Index

Abbott, Andrew, 33, 38, 39, 40, 41, 42, 44, 138
Abell, Peter, 35
activity sequences. See also microsequence analysis
American Time Use Survey, 80, 118
boundary specification, 69
directed sequence networks, 171
element subsets in directed sequence networks, 193–94
Multinational Time Use Study, 79
recurrence, 63
routine, 247–51
sequence subset evolution, 206
structural measures for sequence networks, 188–89
synchrony, 232–34
ties, 65
time warping, 118
transformation costs, 43–44
two-mode recurrent sequences, 176–79
activity space, 26–27
Acton, Ryan M., 213
adjacency matrices, 163–64
affiliation matrices, 165, 168, 170–71, 191
affiliation network analysis (“two-mode” network analysis), 50, 162
tagglomerative hierarchical clustering, 131–32, 270
criteria for identifying clusters, 270–71, 272
distinction from divisive clustering, 131–32
partitional clustering versus, 131n2
Aisenbrey, Silke, 36, 45, 119–20, 122
alphabet expansion, 65, 145–46
alternative sequence-comparison techniques, 33
American Time Use Survey (ATUS), 6, 80–82, 80n11, 80n12, 81n13, 81n14
microsequence analysis, 217–18, 217n2, 217n3, 218n4, 218n5, 218n6, 218n7
optimal matching sequence classification, 220–22, 220n10, 220n8, 220n9
subset identification, 193
tempograms, 140, 141f. 5.4
temporal granularity, 216
time warping, 118
transition and switching analysis, 225
arbitrary operation costs, 120–22
fixed substitution costs, 121
static costs, 121–22
archival research, 72
arcs, 164
asymmetric network matrices, 164
ATUS. See American Time Use Survey
average linkage (clustering criteria), 272
Bakeman, Roger, 64, 91, 95, 99–100
Bales, Robert F., 28, 53
base rate problem, 85
Batagelj, Vladimir, 191
Bearman, Peter S., 30, 43, 120–21, 157, 158, 194
Becker, Gary, 213
Berger, Clarence Q., 213, 244
β (logit transform) statistic (measure of sequential connection), 92–93, 94
betweenness centrality, 187n6–88, 188n7
two-mode sequence networks, 188
bicomponent approach, 194
biomass, 42n4, 148, 223
biological sequence processes, 4, 39–40, 41–43, 120
 bipartite networks. See two-mode networks
Bison, Ivano, 158–60
blockmodeling, 152, 191–92, 192n8, 196
blocks (equivalence sets), 190
boundary specification, 69–70
nominalist versus realist approaches, 69
Bourdieu, Pierre, 24, 229, 243
bridging, 185–89, 188n7
British Household Panel Survey (BHPS), 6
brokerage, 52
Brown, Cliff, 197–99
Brueggemann, John, 198
Bry, Xavier, 149, 150
Brzinsky-Fay, Christian, 119–20
Bureau of Labor Statistics (BLS), 6
Burgess, Ernest W., 29–30
Butts, Carter T., 100, 213, 260
Calinski and Harabasz (\(CH\)) index, 135–36, 220
career trajectories, 27–28, 40, 43, 51
fixed substitution costs, 121
social classes and, 158–60
transition sequence analysis, 147–48
centrality, 185–89
Centre for Time Use Research (CTUR), 6. See also Multinational Time Use Study
centroid linkage (clustering criteria), 272
chaining, 271
Chapman-Kolmogorov equations, 91
Chase-Dunn, Christopher, 77n8–78
CHESA program, 149
Chinese agrarian revolt, research into, 30, 157, 194
chi-square (\(\chi^2\)) statistic (measure of sequential connection), 92, 99
homogeneity, 99
stationarity, 95
validity assessment, 137
cluster analysis, 44
defined, 130
hierarchical, 130–33, 270
partitional, 131n2
reliability, 139
sequence classes
describing, 139–43
identifying, 133–36
validity, 136–39
coding schemes, 69, 71, 81n13
cohesive subsets, 190–93, 195, 206
methods of identifying, 190–96
bicomponent approach, 194–95
blockmodeling, 196
“frequent set” approach, 195
sequence motifs, 195–96
color of lines in directed sequence network visualization, 181
use of in visualization, 105–8
combinatorial (NMS) approach, 127, 148–49
complete linkage (clustering criteria), 272
concentric zone model of urban structure, 29–30, 29n1
conditional probability, 84–85, 92–93
continuous data capture approaches, 71
conversation analysis (CA), 36, 37, 255
cophenetic correlation coefficient, 136–37, 139n5
Cornwell, Benjamin, 40–41, 188–89, 212–13, 214, 225
Correlates of War Project, 76–78
correspondence analysis (CA), 150
Critical Path Method (CPM), 197n9
Current Population Study (CPS), 80
data collection, sampling, and measure, 70–74
archival research, 72
direct observation, 71
element-position sampling, 73–74
future research directions, 261
online data capture, 72
real-time data capture, 71–72, 72n3
survey research, 70n2–71
units of measure, 74
datasets, 75–82
American Time Use Survey, 6, 80–82, 80n11, 80n12, 81n13, 81n14
microsequence analysis, 217–18, 217n2, 217n3, 218n4, 218n5, 218n6, 218n7
optimal matching sequence classification, 220–22, 220n10, 220n8, 220n9
subset identification, 193
tempograms, 140, 141f. 5.4
temporal granularity, 216
time warping, 118
transition and switching analysis, 225
Index

