
Chapter 1

Introduction

1.1 Introduction
Wireless networks can be broadly classified into two categories: centralized and de-centralized.
A canonical example of a centralized network is a cellular network, where all operations are
controlled by basestations, for example, when should each user transmit or receive, thereby
avoiding simultaneous transmission (interference) by closely located nodes. Prominent examples of
de-centralized or ad hoc networks include sensor or military networks. Sensor network is deployed
in a large physical area to either monitor physical parameters, such as temperature, rainfall, and
animal census, or intrusion detection. In a military network, a large number of disparate military
equipment, e.g., battle tanks, helicopters, ground forces, is connected in a decentralized manner to
form a robust and high throughput network. Ad hoc networks are attractive because of their
scalability, self-configurability, robustness, etc.

Vehicular network is a more modern example of an ad hoc wireless network, where a large
number of sensors are deployed on the highways as well as mounted on vehicles that are used
for traffic management, congestion control, and quick accident information exchange. Many other
applications of ad hoc wireless networks are also envisaged such as deploying large number of
sensors in large building for helping fire fighters in case of fire emergency and in case of earthquakes.

The key feature that distinguishes centralized and ad hoc wireless networks is interference.
With centralized control, interference can be avoided in contrast to ad hoc networks, where there is
no mechanism of inhibiting multiple transmitters from being active simultaneously. Thus, ad hoc
networks give rise to complicated signal interaction at all receiver nodes. As compared to additive
noise, interference is structured, and treating interference as noise is known to be sub-optimal.
Thus, performance analysis of ad hoc wireless networks is far more complicated than centralized
wireless networks.

In this book, we are interested in studying the physical layer issues of ad hoc wireless networks,
such as finding the limits on the reliable rate of information transfer and ensuring connectivity among
all nodes of the network. Traditionally, the Shannon capacity has been used to characterize the
reliable rate of information transfer in communication systems. In a wireless network, however,
finding the Shannon capacity is challenging and has remained unsolved. The main impediment in
finding the Shannon capacity of wireless networks is the complicated nature of interference created
by multiple simultaneously active transmitters at each other’s receivers and network topology that
directly influences the signal interaction.
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2 Random Wireless Networks

To get some meaningful insights to the fundamental limits of throughput in wireless networks,
alternate notions of capacity have been introduced and analyzed, such as transmission [1] and
throughput/transport [2] capacity, which are defined by relaxing the reliability constraints
compared to the Shannon capacity.

One key relaxation/assumption made for the purposes of analyzing these new capacity metrics
is that the nodes of the network are assumed to be distributed uniformly at random in the area of
interest, called the random wireless networks. The random node location assumption allows the use
of tools from stochastic geometry and percolation theory for theoretical capacity analysis. In Chapter
2, we argue that random node location assumption is not very limiting for a practical ad hoc network.

Major focus of this book is on finding the transmission and the throughput capacity of random
wireless networks. Through the transmission capacity formulation, we also quantify the effects of
using multiple antennas at each node, using two-way communication between source and
destination, effect of ARQ protocol, and using “smart” scheduling protocols in the random wireless
networks. From here on in this book, when we say wireless network, we mean a random wireless
network unless specified differently.

A necessary condition for finding the maximum rate of transmission or throughput between a
pair of nodes in a wireless network is to ensure that they are connected to each other or have a
connected path between each other, under a suitable definition of connection. Since any source can
have an arbitrary choice for its destination, essentially, we need network wide connectivity, that is,
each node pair should be reachable from every other node via connected paths. This condition is
simply called as connectivity of the wireless network. Connectivity in a wireless network depends
on the density of nodes, radio (transmission) range of any node, topology of the network, connection
model between nodes, etc. In this book, we present relevant results from the percolation theory and
then describe their application in finding the network parameters that ensure connectivity in wireless
networks. Using percolation theory, we also study the size of the largest connected component in
wireless networks and find conditions when the size of the largest connected component is a non
vanishing fraction of the total number of nodes, which implies approximate connectivity.

The book is divided into two parts, first part exclusively deals with a single-hop model for
wireless networks, where each source has a destination at a fixed distance from it and transmits its
information directly to its destination without the help of any other node in the network. We define
the notion of transmission capacity for the single-hop model and derive it for single antenna nodes,
multiple antenna nodes, with scheduling protocols, and under two-way communication scenarios.
The first part of the book also includes the performance analysis of cellular wireless network
techniques using tools from stochastic geometry that are developed in the earlier chapters of the
first part.

