CAMBRIDGE MONOGRAPHS ON APPLIED AND COMPUTATIONAL MATHEMATICS

Series Editors

M. ABLOWITZ, S. DAVIS, J. HINCH, A. ISERLES, J. OCKENDON, P. OLVER

28 Multiscale Methods for Fredholm Integral Equations

The *Cambridge Monographs on Applied and Computational Mathematics* series reflects the crucial role of mathematical and computational techniques in contemporary science. The series publishes expositions on all aspects of applicable and numerical mathematics, with an emphasis on new developments in this fast-moving area of research.

State-of-the-art methods and algorithms as well as modern mathematical descriptions of physical and mechanical ideas are presented in a manner suited to graduate research students and professionals alike. Sound pedagogical presentation is a prerequisite. It is intended that books in the series will serve to inform a new generation of researchers.

A complete list of books in the series can be found at www.cambridge.org/mathematics. Recent titles include the following:

- 14. Simulating Hamiltonian dynamics, Benedict Leimkuhler & Sebastian Reich
- 15. Collocation methods for Volterra integral and related functional differential equations, *Hermann Brunner*
- 16. Topology for computing, Afra J. Zomorodian
- 17. Scattered data approximation, Holger Wendland
- 18. Modern computer arithmetic, Richard Brent & Paul Zimmermann
- 19. Matrix preconditioning techniques and applications, Ke Chen
- 20. Greedy approximation, Vladimir Temlyakov
- 21. Spectral methods for time-dependent problems, *Jan Hesthaven, Sigal Gottlieb & David Gottlieb*
- 22. The mathematical foundations of mixing, *Rob Sturman, Julio M. Ottino & Stephen Wiggins*
- 23. Curve and surface reconstruction, Tamal K. Dey
- 24. Learning theory, Felipe Cucker & Ding Xuan Zhou
- 25. Algebraic geometry and statistical learning theory, *Sumio Watanabe*
- 26. A practical guide to the invariant calculus, Elizabeth Louise Mansfield
- 27. Difference equations by differential equation methods, Peter E. Hydon
- 28. Multiscale methods for Fredholm integral equations, *Zhongying Chen, Charles A. Micchelli & Yuesheng Xu*
- 29. Partial differential equation methods for image inpainting, *Carola-Bibiane Schönlieb*

Multiscale Methods for Fredholm Integral Equations

ZHONGYING CHEN Sun Yat-Sen University, Guangzhou, China

CHARLES A. MICCHELLI State University of New York, Albany

YUESHENG XU Sun Yat-Sen University, Guangzhou, China

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781107103474

© Zhongying Chen, Charles A. Micchelli and Yuesheng Xu 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Chen, Zhongying, 1946-

Multiscale methods for Fredholm integral equations / Zhongying Chen, Sun Yat-Sen University, Guangzhou, China, Charles A. Micchelli, State University of New York,

Albany, Yuesheng Xu, Sun Yat-Sen University, Guangzhou, China.

pages cm. – (The Cambridge monographs on applied and computational

mathematics series)

Includes bibliographical references and index.

ISBN 978-1-107-10347-4 (Hardback)

1. Fredholm equations. 2. Integral equations. I. Micchelli, Charles A.

II. Xu, Yuesheng. III. Title.

QA431.C4634 2015

515'.45-dc23 2014050239

ISBN 978-1-107-10347-4 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface		<i>page</i> ix
	List	of symbols	xi
Inti	oduct	ion	1
1	A re	eview of the Fredholm approach	5
	1.1	Introduction	5
	1.2	Second-kind matrix Fredholm equations	7
	1.3	Fredholm functions	11
	1.4	Resolvent kernels	17
	1.5	Fredholm determinants	20
	1.6	Eigenvalue estimates and a trace formula	24
	1.7	Bibliographical remarks	31
2	Free	dholm equations and projection theory	32
	2.1	Fredholm integral equations	32
	2.2	General theory of projection methods	53
	2.3	Bibliographical remarks	78
3	Conventional numerical methods		80
	3.1	Degenerate kernel methods	80
	3.2	Quadrature methods	86
	3.3	Galerkin methods	94
	3.4	Collocation methods	105
	3.5	Petrov-Galerkin methods	112
	3.6	Bibliographical remarks	142
4	Mul	tiscale basis functions	144
	4.1	Multiscale functions on the unit interval	145
	4.2	Multiscale partitions	153