Correlates of War Project, 76–78
Deep South study, 78–79
betweenness centrality, 187n6–88
nonrecurrent sequence networks, 167–70, 169n3
relationships among subjects, 173–74
sequence motifs, 196
subset identification, 191
two-mode networks, 174–75
SHARE survey, 75–76, 75n4, 190–93
first-position report, 85–86
gender differences in parenthood-stress link, 93–94, 93n1
sequence index plots, 103f. 4.7–4, 106f. 4.9, 107f. 4.10
sequential connection, 93–94, 93n1
state distribution graph, 104
state transition diagram, 102f. 4.6
stress and life course in Europe, 89–91
transition bubble graph, 101f. 4.5
unordered nonrecurrent sequence affiliation networks, 170
Davis, Allison, 78–79, 167–69
degree centrality
one-mode directed sequence networks, 189
dendrograms, 132
cophenetic correlation coefficient, 136–37
identifying sequence classes, 134
descriptive analysis, 83–86
element frequencies, 84–85
n-grams, 85
position reports, 85–86
sequence length, 84
deivation scores, 151
Dewey, John, 243
diagonals in transition matrices, 88
dimensionality, 65–66
multidimensional sequences, 65–66
ties, 65
unidimensional sequences, 65
directed sequence networks, 164, 171
subject/element subset identification in, 190–93, 193n8
bicomponent approach, 194
“frequent set” approach, 194–95
visualization, 179–84
line color adjustment, 181
line thickness adjustment, 179–81
spring-embedded position-elements, 181–84
tiled position-elements, 184
direct observation, 71
discrete data capture approaches, 71, 72n3
distance normalization, 124–25
division of labor, 49, 213, 228, 257
divisive hierarchical clustering, 131–32
Doreian, Patrick, 192
DT coefficients, 148
duration-adjusted OM (OMv), 127
Durkheim, Émile, 22, 53, 242
dyadic withdrawal, 233n19, 235n21
dynamic Hamming distance, 127–29, 231n13
dynamic sequence networks, 201–8
interest in, 202–8
sequence subset evolution, 206–7
subject- and element-level change, 203–6, 204n10
whole sequence-network evolution, 207–8
ecological momentary assessment (EMA), 5, 71, 216
edges, 164
eigenvector centrality
one-mode sequence networks, 188
two-mode sequence networks, 187–88
element frequencies (relative frequency; unconditional probability), 84–85
element overlap matrices, 165–67, 166n1, 166n2, 192n8
element-positions, 61, 73–74
interval versus selected-interval recording, 73–74
timed- versus untimed-event recording, 73
elements in sequences, 60–61, 80–82
adjacency of, 47
designation of missing, 67, 67n1
element-positions, 61
element universe defined, 60
size of, 60
imputation of, 66
order of, 22, 60
symbols used to represent, 61
element-transitions, 148
Elzinga, Cees H., 125, 127, 148, 149
Emirbayer, Mustafa, 36–37
English Longitudinal Study of Ageing (ELSA), 75
episodes (spells), 62, 97–98
equivalence sets (blocks), 190
ETHNO software, 200
event history analysis, 124–25
event sequence data, 64–65
event stream analysis, 100, 260
event structure analysis (ESA; prerequisite analysis), 33, 36, 196–200, 197n9
experience sampling, 5, 71, 216
exponential random graph (p^*) models (ERGMs), 34, 200–2, 207–8, 260
factor analysis, 132n3
Faris, Robert, 30, 157, 194
Faust, Katherine, 59–62
Ferligoj, Anuška, 192
first-order Markov models (“memoryless” models), 90, 99
first-position reports, 85–86
fixed substitution costs, 121
flipbook (snapshot) visualization approach, 205–6
flow betweenness, 188n7
Forrest, John, 41
frequency state transition matrices, 87
SHARELIFE sample, 89–90
ties in, 88–89
“frequent set” approach, 194–95
fsQCA program, 152
fuzzy set analysis, 151–52
G^2 measure of stationarity, 95, 96, 98
game theory, 26, 37
gaps, 66–67
element imputation, 66
missing element designation, 67, 67n1
position deletion, 66–67
Gardner, Burleigh, 78–79, 167–69
Gardner, Mary, 78–79, 167–69
Gauthier, Jacques-Antoine, 146
generalized synchrony defined, 227, 228–29
interpersonal synchrony versus, 227 measurement of, 230–35
visualization of, 236–38
general linear model (GLM), 33–35
geometric comparison, 149–50
Gershuny, Jonathan, 214, 214n1. See also Centre for Time Use Research; Multinational Time Use Study
Geyer-Schulz, Andreas, 100
Gibson, David R., 227
Giddens, Anthony, 23–24, 185, 243
Glorieux, Ignace, 214
Goffman, Erving, 223
“gold standard” cluster classification schema, 139
Gottman, John Mordechai, 85, 91, 95, 99–100
grayscale, use of in visual aids, 105–8
H^2 measure of homogeneity, 98–99, 225–26
habitus concept, 24, 35, 229, 243
Halpin, Brendan, 127
Hamming, Richard, 116
Hamming distance, 116, 118t. 5.1, 119.
See also dynamic Hamming distance
Han, Shin-Kap, 40
Health and Retirement Study (HRS), 75
higher-order Markov models (semi-Markov models), 91
historical social science, 30
Holliester, Matissa, 127
homogeneity, 98–99, 225–26
H^2 measure of, 98–99, 225–26
homophily, 48
Huisman, Mark, 77n7
Hycak, Alex, 138
identity formation, 158, 224n12
individuality in modern society, 48–50
informR package for R, 260
insertion/deletion operations (indels), 110, 112, 115–16. See also operation costs; operation distance
interactional field theories, 51
interaction process analysis (IPA), 28, 53, 255
International Social Survey Programme (ISSP), 7
interpersonal synchrony defined, 227
generalized synchrony versus, 227
importance of, 227–28
measurement of, 230–35
visualization of, 236–38
Inter-university Consortium for Political and Social Research (ICPSR), 7
interval recording, 73–74
interviewer-assisted recall method (IARM), 70n2–71
Index

