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0 Preliminaries

In this chapter, we review some concepts from elementary linear algebra and discuss

mathematical induction. We document some facts about complex polynomials (including the

Fundamental Theorem of Algebra, the division algorithm, and Lagrange interpolation) and

introduce polynomial functions of a matrix.

0.1 Functions and Sets

Let X and Y be sets. The notation f : X → Y indicates that f is a function whose domain

is X and codomain is Y . That is, f assigns a definite value f (x) ∈ Y to each x ∈ X .

A function may assign the same value to two different elements in its domain, that is, x1 �= x2

and f (x1) = f (x2) is possible. But x1 = x2 and f (x1) �= f (x2) is not possible.

The range of f : X → Y is

ran f = {f (x) : x ∈ X } = {y ∈ Y : y = f (x) for some x ∈ X },

which is a subset of Y . A function f : X → Y is onto if ran f = Y , that is, if the range and

codomain of f are equal. A function f : X → Y is one to one if f (x1) = f (x2) implies that

x1 = x2. Equivalently, f is one to one if x1 �= x2 implies that f (x1) �= f (x2); see Figure 0.1.

We say that elements x1, x2, . . . , xk of a set are distinct if xi �= xj whenever i, j ∈ {1, 2, . . . , k}

and i �= j.

0.2 Scalars

We denote the real numbers by R and the complex numbers by C. Real or complex numbers

are called scalars. The only scalars that we consider are complex numbers, which we

sometimes restrict to being real. See Appendix A for a discussion of complex numbers.

0.3 Matrices

An m × n matrix is a rectangular array

A = [aij] =

⎡

⎢
⎢
⎢
⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎤

⎥
⎥
⎥
⎦

(0.3.1)
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Figure 0.1 Properties of functions: one to one and onto.

of real or complex numbers. The (i, j) entry of A is aij. Two matrices are equal if they have

the same size (the same number of rows and columns) and if their corresponding entries are

equal. An n × n matrix is a square matrix. The set of all m × n matrices with complex entries

is denoted by Mm×n(C), or by Mn(C) if m = n. For convenience, we write Mn(C) = Mn and

Mm×n(C) = Mm×n. The set of m × n matrices with real entries is denoted by Mm×n(R),

or by Mn(R) if m = n. In this book, we consider only matrices with real or complex

entries.

Rows and Columns For each i = 1, 2, . . . , m, the ith row of the matrix A in (0.3.1) is the

1 × n matrix

[ai1 ai2 . . . ain].

For each j = 1, 2, . . . , n, the jth column of A is the m × 1 matrix

aj =

⎡

⎢
⎢
⎢
⎣

a1j

a2j

...

amj

⎤

⎥
⎥
⎥
⎦

.

It is often convenient to write the matrix (0.3.1) as a 1 × n array of columns

A = [a1 a2 . . . an].

Addition and Scalar Multiplication If A = [aij] and B = [bij] are m × n matrices, then

A + B is the m × n matrix whose (i, j) entry is aij + bij. If A ∈ Mm×n and c is a scalar, then

cA = [caij] is the m × n matrix obtained by multiplying each entry of A by c. A zero matrix is

an m × n matrix whose entries are all zero. Such a matrix is denoted by 0, although subscripts

can be attached to indicate its size. Let A, B ∈ Mm×n and let c, d be scalars.

www.cambridge.org/9781107103818
www.cambridge.org


Cambridge University Press
978-1-107-10381-8 — A Second Course in Linear Algebra
Stephan Ramon Garcia , Roger A. Horn 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

0.3 Matrices 3

(a) A + B = B + A.

(b) A + (B + C) = (A + B) + C.

(c) A + 0 = A = 0 + A.

(d) c(A + B) = cA + cB.

(e) c(dA) = (cd)A = d(cA).

(f) (c + d)A = cA + dA.

Multiplication If A = [aij] ∈ Mm×r and B = [bij] ∈ Mr×n, then the (i, j) entry of the product

AB = [cij] ∈ Mm×n is

cij =

r
∑

k=1

aikbkj. (0.3.2)

This sum involves entries in the ith row of A and the jth column of B. The number of columns

of A must be equal to the number of rows of B. If we write B = [b1 b2 . . . bn] as a 1 × n

array of its columns, then (0.3.2) says that

AB = [Ab1 Ab2 . . . Abn].

See Chapter 3 for other interpretations of matrix multiplication.