vi	Contents		
	4.3	Multiscale orthogonal bases	166
	4.4	Refinable sets and set wavelets	169
	4.5	Multiscale interpolating bases	184
	4.6	Bibliographical remarks	197
5	Mult	tiscale Galerkin methods	199
	5.1	The multiscale Galerkin method	200
	5.2	The fast multiscale Galerkin method	205
	5.3	Theoretical analysis	209
	5.4	Bibliographical remarks	221
6	Mult	tiscale Petrov–Galerkin methods	223
	6.1	Fast multiscale Petrov–Galerkin methods	223
	6.2	Discrete multiscale Petrov-Galerkin methods	231
	6.3	Bibliographical remarks	263
7	Mult	tiscale collocation methods	265
	7.1	Multiscale basis functions and collocation functionals	266
	7.2	Multiscale collocation methods	281
	7.3	Analysis of the truncation scheme	288
	7.4	Bibliographical remarks	298
8	Num	erical integrations and error control	300
	8.1	Discrete systems of the multiscale collocation method	300
	8.2	Quadrature rules with polynomial order of accuracy	302
	8.3	Quadrature rules with exponential order of accuracy	314
	8.4	Numerical experiments	318
	8.5	Bibliographical remarks	321
9	Fast	solvers for discrete systems	322
	9.1	Multilevel augmentation methods	322
	9.2	Multilevel iteration methods	347
	9.3	Bibliographical remarks	354
10	Mult	tiscale methods for nonlinear integral equations	356
	10.1	Critical issues in solving nonlinear equations	356
	10.2	Multiscale methods for the Hammerstein equation	359
	10.3	Multiscale methods for nonlinear boundary	
		integral equations	377
	10.4	Numerical experiments	402
	10.5	Bibliographical remarks	413

	Contents	vii
11 Mu	ltiscale methods for ill-posed integral equations	416
11.	1 Numerical solutions of regularization problems	416
11.	2 Multiscale Galerkin methods via the Lavrentiev	420
11	3 Multiscale collocation methods via the Tikhonov	420
11.	regularization	438
11.	4 Numerical experiments	456
11.	5 Bibliographical remarks	463
12 Eig	en-problems of weakly singular integral operators	465
12.	1 Introduction	465
12.	2 An abstract framework	466
12.	3 A multiscale collocation method	474
12.	4 Analysis of the fast algorithm	478
12.	5 A power iteration algorithm	483
12.	6 A numerical example	484
12.	7 Bibliographical remarks	487
Appendi	x Basic results from functional analysis	488
A.1	Metric spaces	488
A.2	Linear operator theory	494
A.3	Invariant sets	502
Ref	erences	519
Ind	ex	534

Preface

Fredholm equations arise in many areas of science and engineering. Consequently, they occupy a central topic in applied mathematics. Traditional numerical methods developed during the period prior to the mid-1980s include mainly quadrature, collocation and Galerkin methods. Unfortunately, all of these approaches suffer from the fact that the resulting discretization matrices are dense. That is, they have a large number of nonzero entries. This bottleneck leads to significant computational costs for the solution of the corresponding integral equations.

The recent appearance of wavelets as a new computational tool in applied mathematics has given a new direction to the area of the numerical solution of Fredholm integral equations. Shortly after their introduction it was discovered that using a wavelet basis for a singular integral equation led to numerically sparse matrix discretization. This observation, combined with a truncation strategy, then led to a fast numerical solution of this class of integral equations.

Approximately 20 years ago the authors of this book began a systematic study of the construction of wavelet bases suitable for solving Fredholm integral equations and explored their usefulness for developing fast multiscale Galerkin, Petrov–Galerkin and collocation methods. The purpose of this book is to provide a self-contained account of these ideas as well as some traditional material on Fredholm equations to make this book accessible to as large an audience as possible.

The goal of this book is twofold. It can be used as a reference text for practitioners who need to solve integral equations numerically and wish to use the new techniques presented here. At the same time, portions of this book can be used as a modern text treating the subject of the numerical solution of integral equations, which is suitable for upper-level undergraduate students as well as graduate students. Specifically, the first five chapters of this book are designed for a one-semester course, which provides students with a Х

Preface

solid background in integral equations and fast multiscale methods for their numerical solutions.

An early version of this book was used in a summer school on applied mathematics sponsored by the Ministry of Education of the People's Republic of China. Subsequently, the authors used revised versions of this book for courses on integral equations at our respective institutions. These teaching experiences led us to make many changes in presentation, resulting from our interactions with our many students.

We are indebted to our many colleagues, who gave freely of their time and advice concerning the material in this book, and whose expertise on the subject of the numerical solution of Fredholm equations, collectively, far exceeds ours. We mention here that a preliminary version of the book was provided to Kendall Atkinson, Uday Banerjee, Hermann Brunner, Yanzhao Cao, Wolfgang Dahmen, Leslie Greengard, Weimin Han, Geroge Hsiao, Hideaki Kaneko, Rainer Kress, Wayne Lawton, Qun Lin, Paul Martin, Richard Noren, Sergei Pereverzyev, Reinhold Schneider, Johannes Tausch, Ezio Venturino and Aihui Zhou. We are grateful to them all for their constructive comments which improved our presentation.

Our special thanks go to Kendall Atkinson for his encouragement and support in writing this book. We would also like to thank our colleagues at Sun Yat-Sen University, including Bin Wu, Sirui Cheng, Xianglin Chen as well as the graduate student Jieyang Chen for their assistance in preparing this book.

Finally, we are deeply indebted to our families for their understanding, patience and continued support throughout our efforts to complete this project.