involuntary (reluctant) switches, 224–25

Kan, Man Yee, 147
Knoke, David, 31, 167
Kohler, Ulrich, 119–20

Laumann, Edward O., 24, 29, 31, 50–51, 69, 152, 161, 162, 167, 193
Lausanne Conference on Sequence Analysis (2012), 5
leave-behind diary method (LBDM), 70n2–71
Lesnard, Laurent, 128, 129, 147, 213–14
Levenshtein, Vladimir, 115
Levenshtein distance, 115, 118t. 5.1
Levenshtein II distance, 115–16, 119
life-course studies, 36. See also SHARELIFE sample
distance normalization, 124–25
network-analytic approaches, 157, 158–60
position reports, 85–86
sequence index plots, 102–4
transition bubble graphs, 100
transition matrices, 89–91
life history calendar (LHC) method, 76, 89
linear stage theories, 29-30
line graphs, 134–35
localized M (LOM), 127
logit transform (β) statistic, 92–93, 94

Marcus, Christopher Steve, 260
Markovian analysis, 50, 91, 162–63
first-order Markov models, 91
homogeneity testing, 99
stationarity, 94
Marsden, Peter V., 69
Martin, Peter, 137–38
Mayer, Karl Ulrich, 36
medoid sequence, 126, 141
"memoryless" models (first-order Markov models), 90, 99
microsequence analysis, 8–9, 10–11, 17–18, 33, 43–44, 52–55, 210
defined, 210
elements of, 214–17
data collection and availability, 216–17
elements and positions, 215–16
relationship to microinteraction sequences, 215
implications of, 212–14

micro-time scale context, 211–14, 214n1
network sequence approaches to, 226–51
routine, 55, 241–51
synchrony, 54, 227–41
non-network sequence approaches to, 217–26, 217n2
optimal matching sequence classification, 220–22, 220n10, 220n8, 220n9
transition and switching analysis, 222–26, 223n11, 224n12
switching, 54
modal sequence, 126, 140–41
Moen, Phyllis, 40
momentary sampling (selected-interval recording), 73–74
Moody, James, 30, 157, 194
moving time windows, 87
multi-channel sequence analysis (MCSA), 65–66, 146
MultiDendrograms software, 138, 139n5
multidimensional scaling (MDS), 137, 152, 192–93
multidimensional sequence analysis, 65–66, 144–46, 172
alphabet expansion, 145–46
multi-channel sequence analysis, 146
sequence dimension
cross-tabulation, 145
Multinational Time Use Study (MTUS), 6–7, 79–80, 79n10, 79n9, 176–79, 217, 217n2, 232n16, 232n17, 247–51, 258. See also American Time Use Survey; Centre for Time Use Research
Myrdal, Jan, 157

narrative positivism, 33–36
National Longitudinal Study of Adolescent Health (AddHealth) project, 63, 67n1
element positions, 85
subsets, 190
Needleman-Wunsch algorithm, 114–15
Netherlands time use survey, 247–51, 248n26, 248n27, 250n28
network-analytic approaches, 8, 17, 33, 46–52, 105, 155–209
affiliation through sequential phenomena, 48–51
criteria and terminology, 163–67
directed networks, 164
Index