We say that A, B ∈ Mn commute if AB = BA. Some pairs of matrices in Mn do not commute.

Moreover, AB = AC does not imply that B = C. Let A, B, and C be matrices of appropriate

sizes and let c be a scalar.

(a) A(BC) = (AB)C.

(b) A(B + C) = AB + AC.

(c) (A + B)C = AC + BC.

(d) (cA)B = c(AB) = A(cB).

Identity Matrices The matrix

In =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ Mn

is the n × n identity matrix. That is, In = [δij], in which

δij =

{

1 if i = j,

0 if i �= j,

is the Kronecker delta. If the size is clear from context, we write I in place of In. For every

A ∈ Mm×n,

AIn = A = ImA.
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4 Preliminaries

Triangular Matrices Let A = [aij] ∈ Mn. We say that A is upper triangular if aij = 0

whenever i > j; lower triangular if aij = 0 whenever i < j; strictly upper triangular if

aij = 0 whenever i ≥ j; and strictly lower triangular if aij = 0 whenever i ≤ j. We say that A

is triangular if it is either upper triangular or lower triangular.

Diagonal Matrices We say that A = [aij] ∈ Mn is diagonal if aij = 0 whenever i �= j.

That is, any nonzero entry of A must lie on the main diagonal of A, which consists of the

diagonal entries a11, a22, . . . , ann; the entries aij with i �= j are the off-diagonal entries of A.

The notation diag(λ1, λ2, . . . , λn) is used to denote the n × n diagonal matrix whose diagonal

entries are λ1, λ2, . . . , λn, in that order. A scalar matrix is a diagonal matrix of the form

diag(c, c, . . . , c) = cI for some scalar c. Any two diagonal matrices of the same size commute.

Superdiagonals and Subdiagonals The (first) superdiagonal of A = [aij] ∈ Mn contains

the entries a12, a23, . . . , an−1,n. The kth superdiagonal contains the entries a1,k+1, a2,k+2,

. . . , an−k,n. The kth subdiagonal contains the entries ak+1,1, ak+2,2, . . . , an,n−k.

Tridiagonal and Bidiagonal Matrices A matrix A = [aij] is tridiagonal if aij = 0 whenever

|i − j| ≥ 2. A tridiagonal matrix is bidiagonal if either its subdiagonal or its superdiagonal

contains only zero entries.

Submatrices A submatrix of A ∈ Mm×n is a matrix whose entries lie in the intersections of

specified rows and columns of A. A k×k principal submatrix of A is a submatrix whose entries

lie in the intersections of rows i1, i2, . . . , ik and columns i1, i2, . . . , ik of A, for some indices

i1 < i2 < · · · < ik. A k × k leading principal submatrix of A is a submatrix whose entries

lie in the intersections of rows 1, 2, . . . , k and columns 1, 2, . . . , k. A k × k trailing principal

submatrix of A is a submatrix whose entries lie in the intersections of rows n − k + 1, n − k +

2, . . . , n and columns n − k + 1, n − k + 2, . . . , n.

Inverses We say that A ∈ Mn is invertible if there exists a B ∈ Mn such that

AB = In = BA. (0.3.3)

Such a matrix B is an inverse of A. If A has no inverse, then A is noninvertible. Either of the

equalities in (0.3.3) implies the other. That is, if A, B ∈ Mn, then AB = I if and only if BA = I;

see Theorem 2.2.19 and Example 3.1.8.

Not every square matrix has an inverse. However, a matrix has at most one inverse. As a

consequence, if A is invertible, we speak of the inverse of A, rather than an inverse of A. If A

is invertible, then the inverse of A is denoted by A−1. It satisfies

AA−1 = I = A−1A.

If ad − bc �= 0, then
[

a b

c d

]−1

=
1

ad − bc

[

d −b

−c a

]

. (0.3.4)

For A ∈ Mn, define

A0 = I and Ak = AA · · · A
︸ ︷︷ ︸

k times

.
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0.3 Matrices 5

If A is invertible, we define A−k = (A−1)k for k = 1, 2, . . .. Let A and B be matrices of

appropriate sizes, let j, k be integers, and let c be a scalar.

(a) AjAk = Aj+k = AkAj.

(b) (A−1)−1 = A.

(c) (Aj)−1 = A−j.

(d) If c �= 0, then (cA)−1 = c−1A−1.