Symbols

a.e.	almost everywhere; §1.1
\mathcal{A}^*	adjoint operator of A ; §2.1.1
A[i, j]	minor of matrix A with lattice vectors i and j ; §1.2
$\mathcal{B}(\mathbb{X},\mathbb{Y})$	normed linear space of all bounded linear operators from
	X into Y; §2.1.1
\mathbb{C}	set of complex numbers; §1.1
C(D)	linear space of all real-valued continuous functions on D; §2.1
$C^m(D)$	linear space of all real-valued <i>m</i> -times continuously
	differentiable functions on D ; §2.1
$C^{\infty}(D)$	linear space of all real-valued infinitely differentiable functions
	on <i>D</i> ; §2.1
$C_0(D)$	subspace of $C(\overline{D})$ consisting of functions with support contained
	inside D; §A.1
$C_0^{\infty}(D)$	subspace of $C^{\infty}(\overline{D})$ consisting of functions with support
	contained inside D and bounded; §A.1
$c_{\sigma}(D)$	positive constant defined in §2.1.2
card T	cardinality of <i>T</i> ; §2.2.2
$\operatorname{cond}(\mathcal{A})$	condition number of A ; §2.2.3
$D(\lambda)$	complex-valued function at λ defined by (1.18)
det(A)	determinant of matrix A; §1.2
$diag(\cdot)$	diagonal matrix; §1.2
diam(S)	diameter of set S; §1.1
$H^m(D)$	Sobolev space; §A.1
$H_0^m(D)$	Sobolev space; §A.1
$L^p(D)$	linear space of all real-valued <i>p</i> th power integrable functions
	$(1 \le p < \infty);$ §2.1

List of symbols

xii	List of symbols
$L^{\infty}(D)$	linear space of all real-valued essentially bounded measurable
	functions; §2.1
m(D)	positive constant defined in §2.1.2
\mathbb{N}	set of positive integers $\{1, 2, 3, \ldots\}$; $\S1.1$
\mathbb{N}_0	set of integers $\{0, 1, 2,\}; $
\mathbb{N}_n	set of positive integers $\{1, 2,, n\}$ for $n \in \mathbb{N}$; §1.1
$P_{\mathbf{A}}$	characteristic polynomial of matrix A; §1.2
\mathbb{R}	set of real numbers; §1.1
\mathbb{R}^{d}	d-dimensional Euclidean space; §1.1
Re f	real part of f ; §1.6
$r_q(\mathbf{A})$	minor equation of A ; (1.4)
R_{λ}	resolvent kernel; §1.4
rank A	rank of matrix A; §3.3.5
s(n)	dimension of space X_n ; §3.3
span S	span of set <i>S</i> ; §3.3.1
\mathbb{U}	index set $\{(i,j) : i \in \mathbb{N}_0, j \in \mathbb{Z}_{w(i)}\}; $ §4.1
\mathbb{U}_n	index set $\{(i,j) : i \in \mathbb{Z}_{n+1}, j \in \mathbb{Z}_{w(i)}\}; $ §4.5.1
vol(S)	volume of set <i>S</i> ; §1.1
$W^{m,p}_{m,p}(D)$	Sobolev space; §A.1
$W_0^{m,p}(D)$	Sobolev space; §A.1
w(n)	dimension of space W_n ; §4.1
\mathbb{Z}	set of integers $\{0, \pm 1, \pm 2,\}; $ $\{1.1$
\mathbb{Z}_n	set of integers $\{0, 1, 2,, n-1\}$ for $n \in \mathbb{N}$; $\{1.1\}$
$\Gamma(\cdot)$	gamma function; §2.1.2
∇	gradient operator; §2.1.3
Δ	Laplace operator; §2.1.3
$\rho(\mathcal{T})$	resolvent set of operator \mathcal{T} ; §11.2
$\sigma(\mathcal{T})$	spectrum of operator \mathcal{T} ; §11.2
ω_{d-1}	surface area of unit sphere in \mathbb{R}^d ; §2.1.3
$\omega(K,h)$	modules of continuity of K ; §1.3
!	factorial; for example (1.4)
\bigcup^{\perp}	union of orthogonal sets; §4.1
\oplus	direct sum of spaces; §4.1
\otimes	tensor product (direct product); §1.3
0	functional composition; §3.3.1
$ \alpha $	sum of components of lattice vector α ; §2.1
s-t	Euclidean distance between s and t ; §2.1.2

List of symbols

$\ \mathcal{A}\ $	norm of operator A ; §2.1.1
$\ \cdot\ _{m,\infty}$	norm of $C^m(\overline{D})$; §2.1
$\ \cdot\ _p,$	norm of $L^{p}(D)$ $(1 \le P \le \infty)$; §2.1
(\cdot, \cdot)	inner product; §2.1
$\langle \cdot, \cdot \rangle$	value of a linear functional at a function; §2.1.1
\sim	same order; §5.1.1
\xrightarrow{s}	pointwise converge; §2.1.1
\xrightarrow{u}	uniformly converge; §2.1.1

xiii