network-analytic approaches (cont.)
 element overlap matrices, 163–67, 166n1, 166n2
 network matrices, 163–64
 one-mode networks, 165
 subject co-membership matrices, 165–67
 two-mode networks, 165
 undirected networks, 164
 dynamic sequence networks, 201–8
 interest in, 201–8
 sequence subset evolution, 206
 subject- and element-level change, 202–6, 204n10
 whole sequence-network evolution, 207–8
 emergent and fleeting opportunities, 52
 event structure analysis, 196–200, 197n9
 microsequence analysis, 226–51
 routine, 241–51
 synchrony, 227–41
 sequence-network construction, 167–72
 directed sequence networks, 171
 multidimensional sequence networks, 172
 nonrecurrent sequence networks, 167–70
 recurrent sequence affiliation networks, 170–71
 sequences of network phenomena, 51–52
 statistical network models for sequential events, 200–1
 exponential random graph models, 200
 structural measures for sequence networks, 184–89, 188n6, 188n7
 subject/element subset identification, 189–96
 in directed sequence networks, 193–95
 in sequence affiliation networks, 190–93, 192n8
 sequence motifs, 195–96
 theory behind, 156–63
 affiliations among subjects, 160–63
 conceptualizing and modeling sequenced phenomena, 156–60
 utility of, 155
 vacancy chain approach, 51
 visualization, 172–84
directed sequence networks, 179–84
 one-mode networks, 173–74
 two-mode ordered event networks, 174–75
 two-mode recurrent sequences, 176–79
 network drawing algorithms, 173
 network matrices, 163–64
 n-grams, 62, 85
 NMS (combinatorial) approach, 127, 148–49
 non-alignment sequence comparison methods, 148–50
 combinatorial approach, 148–49
 DT coefficients, 148
 geometric comparison, 149–50
 nonrecurrent sequence networks, 167–70
 ordered nonrecurrent event networks, 167–70, 169n3
 unordered nonrecurrent sequence affiliation networks, 170
 nonrecurrent sequences, 63

