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PRELIMINARIES

The invention of coordinates by Pierre de Fermat (1601–1665) and

René Descartes (1596–1650) united what had been seen as the sep-

arate realms of geometry and algebra. Still deeper connections were

revealed by the subsequent development of new kinds of geometry

and the systematization of algebra. Before we proceed to examine

some of those connections, it will be useful to set down a few basic

facts about the geometries and algebraic systems themselves.

A. Euclidean and other geometries. Euclid’s Elements deals with

relations among points, lines, and planes and properties of geometric

figures such as triangles, circles, and spheres. Among the fundamen-

tal concepts of Euclidean plane geometry are collinearity, congruence,

perpendicularity, and parallelism. A rigorous treatment also involves

order and continuity—relations not explicitly dealt with in the Ele-

ments. By omitting or modifying some of these concepts, a variety

of other geometries can be constructed: the real affine and projec-

tive planes, the real inversive sphere, and the so-called non-Euclidean

geometries. Like Euclidean geometry, all of these alternative systems

have extensions to higher-dimensional spaces.

Any two points in the Euclidean plane E2 are joined by a unique

line, and lines are of infinite extent. Distances and areas can be

measured with the aid of an arbitrarily chosen unit of length. Right

angles provide a standard for angular measure. The Euclidean parallel
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2 Preliminaries

postulate is equivalent to the assertion that through any point not on

a given line there can be drawn just one line that does not intersect

it. (The other postulates imply the existence of at least one such line.)

From these assumptions it follows that the sum of the interior angles

of every triangle is equal to two right angles, and that (the area of) the

square on the hypotenuse of a right triangle is equal to the sum of (the

areas of) the squares on the other two sides.

The real affine plane A2 is the Euclidean plane without perpen-

dicularity. There is no way to measure angles, and distances can be

compared only for points on a line or on parallel lines. Nevertheless,

areas can still be determined. Up to size, all triangles are equivalent,

as are all parallelograms; there is no such thing as a right triangle or

a square. Conics can be distinguished only as ellipses, parabolas, and

hyperbolas—there are no circles.

By adopting the convention that all the affine lines parallel in a

given direction meet in a unique “point at infinity” and that all such

points lie on a single “line at infinity,” we eliminate parallelism. When

we admit the new points and the new line into the fold with the same

rights and privileges as all the others, we have the real projective plane

P2. Incidences now exhibit a “principle of duality”: any two points are

joined by a unique line, and any two lines meet in a unique point.

Angular measure, distance, and area are all undefined. Not only all

triangles but all quadrilaterals are alike, and there is only one kind of

nondegenerate conic. Congruence, perpendicularity, and parallelism

have all disappeared; only the notion of collinearity remains.

Alternatively, the Euclidean plane can be given the topology of

a sphere by adjoining a single “exceptional point” common to all

lines. A line may then be regarded as a kind of circle. Extended

lines and ordinary circles together form a set of “inversive circles”

on the real inversive sphere I2. Any three points lie on a unique inver-

sive circle; points lying on the same circle are concyclic. Two circles

may meet in two, one, or no real points. The distance between two

points cannot be measured, but the angle between two intersecting
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Preliminaries 3

circles can be. Thus collinearity has been replaced by concyclicity, and

perpendicularity is still meaningful, but congruence and parallelism

have been eliminated.

Though long suspected of being a theorem in disguise, the par-

allel postulate was eventually shown to be independent of the other

assumptions governing the Euclidean plane. Replacing it with the con-

trary hypothesis—that through any point not on a given line there is

more than one line not intersecting it—we obtain the hyperbolic plane

of Bolyai and Lobachevsky. Moreover, if we do not assume that lines

are of infinite length, we can construct a metrical geometry in which

there are no nonintersecting lines: in the elliptic plane (the projective

plane with a metric), any two lines meet in a point.

On the elliptic sphere (or simply “the sphere”), points come in

antipodal pairs, and the role of lines is played by great circles; any

two nonantipodal points lie on a unique great circle, and any two

great circles meet in a pair of antipodal points. When antipodal points

are identified, great circles of the elliptic sphere become lines of

the elliptic plane (the two geometries are sometimes distinguished

as “double elliptic” and “single elliptic” planes). Another possibility

is the hyperbolic sphere, comprising two antipodal hemispheres sep-

arated by an “equatorial circle” of self-antipodal points. Two great

circles either meet in a pair of antipodal points, are tangent at an equa-

torial point, or do not meet. Identification of antipodal points converts

great circles of the hyperbolic sphere into lines of the hyperbolic

plane.