In the second part, we deal with the more relevant model of multi-hop communication for a
wireless network and define two notions of capacity, namely the delay normalized transmission
capacity and the throughput capacity and present their analysis. In addition, in the second part, we
also study the connectivity and percolation properties of a multi-hop wireless network under the
signal-to-noise-plus-interfence ratio (SINR) model.

This chapter sets up the background for studying wireless networks from a physical layer point
of view. We begin by describing the basics of point-to-point communication, where a single
transmitter is interested in communicating with a single receiver. To keep the discussion general,
we consider the case when each node is equipped with multiple antennas. We first discuss the role
of multiple antennas in improving the error-probability performance as a function of number of
transmit and receive antennas with the optimal maximum likelihood (ML) decoder. We then state
some difficulties in using the optimal maximum likelihood decoder, such as an exponential
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Introduction 3

complexity, and present the more popular sub-optimal decoders such as zero-forcing decoder that
have linear decoding complexity. We also discuss the error rate performance degradation while
using the sub-optimal zero-forcing decoder.

Next, we define the notion of Shannon capacity and present results on the Shannon capacity of
the point-to-point communication channel with multi-antenna equipped nodes. We show that the
Shannon capacity scales linearly with the minimum of the number of transmit and receive
antennas. We next present the outage formulation for characterizing capacity (called outage
capacity) in non-ergodic channels, for which the Shannon capacity is zero. The non-ergodic
channel is of interest since the popular slow-fading channel model of wireless signal propagation,
where channel coefficients remain constant for sufficient amount of time, falls in the class of
non-ergodic channels. The outage formulation also helps in defining the transmission capacity of
wireless networks.

Next, we describe the received signal model at any node of a wireless network, where multiple
transmitters are active at the same time. Using examples of some basic building blocks of a
wireless network, we discuss some of the difficulties in finding the Shannon capacity of a wireless
network. We then motivate the definitions of alternate capacity metrics, such as transmission
capacity and throughput capacity, which are defined under a relaxed reliability constraint compared
to the Shannon capacity.

We end this chapter by presenting some details on studying connectivity in wireless networks
under various link connection models.

1.2 Point-to-Point Wireless Signal Propagation Model
Consider a wireless communication channel between a single transmitter T0 equipped with Nt
antennas and a single receiver R0 with Nr antennas. Let the distance between T0 and R0 be d, then
the received signal at R0 at time t is given by

y[t] = d−α/2
√

P

Nt

M−1∑
m=0

Hmx[t−m] + w[t], (1.1)

where M is the number of distinct multiple fading paths between the transmitter and the receiver,
d−α/2 is the distance-based path-loss function, α is the path-loss exponent that is typically in the
range (2, 4), Ht ∈ CNr×Nt is the channel coefficient matrix at time t between the transmitter and the
receiver, where Ht(i, j) is the channel coefficient between the ith receive and jth transmit antenna.
The Nt × 1 transmit signal vector at time t is x[t] with unit power constraint, E{x[t]†x[t]} = 1, P
is the average transmitted power, and w[t] is additive white Gaussian noise vector with entries that
are independent and CN (0, 1) distributed.

Assumption 1.2.1 Throughout this book, we will use the simple distance-based path-loss function
of d−α/2 that is valid in far-field, however, has a singularity in the near-field at d = 0.

Assumption 1.2.2 We will also always assume a flat fading channel, that is, no multi-path Ht = 0
for t > 0, for which the signal model (1.1) simplifies to

y = d−α/2
√

P

Nt
Hx + w, (1.2)
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4 Random Wireless Networks

where the entries of H are assumed to be independent and CN (0, 1) distributed to model a rich
scattering channel (Rayleigh fading). We also assume throughout this book that matrix H is perfectly
known at the receiver.

To decode the transmit signal x, the optimal decoder is the maximum a posteriori (MAP) decoder
that declares that signal to be transmitted which is the most likely signal x given the knowledge of
y. Assuming an uniform distribution over the input signals, MAP decoding is equivalent to ML
decoding, where the decoded codeword maximizes the likelihood of y given x. Mathematically, ML
decoding solves the following optimization problem.

max
x

P(y|x,H).