OM analysis. See optimal matching analysis
OMv (duration-adjusted OM), 127
 one-mode networks, 165
 centrality and bridging, 186–88
 visualization, 173–74
 online data capture, 72
 operation costs, 113, 116–19
 arbitrary, 120–22
 fixed substitution costs, 121
 static costs, 121–22
 order versus timing, 116–18
 regimes, 115–16
 dynamic Hamming distance, 127–29
 Hamming distance, 116, 118t.
 5.1, 119
 Levenshtein distance, 115, 118t. 5.1
 Levenshtein II distance, 115–16, 118t. 5.1, 119
 time warping, 118–19
 variable substitution costs, 122–24
 complications from variable costs, 124
 raw differences as costs, 123–24
 operation distance, 113
 distance normalization, 124–25
 reference sequence comparison, 125–26
 spell-adjusted distances, 126–27
 duration-adjusted OM, 127
 localized OM, 127
<table>
<thead>
<tr>
<th>Index</th>
<th>309</th>
</tr>
</thead>
<tbody>
<tr>
<td>time warp edit distance, 127</td>
<td></td>
</tr>
<tr>
<td>optimal matching (OM) analysis, 33, 36, 41, 47–48, 109–10, 111–15</td>
<td></td>
</tr>
<tr>
<td>criticisms of, 41–44, 119–22, 212</td>
<td></td>
</tr>
<tr>
<td>arbitrary operation costs, 120–22</td>
<td></td>
</tr>
<tr>
<td>theory/method fit, 120</td>
<td></td>
</tr>
<tr>
<td>finding optimal solution, 113–14</td>
<td></td>
</tr>
<tr>
<td>improvements on classical, 122–29</td>
<td></td>
</tr>
<tr>
<td>microsequence classification, 220–22</td>
<td></td>
</tr>
<tr>
<td>Needleman-Wunsch algorithm, 114–15</td>
<td></td>
</tr>
<tr>
<td>operation costs, 113, 116–19</td>
<td></td>
</tr>
<tr>
<td>arbitrary, 120–22</td>
<td></td>
</tr>
<tr>
<td>order versus timing, 116–18</td>
<td></td>
</tr>
<tr>
<td>regimes, 115–16, 127–29</td>
<td></td>
</tr>
<tr>
<td>time warping, 118–19</td>
<td></td>
</tr>
<tr>
<td>variable substitution costs, 122–24</td>
<td></td>
</tr>
<tr>
<td>operation distance, 113</td>
<td></td>
</tr>
<tr>
<td>distance normalization, 124–25</td>
<td></td>
</tr>
<tr>
<td>reference sequence comparison, 125–26</td>
<td></td>
</tr>
<tr>
<td>spell-adjusted distances, 126–27</td>
<td></td>
</tr>
<tr>
<td>position deletion, 66</td>
<td></td>
</tr>
<tr>
<td>secondary activities, 172</td>
<td></td>
</tr>
<tr>
<td>sequence alignment operations</td>
<td></td>
</tr>
<tr>
<td>insertion/deletion operations, 112</td>
<td></td>
</tr>
<tr>
<td>substitutions, 112</td>
<td></td>
</tr>
<tr>
<td>sequence pattern studies using, 264t.A.1–69</td>
<td></td>
</tr>
<tr>
<td>symmetric transition matrices, 88</td>
<td></td>
</tr>
<tr>
<td>transformations in, 42–44, 42n4</td>
<td></td>
</tr>
<tr>
<td>ordered nonrecurrent event networks, 167–70, 169n3</td>
<td></td>
</tr>
<tr>
<td>ordered nonrecurrent sequence networks, 201–2</td>
<td></td>
</tr>
<tr>
<td>ordered recurrence, 63–64</td>
<td></td>
</tr>
<tr>
<td>oversaturation, 236</td>
<td></td>
</tr>
<tr>
<td>(p^*) (exponential random graph models [ERGMs]), 34, 200–2, 207–8, 260</td>
<td></td>
</tr>
<tr>
<td>Pajek network analysis program, 184, 192, 257</td>
<td></td>
</tr>
<tr>
<td>Panel Study of Income Dynamics (PSID), 6</td>
<td></td>
</tr>
<tr>
<td>Park, Robert E., 39n3</td>
<td></td>
</tr>
<tr>
<td>Parsons, Talcott, 23</td>
<td></td>
</tr>
<tr>
<td>partitional clustering, 131n2. See also agglomerative hierarchical clustering</td>
<td></td>
</tr>
<tr>
<td>Pnet software, 201</td>
<td></td>
</tr>
<tr>
<td>position reports, 85–86</td>
<td></td>
</tr>
<tr>
<td>positions, 60</td>
<td></td>
</tr>
<tr>
<td>deletion of, 66–67</td>
<td></td>
</tr>
<tr>
<td>position universe, 69</td>
<td></td>
</tr>
<tr>
<td>preference orders, 26, 32n2</td>
<td></td>
</tr>
<tr>
<td>as nonrecurrent sequences, 63</td>
<td></td>
</tr>
<tr>
<td>sequence universe size, 68</td>
<td></td>
</tr>
<tr>
<td>Prensky, David, 69</td>
<td></td>
</tr>
<tr>
<td>prerequisite analysis (event structure analysis [ESA]), 33, 36, 196–200, 197n9</td>
<td></td>
</tr>
<tr>
<td>principal component analysis (PCA), 150</td>
<td></td>
</tr>
<tr>
<td>probabilistic patterns. See stochastic patterns</td>
<td></td>
</tr>
<tr>
<td>probability state transition matrices, 87</td>
<td></td>
</tr>
<tr>
<td>SHARELIFE sample, 90</td>
<td></td>
</tr>
<tr>
<td>ties in, 89</td>
<td></td>
</tr>
<tr>
<td>Program Evaluation and Review Technique (PERT), 197n9</td>
<td></td>
</tr>
<tr>
<td>“publics”, 185, 238–39. See also switching</td>