(e) (AB)−1 = B−1A−1.

Transpose The transpose of A = [aij] ∈ Mm×n is the matrix AT ∈ Mn×m whose (i, j) entry is

aji. Let A and B be matrices of appropriate sizes and let c be a scalar.

(a) (AT)T = A.

(b) (A ± B)T = AT ± BT.

(c) (cA)T = cAT.

(d) (AB)T = BTAT.

(e) If A is invertible, then (AT)−1 = (A−1)T. We write (A−1)T = A−T.

Conjugate The conjugate of A ∈ Mm×n is the matrix A ∈ Mm×n whose (i, j) entry is aij, the

complex conjugate of aij. Thus,

(A) = A, A + B = A + B, and AB = A B.

If A has only real entries, then A = A.

Conjugate Transpose The conjugate transpose of A ∈ Mm×n is the matrix A∗ = AT =

(A)T ∈ Mn×m whose (i, j) entry is aji. If A has only real entries, then A∗ = AT. The conjugate

transpose of a matrix is also known as its adjoint. Let A and B be matrices of appropriate sizes

and let c be a scalar.

(a) I∗
n = In.

(b) 0∗
m×n = 0n×m.

(c) (A∗)∗ = A.

(d) (A ± B)∗ = A∗ ± B∗.

(e) (cA)∗ = cA∗.

(f) (AB)∗ = B∗A∗.

(g) If A is invertible, then (A∗)−1 = (A−1)∗. We write (A−1)∗ = A−∗.

Special Types of Matrices Let A ∈ Mn.

(a) If A∗ = A, then A is Hermitian; if A∗ = −A, then A is skew Hermitian.

(b) If AT = A, then A is symmetric; if AT = −A, then A is skew symmetric.
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6 Preliminaries

(c) If A∗A = I, then A is unitary; if A is real and ATA = I, then A is real orthogonal.

(d) If A∗A = AA∗, then A is normal.

(e) If A2 = I, then A is an involution.

(f) If A2 = A, then A is idempotent.

(g) If Ak = 0 for some positive integer k, then A is nilpotent.

Trace The trace of A = [aij] ∈ Mn is the sum of the diagonal entries of A:

tr A =

n
∑

i=1

aii.

Let A and B be matrices of appropriate sizes and let c be a scalar.

(a) tr(cA ± B) = c tr A ± tr B.

(b) tr AT = tr A.

(c) tr A = tr A.

(d) tr A∗ = tr A.

If A = [aij] ∈ Mm×n and B = [bij] ∈ Mn×m, let AB = [cij] ∈ Mm and BA = [dij] ∈ Mn. Then

tr AB =

m
∑

i=1

cii =

m
∑

i=1

n
∑

j=1

aijbji =

n
∑

j=1

m
∑

i=1

bjiaij =

n
∑

j=1

djj = tr BA. (0.3.5)

Be careful: tr ABC need not equal tr CBA or tr ACB. However, (0.3.5) ensures that

tr ABC = tr CAB = tr BCA.

0.4 Systems of Linear Equations

An m × n system of linear equations (a linear system) is a list of linear equations of the form

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

...
...

...
...

. . .
...

...
...

...

am1x1 + am2x2 + · · · + amnxn = bm.

(0.4.1)

It involves m linear equations in the n variables (or unknowns) x1, x2, . . . , xn. The scalars aij

are the coefficients of the system (0.4.1); the scalars bi are the constant terms.

By a solution to (0.4.1) we mean a list of scalars x1, x2, . . . , xn that satisfy the m equations in

(0.4.1). A system of equations that has no solution is inconsistent. If a system has at least one

solution, it is consistent. There are exactly three possibilities for a system of linear equations:

it has no solution, exactly one solution, or infinitely many solutions.

Homogeneous Systems The system (0.4.1) is homogeneous if b1 = b2 = · · · = bm = 0.

Every homogeneous system has the trivial solution x1 = x2 = · · · xn = 0. If there are

other solutions, they are called nontrivial solutions. There are only two possibilities for a
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0.4 Systems of Linear Equations 7

homogeneous system: it has infinitely many solutions, or it has only the trivial solution.

A homogeneous linear system with more unknowns than equations has infinitely many

solutions.