The hyperbolic and elliptic planes and the elliptic sphere constitute

the classical non-Euclidean geometries. Along with the hyperbolic

sphere, they share with the Euclidean plane the notions of collinear-

ity (or concyclicity), congruence, and perpendicularity. One notable

difference is that the sum of the interior angles of a non-Euclidean tri-

angle depends on its area, being proportionally greater than two right

angles for an elliptic (spherical) triangle or proportionally less for a

hyperbolic one.
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4 Preliminaries

Other properties of Euclidean and non-Euclidean geometries

(“real metric spaces”) and how they are related to real affine, pro-

jective, or inversive geometry will be described in greater detail

beginning in Chapter 1. Although each geometry can be based on a

selected set of postulates, a more instructive approach characterizes

geometries by their transformation groups.

B. Algebraic systems. A group is a nonempty set G and a binary

operation G × G → G, with (a, b) �→ ab, satisfying the associative

law (ab)c = a(bc), having an identity element, and with each element

having a unique inverse. The group operation is commonly taken as

multiplication, with the identity element denoted by 1 and the inverse

of a by a−1. The commutative law ab = ba may or may not hold; when

it does, the group is said to be abelian. Additive notation is sometimes

used for abelian groups, with the identity denoted by 0 and the inverse

of a by −a. The number of elements in a group G is its order |G|.

A subset of a group G that is itself a group with the same operation

is a subgroup. For each element a of a (multiplicative) group G, the

set of all distinct integral powers of a forms an abelian subgroup 〈a〉;

the order of 〈a〉 is the period of a. The center Z(G) is the subgroup of

elements that commute with every element of G.

A subgroup H of a group G is said to be normal (or “self-

conjugate”) if for any element h ∈ H its conjugate ghg−1 by any

element g ∈ G is in H, i.e., if gHg−1 ⊆ H for all g ∈ G; we write this

as H � G. If H is a normal subgroup of G, then for every g ∈ G, the

left coset gH = {gh : h ∈ H} is the same as the right coset Hg = {hg :

h ∈ H}, and the set G/H of all such cosets is a group—the quotient

group (or “factor group”) of G by H—with (g1H)(g2H) = (g1g2)H.

The number |G : H| of cosets is the index of H in G. The center Z(G)

of any group G is always normal, and G/Z(G) is the central quotient

group.

If a and b are two elements of a group G, the element a−1b−1ab

is their commutator; this differs from the identity precisely when
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Preliminaries 5

ab 	= ba. The set of commutators generates a normal subgroup of G,

the commutator subgroup (or “derived group”) G′. The abelian group

G/G′ is the commutator quotient group.

If H and K are subgroups of a (multiplicative) group G having only

the identity element 1 in common, if every element g ∈ G is the prod-

uct of some h ∈ H and some k ∈ K, and if hk = kh for every h ∈ H

and every k ∈ K, then G is the direct product of H and K, and we write

G = H × K. Necessarily both H and K are normal subgroups of G.

A group G may be presented in terms of a subset S of generators,

and we write G = 〈S〉, if every element of G can be expressed as a

product of (positive or negative) powers of elements of S. The gener-

ators satisfy certain relations, and G is the largest group for which the

specified relations (but no others independent of them) hold. Thus the

cyclic group Cp, of order p, is the group generated by a single element

a satisfying the relation ap = 1, while the dihedral group Dp, of order

2p, is generated by elements a and b satisfying the relations a2 = b2 =

(ab)p = 1. For p ≥ 3, these are, respectively, the rotation group and

the full symmetry group (including reflections) of a regular p-gon.

A transformation is a permutation of the elements of an arbitrary

set—e.g., some or all of the points of a space—or a mapping of one set

into another. All the permutations of a given set S form the symmetric

group Sym(S), any subgroup of which is a transformation group acting

on S. A permutation of a finite set is even or odd according as it can be

expressed as the product of an even or an odd number of transposi-

tions interchanging two elements. The symmetric group on a set with

n elements is denoted by Sn and has order n!. For n ≥ 2, the even per-

mutations constitute a subgroup of index 2 in Sn, the alternating group

An, of order ½n!.

When the points of a geometry are assigned suitable coordinates,

each transformation preserving the fundamental properties of the

geometry is represented by a particular type of invertible matrix,

and groups of transformations correspond to multiplicative groups of

matrices. Coordinates and matrix entries may be real numbers, or they
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6 Preliminaries

may belong to more general number systems, e.g., rings. If we define

a semigroup as a nonempty set with an associative binary operation

but possibly lacking an identity element or inverses, then a ring R is a

set whose elements form both an additive abelian group and a multi-

plicative semigroup, satisfying the distributive laws a(b + c) = ab + ac

and (a + b)c = ac + bc. The additive identity of R is its zero, and the

multiplicative identity (if any) is its unity. The trivial ring 0 has only

one element.