<td></td>
</tr>
<tr>
<td>Qualitative Harmonic Analysis (QHA), 150</td>
<td></td>
</tr>
<tr>
<td>“race-relations cycle”, 39n3</td>
<td></td>
</tr>
<tr>
<td>Rahmann, Sven, 149</td>
<td></td>
</tr>
<tr>
<td>real-time data capture, 71–72, 72n3</td>
<td></td>
</tr>
<tr>
<td>recall bias, 70n2–71, 193–94</td>
<td></td>
</tr>
<tr>
<td>“recombinant-property” network structures, 51–52</td>
<td></td>
</tr>
<tr>
<td>reconstructed network approach, 77n7, 77n8–78</td>
<td></td>
</tr>
<tr>
<td>recurrence, 63–65</td>
<td></td>
</tr>
<tr>
<td>defined, 63</td>
<td></td>
</tr>
<tr>
<td>first-position reports, 85–86</td>
<td></td>
</tr>
<tr>
<td>nonrecurrent sequences, 63</td>
<td></td>
</tr>
<tr>
<td>ordered and unordered, 63–64</td>
<td></td>
</tr>
<tr>
<td>repeat observation versus, 64–65</td>
<td></td>
</tr>
<tr>
<td>sequence universe size and, 68</td>
<td></td>
</tr>
<tr>
<td>transition matrix shape, 88</td>
<td></td>
</tr>
<tr>
<td>recurrent sequence affiliation networks, 170–71</td>
<td></td>
</tr>
<tr>
<td>reference sequence comparison, 125–26</td>
<td></td>
</tr>
<tr>
<td>regression analysis methods, 34–35, 36, 83, 99, 100</td>
<td></td>
</tr>
<tr>
<td>regularized action, 22, 53</td>
<td></td>
</tr>
<tr>
<td>relational events framework</td>
<td></td>
</tr>
<tr>
<td>informR package for R, 260</td>
<td></td>
</tr>
<tr>
<td>relative frequency (element frequencies), 84–85</td>
<td></td>
</tr>
<tr>
<td>reliability, 139. See also validity</td>
<td></td>
</tr>
<tr>
<td>reluctant (involuntary) switches, 224–25</td>
<td></td>
</tr>
<tr>
<td>repeat observation, 64–65, 73</td>
<td></td>
</tr>
<tr>
<td>reversals, 110, 120</td>
<td></td>
</tr>
<tr>
<td>Robette, Nicolas, 149, 150</td>
<td></td>
</tr>
</tbody>
</table>
routine, 55, 241–51
 defined, 241
future research directions, 257–58
measurement of, 244–51, 246n25
distribution of routine, 248–51
 illustration of, 247–51, 248n26, 248n27, 250n28
theoretical foundations for, 242–44
visualization of, 247
routinization, 23–24, 202–3, 257–55
Roy, Anup Kumar, 85, 91
runs (spells), 62, 97–98
Savage, Michael, 43, 120–21
"scraping" technology, 5
script theory, 24, 55
selected-interval recording (momentary sampling), 73–74
semi-Markov models (higher-order Markov models), 91
sensory sequences (stimulus sequences), 25–26
sequence affiliation networks
 recurrent, 170–71
 subject/element subset identification in, 190–93, 193n8
unordered nonrecurrent, 170
sequence alignment operations. See also whole-sequence comparison methods
insertion/deletion operations, 110, 112
reversals, 110, 120
substitutions, 110, 112
swaps, 110, 120
symmetry of, 112, 112n1
sequence description techniques, 3, 16
sequence dimension cross-tabulation, 145
sequence index plots, 102–4, 140
sequence learning, 25–26
sequence length (t), 84
sequence motifs, 195–96, 239n24
sequence-network methods.
 See network-analytic approaches
sequences, 16. See also social sequences
data collection, sampling and measure, 70–74
archival research, 72
direct observation, 71
element-position sampling, 73–74
online data capture, 72
real-time data capture, 71–72, 72n3
survey research, 70n2–71
units of measure, 74
dimensionality, 65–66
multidimensional sequences, 65–66
ties, 65
unidimensional sequences, 65
gaps, 66–67
 element imputation, 66
 missing element designation, 67, 67n1
 position deletion, 66–67
outside of the social sciences, 4, 39–40, 41–43
properties of, 59–62
 elements, 60–61
 n-grams, 62
 positions, 60
 spells, 62
 subjects, 62
 subsequences, 61
recurrence, 63–65
 defined, 63
 nonrecurrent sequences, 63
 ordered and unordered, 63–64
 repeat observation versus, 64–65
sequence universe, 67–70
 boundary specification, 69–70
 size of, 67–69
sequence structure detection, 16, 83
descriptive analysis, 83–86
element frequencies, 84–85
 n-grams, 85
 position reports, 85–86
 sequence length, 84
 homogeneity, 98–99
sequential connection, 91–94
 illustration of, 93–94, 93n1
 spells, 97–98
stationarity, 94–97
 defined, 94
 illustration of, 96–97
 lack of, 95
 tests for detecting, 95
stochastic patterns, 86–91
 defined, 86
 Markov chains, 91
 transition matrices, 86–91
 using summary statistics and tests, 99–100
visual aids, 100–8
 sequence index plots, 102–4
 sequence-network diagrams, 105
state distribution graphs, 104
Index