For the signal model (1.2), since each entry of w is independent and CN (0, 1) distributed,

P(y|x,H) =
1
π

exp−
(
y−d−α/2

√
P
Nt

Hx
)(

y−d−α/2
√

P
Nt

Hx
)†

,

which can be simplified to conclude that the ML decoder decodes vector x that solves

max
x

P(y|x,H) = min
x

||y − d−α/2
√

P

Nt
Hx||2. (1.3)

Thus, the ML decoder decodes x, which is the closest codeword to the received signal y in terms
of the Euclidean distance. With ML decoding, all the components of vector x are decoded jointly,
thereby making the complexity exponential in the size of x which is Nt.

Assuming that the channel matrix H remains constant for T ≥ Nt time slots, and if the
transmitter codes across T time slots to send codeword Xi = [xi[1] . . .xi[T ]], the probability of
decoding the codeword matrix Xj = [xj [1] . . .xj [T ]] instead of Xi with an ML decoder is [3]

P(Xi → Xj) ≤

(
div∏
k=1

σk (Xi − Xj)

)−Nr

P−divNr , (1.4)

where
div = min

Xi ̸=Xj

{rank(Xi − Xj)(Xi − Xj)†} (1.5)

and σk (Xi − Xj) are the non-zero eigenvalues of (Xi − Xj)(Xi − Xj)†. Thus, to minimize the
pairwise error probability (1.4), one has to maximize the minimum of the rank of the difference of
any two codeword matrices Xi and Xj (1.5). Clearly, with T ≥ Nt, the maximum value of div is
Nt (since Xi ∈ CNt×T , ∀ i) and for achieving div = Nt, the codewords Xi’s should be coded in
space and time; hence the codebook consisting of codewords Xi’s is called a space–time block code
(STBC). STBCs with div = Nt are called full-diversity achieving STBCs, and their error probability
is proportional to P−NtNr . Thus, with multiple transmit and receive antennas, the reliability of a
wireless channel can be improved exponentially with the increasing transmission power.

Even though ML decoding provides with the best error probability performance, its decoding
complexity is very high because of the joint decoding of all elements of transmitted vector x.
Several simple decoders with reduced decoding complexity are also known in literature, for
example, minimum mean square error (MMSE) decoder and zero forcing (ZF) decoder. ZF decoder
is specially attractive for its simple decoding rule and incurs linear decoding complexity in Nt (the
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Introduction 5

number of elements of x). We describe the ZF decoder in brief and present its error probability
performance. We will use the ZF decoder in Chapter 3 to analyze the effects of using multiple
antennas in a wireless network.

With ZF decoder, to decode stream x(ℓ) of the transmitted vector

x = [x(1), . . . ,x(Nt)]T ,

the received signal (1.2) is multiplied with a vector q†
ℓ ∈ CNr×1, which belongs to the null space of

the columns H(j), j = 1, . . . , ℓ−1, ℓ+1, . . . , Nt of the channel matrix H, to cancel the inter-stream
interference from all other streams x(j), j = 1, . . . , ℓ− 1, ℓ+ 1, . . . , Nt. With this operation, from
(1.2), the resulting signal can be written as

y(ℓ) = d−α/2
√

P

Nt
q†
ℓH(ℓ)x(ℓ) + q†

ℓw, (1.6)

∀ ℓ = 1, . . . , Nt, where there is no inter-stream interference from
x(j), j = 1, . . . , ℓ − 1, ℓ + 1, . . . , Nt. Thus, with a ZF decoder, each of the Nt data streams of x
can be decoded independently of each other using (1.6), thereby incurring linear decoding
complexity compared to the exponential decoding complexity of the ML decoder. This sub-optimal
receiver, however, has poor error probability performance because of correlating the noise
components in yℓ for different ℓ = 1, . . . , Nt, and the error probability is proportional to
PNr−Nt+1 [4], instead of P−NtNr with the ML decoder.

We next discuss the alternative use of multiple antennas in improving the capacity of the point-
to-point communication channel. We first define the concept of Shannon capacity, a measure of
reliable throughput and show that Shannon capacity increases linearly with the minimum of the
number of transmit and receive antennas.

1.3 Shannon Capacity
Definition 1.3.1 The Shannon capacity C for a communication channel is defined as the largest
quantity such that for any rate R < C, reliable communication is possible. By reliable
communication, we mean that the probability of error can be driven down to zero with increasing
block length. Conversely, if the rate of transmission R ≥ C, the probability of error is lower
bounded by a constant.