A ring in which multiplication is commutative is a commutative

ring. An integral domain is a nontrivial commutative ring with unity

without zero divisors, i.e., such that ab = 0 implies that either a = 0

or b = 0. An integral domain in which every element a 	= 0 has an

inverse a−1, so that the nonzero elements form a multiplicative group,

is a field. Among the systems of interest are the integral domain Z

of integers and the fields Q, R, and C of rational, real, and complex

numbers. For each prime or prime power q there is a finite field Fq

with q elements; such systems, also called Galois fields and denoted

GF(q), were first investigated by Évariste Galois (1811–1832).

A ring R is ordered if it has a nonempty subset R
+ of positive ele-

ments, closed under both ring operations, such that for each element

a in R just one of three cases holds: a ∈ R
+, a = 0, or −a ∈ R

+; in

the last case, a is said to be negative. Then a < b if and only if b − a is

positive. The ring Z and the fields Q and R are ordered, but the field

C is not. (Either i or −i would have to be positive, but their squares

both equal the negative number −1.) No finite ring can be ordered.

The real field R, which has additional properties of continuity, is a

complete ordered field.

A transformation T mapping the elements of a group, ring, or

other algebraic system U to a similar system V, written T : U → V,

is a homomorphism if it preserves the system operation(s), carry-

ing sums or products in the domain U into sums or products in the

codomain V. The kernel Ker T is the set of elements in U that are

mapped into the identity element of V (the zero element in the case
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of a ring homomorphism). The image (or “range”) Img T is the set of

elements in V to which elements of U are mapped. When the systems

are groups, Ker T is a normal subgroup of U and Img T is a subgroup

of V.

The mapping T : U → V is a monomorphism or “one-to-one”

transformation if Ker T contains only the identity element of U; it

is an epimorphism or “onto” transformation if Img T is the entirety

of V. A homomorphism taking U to V that is both one to one and

onto has an inverse taking V to U that is also a homomorphism. Such

a mapping is called an isomorphism (we write U ∼= V) or, if U and

V are the same system, an automorphism. If a is a fixed element of

a group G, the mapping x �→ axa−1 (“conjugation by a”) is an inner

automorphism of G.

When transformations of geometric points are expressed as alge-

braic homomorphisms, successive operations are normally carried out

from left to right, as in the diagram

U
T1

−→ V
T2

−→ W

The product (T1 followed by T2) of the homomorphisms T1 : U → V

and T2 : V → W is then the homomorphism T1T2 : U → W, with

x(T1T2) defined as (xT1)T2.∗ Multiplication of homomorphisms is

always associative: (T1T2)T3 = T1(T2T3). Any algebraic system has at

least the identity automorphism x �→ x, and every automorphism has

an inverse. Thus the set of all automorphisms of an algebraic system

forms a group.

C. Linear algebra. Of primary importance in our study of geome-

tries and transformations are vector spaces, additive abelian groups

∗ Homomorphisms may be distinguished from ordinary functions, which typically
precede their arguments and so are normally composed from right to left. Besides
allowing them to be carried out in the order they are written, left-to-right com-
position of point mappings is compatible with transformations of dual systems
(e.g., left and right vector spaces) as well as systems in which multiplication is
noncommutative.
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8 Preliminaries

whose elements (“vectors”) can be multiplied by the elements of a

field (“scalars”). The set of vectors is closed under such “scalar mul-

tiplication”; i.e., if V is a (left) vector space over a field F, then for

all scalars λ in F and all vectors x in V , λx is also in V . Scalar

multiplication also has the properties

λ(x + y) = λx + λy, (κ + λ)x = κx + λx, (κλ)x = κ(λx), 1x = x.

For each positive integer n, the canonical vector space F
n comprises

all lists (x1, . . . , xn) of n elements of F (the “entries” of the list), with

element-by-element addition and scalar multiplication. The vector

space F
1 is the field F itself.

Given an ordered set [x1, . . . , xk] of vectors in a vector space V , for

any ordered set of scalars (λ1, . . . , λk) the vector λ1x1 + · · · + λkxk is

a linear combination of the vectors. If S is a subset of V and if every

vector x in V can be expressed as a linear combination of vectors in S,

the set S spans V . If a linear combination of distinct vectors xi in a set

S is the zero vector only when all the scalar coefficients λi are zero, the

vectors in S are linearly independent. If the vectors in an ordered set S

spanning a vector space V are linearly independent, S is a basis for V ,

and the expression for each x in V is unique. Every vector space has

a basis, and the number of basis vectors, called the dimension of the

vector space, is the same for any basis. (The empty set is a basis for the

zero-dimensional vector space 0.)