Matrix Representation of a Linear System The linear system (0.4.1) is often written as

Ax = b, (0.4.2)

in which

A =

⎡

⎢
⎢
⎢
⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎤

⎥
⎥
⎥
⎦

, x =

⎡

⎢
⎢
⎢
⎣

x1

x2

...

xn

⎤

⎥
⎥
⎥
⎦

, and b =

⎡

⎢
⎢
⎢
⎣

b1

b2

...

bm

⎤

⎥
⎥
⎥
⎦

. (0.4.3)

The coefficient matrix A = [aij] ∈ Mm×n of the system has m rows and n columns if the

corresponding system of equations (0.4.1) has m equations in n unknowns. The matrices x

and b are n × 1 and m × 1, respectively. Matrices such as x and b are column vectors. We

sometimes denote Mn×1(C) by C
n and Mn×1(R) by R

n. When we need to identify the entries

of a column vector in a line of text, we often write x = [x1 x2 . . . xn]T instead of the tall

vertical matrix in (0.4.3).

An m × n homogeneous linear system can be written in the form Ax = 0m, in which

A ∈ Mm×n and 0m is the m × 1 column vector whose entries are all zero. We say that 0m is

a zero vector and write 0 if the size is clear from context. Since A0n = 0m, a homogeneous

system always has the trivial solution.

If A ∈ Mn is invertible, then (0.4.2) has the unique solution x = A−1b.

Reduced Row Echelon Form Three elementary operations can be used to solve a system

(0.4.1) of linear equations:

(I) Multiply an equation by a nonzero constant.

(II) Interchange two equations.

(III) Add a multiple of one equation to another.

One can represent the system (0.4.1) as an augmented matrix

[A b] =

⎡

⎢
⎢
⎢
⎣

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2

...
...

. . .
...

...

am1 am2 · · · amn bm

⎤

⎥
⎥
⎥
⎦

(0.4.4)

and perform elementary row operations on (0.4.4) that correspond to the three permissible

algebraic operations on the system (0.4.1):

(I) Multiply a row by a nonzero constant.

(II) Interchange two rows.

(III) Add a multiple of one row to another.

Each of these operations is reversible.
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8 Preliminaries

The three types of elementary row operations can be used to row reduce the augmented

matrix (0.4.4) to a simple form from which the solutions to (0.4.1) can be obtained by

inspection. A matrix is in reduced row echelon form if it satisfies the following:

(a) Rows that consist entirely of zero entries are grouped together at the bottom of the matrix.

(b) If a row does not consist entirely of zero entries, then the first nonzero entry in that row

is a one (a leading one).

(c) A leading one in a higher row must occur further to the left than a leading one in a

lower row.

(d) Every column that contains a leading one must have zero entries everywhere else.

Each matrix has a unique reduced row echelon form.

The number of leading ones in the reduced row echelon form of a matrix is equal to its

rank; see Definition 2.2.6. Other characterizations of the rank are discussed in Section 3.2.

It is always the case that rank A = rank AT; see Theorem 3.2.1.

Elementary Matrices An n × n matrix is an elementary matrix if it can be obtained from

In by performing a single elementary row operation. Every elementary matrix is invertible;

the inverse is the elementary matrix that corresponds to reversing the original row operation.

Multiplication of a matrix on the left by an elementary matrix performs an elementary row

operation on that matrix. Here are some examples:

(I) Multiply a row by a nonzero constant:
[

k 0

0 1

] [

a11 a12

a21 a22

]

=

[

ka11 ka12

a21 a22

]

.

(II) Interchange two rows:
[

0 1

1 0

] [

a11 a12

a21 a22

]

=

[

a21 a22

a11 a12

]

.

(III) Add a nonzero multiple of one row to another:

[

1 k

0 1

] [

a11 a12

a21 a22

]

=

[

a11 + ka21 a12 + ka22

a21 a22

]

.

Multiplication of a matrix on the right by an elementary matrix corresponds to performing

column operations. An invertible matrix can be expressed as a product of elementary

matrices.

0.5 Determinants

The determinant function det :Mn(C)→C is of great theoretical importance, but of limited

numerical use. Computation of determinants of large matrices should be avoided in

applications.

www.cambridge.org/9781107103818
www.cambridge.org


Cambridge University Press
978-1-107-10381-8 — A Second Course in Linear Algebra
Stephan Ramon Garcia , Roger A. Horn 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

0.5 Determinants 9

Laplace Expansion We can compute the determinant of an n × n matrix as a certain sum of

determinants of (n − 1) × (n − 1) matrices. Let det[a11] = a11, let n ≥ 2, let A ∈ Mn, and let

Aij ∈ Mn−1 denote the (n − 1) × (n − 1) matrix obtained by deleting row i and column j of A.

