjugate of A (p. 9)

sgn σ sign of a permutation σ (p. 10)

deg p degree of a polynomial p (p. 12)

Pn set of complex polynomials of degree at most n (p. 21)
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xviii Notation

Pn(R) set of real polynomials of degree at most n (p. 21)

P set of all complex polynomials (p. 22)

P(R) set of all real polynomials (p. 22)

CF[a, b] set of continuous F-valued functions on [a, b], F = C or R (p. 22)

C[a, b] set of continuous C-valued functions on [a, b] (p. 22)

null A null space of a matrix A (p. 23)

col A column space of a matrix A (p. 23)

Peven set of even complex polynomials (p. 23)

Podd set of odd complex polynomials (p. 23)

AU A acting on a subspace U (p. 23)

span S span of a subset S of a vector space (p. 24)

e all-ones vector (p. 26)

U ∩ W intersection of subspaces U and W (p. 26)

U + W sum of subspaces U and W (p. 27)

U ⊕ W direct sum of subspaces U and W (p. 27)

v1, v2, . . . , v̂j, . . . , vr list of vectors with vj omitted (p. 30)

e1, e2, . . . , en standard basis of Fn (p. 35)

Eij matrix with (i, j) entry 1 and all others 0 (p. 35)

dimV dimension of V (p. 35)

[v]β coordinate vector of v with respect to a basis β (p. 40)

L(V ,W) set of linear transformations from V to W (p. 41)

L(V) set of linear transformations from V to itself (p. 41)

ker T kernel of T (p. 42)

ran T range of T (p. 42)

I identity linear transformation (p. 44)

row A row space of a matrix A (p. 59)

rank A rank of a matrix A (p. 60)

⋆ unspecified matrix entry (p. 65)

A ⊕ B direct sum of matrices A and B (p. 66)

[A, B] commutator of A and B (p. 71)

A ⊗ B Kronecker product of matrices A and B (p. 74)

vec A vec of A (p. 75)

〈·, ·〉 inner product (p. 87)

⊥ orthogonal (p. 90)

‖ · ‖ norm (p. 90)

‖ · ‖2 Euclidean norm (p. 91)

‖ · ‖1 ℓ1 norm (absolute sum norm) (p. 97)

‖ · ‖∞ ℓ∞ norm (max norm) (p. 97)

γ [T]β matrix representation of T ∈ L(V ,W) with respect to bases β and

γ (p. 110)

Fn n × n Fourier matrix (p. 129)

U ⊥ orthogonal complement of a set U (p. 149)

PU orthogonal projection onto U (p. 155)
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Notation xix

d(v,U) distance from v to U (p. 160)

G(u1, u2, . . . , un) Gram matrix (p. 164)

g(u1, u2, . . . , un) Gram determinant (p. 164)

spec A spectrum of A (p. 183)

Eλ(A) eigenspace of A for eigenvalue λ (p. 186)

pA(·) characteristic polynomial of A (p. 201)

F ′ commutant of a set of matrices F (p. 213)

eA matrix exponential (p. 212)

mA(·) minimal polynomial of A (p. 229)

Cp companion matrix of the polynomial p (p. 230)

Jk(λ) k × k Jordan block with eigenvalue λ (p. 244)

Jk k × k nilpotent Jordan block (p. 245)

w1, w1, . . . , wq Weyr characteristic of a matrix (p. 252)

ρ(A) spectral radius of A (p. 260)

p(n) number of partitions of n (p. 271)


(A) defect from normality of A (p. 285)

A ◦ B Hadamard product of A and B (p. 319)

|A| modulus of A (p. 336)

σmax(A) maximum singular value (p. 348)

σmin(A) minimum singular value (p. 350)

σ1(A), σ2(A), . . . singular values of A (p. 350)

A† pseudoinverse of A (p. 356)

κ2(A) spectral condition number of A (p. 359)

Re z real part of the complex number z (p. 398)

Im z imaginary part of the complex number z (p. 398)

|z| modulus of the complex number z (p. 401)

arg z argument of the complex number z (p. 401)
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