state transition diagrams, 101–2

tempograms, 104

transition bubble graphs, 100

use of color and grayscale, 105–8

sequential connection, 91–94

illustration of, 93–94, 93n1

measures of

\(\beta \) (logit transform) statistic, 92–93, 94

chi-square (\(\chi^2 \)) statistic, 92, 95, 99, 137

z-statistic, 92, 93–94, 99

sequential statistical inference, 259–61

sexual script theory, 29

SHARELIFE sample, 75–76, 75n4, 190–91

first-position report, 85–86

gender differences in parenthood-stress link, 93–94, 93n1

sequence index plots, 103f. 4.7–4, 106f. 4.9, 107f. 4.10.

sequential connection, 93–94, 93n1

state distribution graph, 104

state transition diagram, 102f. 4.6.

duration-adjusted \(o_M \) localized edit distance, 127

duration-adjusted \(o_M \) time warp edit distance, 127

structured sequences, 127

spell-adjusted distances, 126–27

variable substitution costs, 122–24

use of term, 5, 46, 51–52

social sequences

adjacency of elements within, 47

defined, 21–22

forms of order, 22

significance of, 25–31

ecological psychology, 28

economics, 26

economic sociology and organization, 31

emergent networks, 28–29

historical social science, 30

linear stage theories, 29–30

political science, 31

psychology, 25–26

small-group research, 28–29

social exchange, 28–29

sociology, 27

symbolic interaction, 29

time geography, 26–27, 28

urban ecology, 29–30, 29n1

work histories, 27–28

structural origins of, 22–25

\textit{habitus} concept, 24

institutionalization of social action, 23

regularized action, 22

script theory, 24

social integration, 22–23

structuration theory, 23–24

Sociological Methods & Research special issues on sequence analysis, 4–5, 45

Sorokin, Pitirim A., 213, 242–43, 244, 257–38

Spanish Time Use Survey (STUS), 232–34, 232n15, 233n18, 233n19, 236–38, 239–41

spell-adjusted distances, 126–27

duration-adj usted OM, 127

localized OM, 127

time warp edit distance, 127

spells (runs; episodes), 62, 97–98

structural assumptions, 32

recent developments in, 4–7

second wave of, 4–5, 45–55, 122–29

distance normalization, 124–25

dynamic Hamming method, 127–29

microsequence analysis, 52–55

network-analytic approach, 46–52

reference sequence comparison, 125–26

spell-adjusted distances, 126–27

variable substitution costs, 122–24

use of term, 5, 46, 51–52

social networks

growth of interest in, 4–7

increasing availability of datasets, 6–7

limitations of, 236–57

origins of, 32–44

development of whole-sequence analysis methods, 38–41

narrative positivism, 33–36

pivotal criticisms, 41–44

relational nature of social phenomena, 36–38

social network change detection algorithms, 207

social sequence analysis, 16, 18, 21, 255

future research directions, 257–61

data collection, 261

routine and routinization, 257–58

sequential statistical inference, 259–61

social networks, 258–59

growth of interest in, 4–7

increasing availability of datasets, 6–7

limitations of, 236–57

origins of, 32–44

development of whole-sequence analysis methods, 38–41

narrative positivism, 33–36

pivotal criticisms, 41–44

relational nature of social phenomena, 36–38

SIENA software, 208

Sociological Methods & Research special issues on sequence analysis, 4–5, 45

Sorokin, Pitirim A., 213, 242–43, 244, 257–38

Spanish Time Use Survey (STUS), 232–34, 232n15, 233n18, 233n19, 236–38, 239–41

spell-adjusted distances, 126–27

duration-adj usted OM, 127

localized OM, 127

time warp edit distance, 127

spells (runs; episodes), 62, 97–98

© in this web service Cambridge University Press

www.cambridge.org
Index

Spiro, Emma S., 213
spring-embedded position-elements, 181–84
square matrices, 87, 163–64
Stadtfeld, Christoph, 100
Stark, David, 40, 203–5, 207
Stata SQ sequence analysis package, 6, 84
advantages and limitations of, 256–57
cluster analysis, 273
cophenetic correlation coefficient, 138
optimal matching algorithm, 114
raw differences as costs, 124
SEQCOMP plug-in, 129
“sqegen” and “sqfirstpos” commands, 86
“sqegen” and “sqfreq” commands, 85
state distribution graphs, 104, 140
state transition diagrams, 101–2
static costs, 121–22
stationarity, 94–97
defined, 94
illustration of, 96–97
lack of, 95
tests for detecting, 95
step-by-step (stochastic) methods, 38–39, 50
stimulus sequences (sensory sequences), 25–26
stochastic (probabilistic) patterns, 86–91
defined, 86
Markov chains, 91
transition matrices, 86–91
defined, 86–87
diagonals, 88
frequency state, 87
illustration of, 89–91
probability state, 87
symmetric, 88
ties in, 88–89
stochastic (step-by-step) methods, 38–39, 50
stochastic actor-based models (SAOMs), 207–8
Stovel, Katherine, 43, 120–21, 158
Strauss, Anselm L., 24, 244
stress measure, 137–38
structural equivalence, 161, 191
structuration theory, 23–24, 55, 242
subject co-membership matrices, 165–67, 169, 192n8
subjects, 62
subsequences, 61
substitutions, 110, 112. See also operation costs; operation distance substrings, 62
See also SHARELIFE sample
survey research, 70n2–71
survival analysis, 14
swaps, 110, 120
Swiss Household Panel study, 146
switching, 54, 222–26, 223n11, 224n12.
See also microsequence analysis; “publics”
symbolic interaction, 53, 215