A vector-space homomorphism, preserving vector sums and scalar

multiples, is a linear transformation. (When scalars are written on the

left, linear transformations go on the right, and vice versa.) If V is a

vector space over F, a linear transformation V → F is a linear form on

V . In our treatment, coordinates of points and hyperplanes function as

row and column vectors, and geometric operations—expressed alge-

braically as linear transformations of coordinates—are represented

by matrices. Basic geometric properties, such as distances and angles,

are defined by means of bilinear forms, functions V × V → F that

map pairs of vectors into scalars, preserving linear combinations. The
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relevant theory of finite-dimensional vector spaces will be developed

beginning in Chapter 4.

Many algebraic systems can be dualized. In particular, correspond-

ing to each linear form on a given vector space V is a covector of the

dual vector space V̌ . The annihilator of a vector x ∈ V is the set of

covectors ǔ ∈ V̌ for which the corresponding linear form maps x to 0.

If V is a left vector space, its dual V̌ is a right vector space, and vice

versa. If the elements of V are rows, the elements of V̌ are columns.

When V is finite-dimensional, the dual of V̌ is isomorphic to V , so

that V and V̌ are mutually dual vector spaces.

If V is an n-dimensional vector space over a field F, we may

express the fact that a covector ǔ ∈ V̌ belongs to the annihilator of

a vector x ∈ V (and vice versa) by writing x ♦ ǔ. A one-to-one linear

cotransformation V → V̌ mapping each vector x to a covector x̌ is

a polarity provided that x ♦ y̌ whenever y ♦ x̌, and vectors x and y are

said to be conjugate in the polarity. These concepts can be extended

to the (n − 1)-dimensional projective space PV whose “points” are

one-dimensional subspaces 〈x〉 spanned by nonzero vectors x ∈ V .

A module has the structure of a vector space except that scalars are

only required to belong to a ring. An algebra A is a module over a ring

R in which there is also defined a multiplication of module elements,

distributive over addition and such that

λ(xy) = (λx)y = x(λy)

for all λ in R and all x and y in A. If each nonzero element has a

multiplicative inverse, A is a division algebra.

D. Analysis. The assignment of coordinates establishes a corre-

spondence between points of a geometric line and elements of some

number system. When this system is an ordered field (e.g., Q or R),

sets of collinear points have a definite linear or cyclic order, which

can be described, following Moritz Pasch (1843–1930), in terms of one
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10 Preliminaries

point lying between two others or, following Giovanni Vailati (1863–

1909), one pair of points separating another pair. The order relation

can be used to define line segments, rays, and the like.

The property that sets real and complex geometries apart from

others is continuity, which essentially means that no points are “miss-

ing” from a line. The notion of continuity is implicit in the theory of

proportion developed by Eudoxus (fourth century BC) and presented

in Book V of Euclid’s Elements. As we shall see in Chapter 2, a for-

mal definition can be based on the theory of rational “cuts” invented

by Richard Dedekind (1831–1916), so that each point but one of a

“chain” corresponds to a unique real number. (If the definition of

continuity were modified to allow infinitesimal quantities, one could

even identify the points of a line with the “hyperreal” numbers of

nonstandard analysis.)

E. Arithmetic. A nonzero integer b is a divisor of an integer a if

there is an integer c such that a = bc. A positive integer p greater

than 1 whose only positive divisors are 1 and p itself is a prime. If

a and b are integers with b > 0, then there exist unique integers q

(the “quotient”) and r (the “remainder”), such that a = bq + r with

0 ≤ r < b. The process of determining q and r is called the division

algorithm.

The greatest common divisor of two nonzero integers a and b is the

largest integer that is a divisor of both; we denote it by gcd(a, b) or

simply (a, b). When (a, b) = 1, a and b are said to be relatively prime.

Given two nonzero integers a and b, we can repeatedly apply the divi-

sion algorithm to obtain a decreasing sequence of positive integers

r1 > r2 > · · · > rk, where

a = bq1 + r1, b = r1q2 + r2, r1 = r2q3 + r3, . . . , rk−1 = rkqk+1 + 0.

Then rk, the last nonzero remainder, is the greatest common divisor

(a, b). This process, described in Book VII of the Elements, is called

the Euclidean algorithm.
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