Then for any i, j ∈ {1, 2, . . . , n}, we have

det A =

n
∑

k=1

(−1)i+kaik det Aik =

n
∑

k=1

(−1)k+jakj det Akj. (0.5.1)

The first sum is the Laplace expansion by minors along row i and the second is the Laplace

expansion by minors along column j. The quantity det Aij is the (i, j) minor of A; (−1)i+j det Aij

is the (i, j) cofactor of A.

Using Laplace expansions, we compute

det

[

a11 a12

a21 a22

]

= a11 det[a22] − a12 det[a21]

= a11a22 − a12a21

and

det

⎡

⎢
⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎥
⎦ = a11 det

[
a22 a23

a32 a33

]

− a12 det

[
a21 a23

a31 a33

]

+ a13 det

[
a21 a22

a31 a32

]

= a11a22a33 + a12a23a31 + a13a32a21

− a11a23a32 − a22a13a31 − a33a12a21.

Following the same rule, the determinant of a 4 × 4 matrix can be written as a sum of four

terms, each involving the determinant of a 3 × 3 matrix.

Determinants and the Inverse If A ∈ Mn, the adjugate of A is the n × n matrix

adj A = [(−1)i+j det Aji],

which is the transpose of the matrix of cofactors of A. The matrices A and adj A satisfy

A adj A = (adj A)A = (det A)I. (0.5.2)

If A is invertible, then

A−1 = (det A)−1 adj A. (0.5.3)

Properties of Determinants Let A, B ∈ Mn and let c be a scalar.

(a) det I = 1.

(b) det A �= 0 if and only if A is invertible.

(c) det AB = (det A)(det B).

(d) det AB = det BA.

(e) det(cA) = cn det A.

(f) det A = det A.
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10 Preliminaries

(g) det AT = det A.

(h) det A∗ = det A.

(i) If A is invertible, then det(A−1) = (det A)−1.

(j) If A = [aij] ∈ Mn is upper or lower triangular, then det A = a11a22 · · · ann.

(k) det A ∈ R if A ∈ Mn(R).

Be careful: det(A + B) need not equal det A + det B. Property (c) is the product rule for

determinants.

Determinants and Row Reduction The determinant of an n × n matrix A can be computed

with row reduction and the following properties:

(I) If A′ is obtained by multiplying each entry of a row of A by a scalar c, then det A′ =

c det A.

(II) If A′ is obtained by interchanging two different rows of A, then det A′ = − det A.

(III) If A′ is obtained from A by adding a scalar multiple of a row to a different row, then

det A′ = det A.

Because det A = det AT, column operations have analogous properties.

Permutations and Determinants A permutation of the list 1, 2, . . . , n is a one-to-one

function σ : {1, 2, . . . , n} → {1, 2, . . . , n}. A permutation induces a reordering of 1, 2, . . . , n.

For example, σ(1) = 2, σ(2) = 1, and σ(3) = 3 defines a permutation of 1, 2, 3. There are n!

distinct permutations of the list 1, 2, . . . , n.

A permutation τ : {1, 2, . . . , n} → {1, 2, . . . , n} that interchanges precisely two elements of

1, 2, . . . , n and leaves all others fixed is a transposition. Each permutation of 1, 2, . . . , n can

be written as a composition of transpositions in many different ways. However, the parity

(even or odd) of the number of transpositions involved depends only upon the permutation.

We say that a permutation σ is even or odd depending upon whether an even or odd number

of transpositions is required to represent σ . The sign of σ is

sgn σ =

{

1 if σ is even,

−1 if σ is odd.

The determinant of A = [aij] ∈ Mn can be written

det A =
∑

σ

(

sgn σ

n
∏

i=1

aiσ(i)

)

,

in which the sum is over all n! permutations of 1, 2, . . . , n.

Determinants, Area, and Volume If A = [a1 a2] ∈ M2(R), then | det A| is the area of the

parallelogram determined by a1 and a2 (its vertices are at 0, a1, a2, and a1 + a2). If B =

[b1 b2 b3] ∈ M3(R), then | det B| is the volume of the parallelopiped determined by b1, b2,

and b3.
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