symmetric network matrices, 164
symmetric transition matrices, 88
synchronization, 202, 235n21
synchrony, 54, 176–79, 227–41, 258–59
defined, 227
identifying sources of, 238–41, 239n24
measurement of, 230–35, 231n13, 231n14
caution on, 234–35, 235n20
illustration of, 232–34, 232n15, 232n16, 232n17, 233n18, 233n19
theoretical foundations for, 227–30
visualization of, 236–38, 236n22, 236n23
t (sequence length), 84
TEMPO (Time-by-Event-by-Member Pattern Observation) system, 28
tempograms, 104, 140
ties
dimensionality, 65
in transition matrices, 88–89
tiled position-elements, 184
timed-event recording, 73
timed event sequence data, 64
time diaries, 70, 72n3
directed sequence networks, 171
indels versus substitutions, 117
measuring synchrony, 230–31
missing element designation, 67
routine, 247–48
sequence length, 84
time geography, 26–27, 28
time-use research, 37, 211. See also microsequence analysis
time warp edit distance (TWED), 127
time warping, 118–19
TraMineR package for R
advantages and limitations of, 256–57
cluster analysis, 273
cophenetic correlation coefficient, 137, 138
optimal matching algorithm, 114
raw differences as costs, 124
transformation costs, 43–44
transition bubble graphs, 100
transition matrices, 86–91
defined, 86–87
diagonals, 88
frequency state, 87
illustration of, 89–91
probability state, 87
symmetric, 88
ties in, 88–89
transition plots, 100
transitions, 86
transition sequence analysis approach, 42n4, 147–48, 222–26
transitivity theories, 200
Tsay, Angela, 40, 44
Tufte, Edward R., 9
two-mode (bipartite) networks, 165, 174–75
centrality and bridging, 186–88
ordered event networks, 174–75
recurrent sequences, 176–79, 176n4, 177n5
“two-mode” network analysis (affiliation network analysis), 50, 162
two-stage optimal matching (2SOM) analysis, 146–47
typical-sequences and/or families-of-sequences (TSFS), 15
Ucinet network analysis program, 192, 257
UK Time Use Survey
directed sequence networks, 179–84
dynamic sequence networks, 205–6
two-mode networks, 176–79, 176n4, 177n5
two-mode recurrent sequences, 176–79, 176n4, 177n5
unconditional probability (element frequencies), 84–85
undirected networks, 164
unexpected transitions, 224–25
unidimensional sequences, 65
units of measure, 74
unordered nonrecurrent sequence affiliation networks, 170
unordered recurrence, 63–64
untimed-event recording, 73
urban ecology, 29–30, 29n1, 38
vacancy chains, 51
validity. See also reliability
assessing in sequence
classification, 136–39
cophenetic correlation coefficient, 136–37, 139n5
stress measure, 137
concerns in sequence analysis, 44, 256
variable substitution costs, 122–24
complications from, 124
raw differences as costs, 123–24
Vedres, Balázs, 40, 203–5, 207
visualization, 9, 100–8, 172–84
directed sequence networks, 179–84
line color adjustment, 181
line thickness adjustment, 179–81
spring-embedded position-elements, 181–84
tiled position-elements, 184
one-mode networks, 173–74
routine, 247
sequence index plots, 102–4
sequence-network diagrams, 105
state distribution graphs, 104
state transition diagrams, 101–2
synchrony, 236–38, 236n22, 236n23
tempograms, 104
transition bubble graphs, 100
Tufte, Edward R., 9
two-mode ordered event networks, 174–75
two-mode recurrent sequences, 176–79, 176n4, 177n5
use of color and grayscale, 105–8
voluntary switches, 224–25
Wallerstein, Immanuel, 76n5–77
Wang, Hui, 149
Warburton, Elizabeth, 40–41
Ward's linkage (clustering criteria), 272
Wasserman, Stanley, 59–62
Watkins, Kate, 188–89, 214
Weber, Max, 22–23, 242
weighted average (clustering criteria), 272
White, Harrison C., 51, 185, 223–24, 224n12, 238–39

© in this web service Cambridge University Press
www.cambridge.org
Index

whole-sequence comparison methods, 16–17, 109–52
classical optimal matching, 111–15
considerations in setting operation costs, 116–19
criticisms of, 119–22
finding optimal solution, 113–14
improvements on, 122–29
Needleman-Wunsch algorithm, 114–15
operation cost regimes, 115–16
operation costs, 111, 113
operation distance, 111, 113
recent advances in, 143–52
deviation scores, 151
fuzzy set analysis, 151–52
multidimensional sequence analysis, 144–46
non-alignment techniques, 148–50
sequence-network methods, 152
transition sequence analysis, 147–48
two-stage optimal matching analysis, 146–47
sequence alignment, 110–11
sequence alignment operations, 110–11
insertion/deletion operations, 110, 112
substitutions, 110, 112
symmetry of, 112, 112n1
whole-sequence pattern detection, 129–43
describing sequence classes, 139–43
validity, 136–39
whole-sequence pattern detection, 129–43
describing sequence classes, 139–43
illustration of, 142–43
hierarchical cluster analysis, 130–33
identifying sequence classes, 133–36
reliability, 139
validity, 136–39
Wiggins, Richard D., 137–38
"working backwards" technique, 81n13
world-system theory, 76–78, 76n5, 77n8
cluster analysis, 132, 132n4,
135f. 5.3., 142–43
cophenetic correlation coefficient, 139n5
stationarity in world system, 96–97
variable substitution costs, 122–23
World Values Survey (WVS), 7
Wu, Lawrence L., 43, 121
WVS (World Values Survey), 7
z-statistic (measure of sequential connection), 92, 99
SHARELIFE sample, 93–94