Definition 1.3.2 Let x[n] and y[n] be the input and output of a channel at time n, respectively, then
a channel is called a discrete memoryless channel (DMC), if given the most recent input, the output
is independent of all previous inputs and outputs, that is,

P(y[n] | x[1], . . . , x[n], y[1], . . . , y[n− 1]) = P(y[n] | x[n])

for n = 1, 2, 3, . . .. Thus, in a DMC, given the input at time n, the output at time n is independent
of all the past inputs and outputs.

C. E. Shannon, in his 1948 seminal paper [5], proved that the capacity of a DMC defined by P(y|x),
with input x = [x[1], . . . , x[n]] and output y = [y[1], . . . , y[n]] is given by

C = max
P(x)

I(x;y), (1.7)

where I(x;y) is the mutual information between x and y [17]. This result is popularly known as
Shannon’s channel coding theorem.
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6 Random Wireless Networks

Specializing this result for the multiple antenna channel (1.2), when H is known at the receiver,
we have that I(x;y|H) = EH

{
log det

(
INr + P

Nt
HQH†

)}
, and the Shannon capacity of the

multiple antenna channel is

C = max
tr(Q)≤Nt

EH

{
log det

(
INr +

P

Nt
HQH†

)}
, (1.8)

where Q = E{xx†} is the covariance matrix of the input signal x. The optimization in (1.8) depends
on whether the channel coefficient matrix H is known at the transmitter (referred to as CSIT) or not
(called CSIR). With CSIT, the Shannon capacity [7] is

C = EH


min {Nt,Nr}∑

k=1

log (ξσk (H))+

 ,

where ξ is the Lagrange multiplier satisfying the power constraint∑
k

(ξ − σk (Xi − Xj)
−1)+ = P,

and σk (H) is the kth eigenvalue of HH† indexed in the decreasing order.
On the other hand, with CSIR, when transmitter has no information about H, the Shannon

capacity [7] is

C = EH

{
log det

(
INr +

(
P

Nt

)
HH†

)}
.

Thus for large signal power P , with CSIT or CSIR, by using multiple antennas at both the
transmitter and the receiver, the channel capacity grows linearly with min {Nt, Nr}. The
min {Nt, Nr} factor is generally referred to as spatial degrees of freedom.

Next, we look at an alternate notion of capacity that is useful for non-ergodic channels for which
Shannon capacity is zero.

1.4 Outage Capacity
The Shannon capacity formulation is useful for an ergodic multiple antenna fading channel, where in
either each time slot or after a block of T time slots, an independent channel realization of H is drawn
from a given distribution. T is generally referred to as the coherence time of the wireless channel.
An ergodic model is valid for fast-fading case, where the fading channel coefficients change fast
and the communication duration is long enough to get averaging over multiple independent blocks.
Another model of interest is the non-ergodic or the slow-fading channel model, where the channel
coefficients vary very slowly. To be specific, with the slow-fading model, it is assumed that at the
start of the transmission, an independent realization of the channel matrix is drawn from any given
distribution, but then is held fixed for the total communication duration. This model is well suited
for low mobility wireless channels requiring short duration communication, where the coherence
time is large enough compared to the total transmission time.

It is easy to see that the Shannon capacity of any non-ergodic channel is zero, because with
increasing block length no averaging is available, and the error probability is lower bounded by
a constant for any non-zero rate of transmission. To have a meaningful definition of capacity for
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Introduction 7

the non-ergodic channel, concept of outage capacity was introduced in [7], which is described as
follows. Let B bits/sec/Hz be the desired rate of communication. Then channel outage at rate B
is defined to be the event that the mutual information is less than B, and the outage probability is
defined as

Pout(B) = P(I(x;y) < B)).

The outage capacity Cout(ϵ) is defined to be the maximum rate of transmission B for which the
outage probability is below a certain threshold ϵ, that is,

Cout(ϵ) := max
Pout(B)≤ϵ

B.

The outage capacity can be interpreted as the maximum possible rate for which there exists a code
whose probability of error can be made arbitrarily small for all but a set of H, whose total probability
is less than ϵ. Thus, in essence, outage capacity is the maximum rate which is guaranteed with
success probability of at least (1 − ϵ).

The outage capacity formulation naturally extends to a wireless network and will be used to
define a throughput metric for a wireless network called the transmission capacity in Chapter 2.

For the multiple antenna channel (1.2), with an ML decoder, the outage probability can be
simplified to obtain

Pout(B) = inf
Q,Q≥0,tr(Q)≤Nt

P
(

log det
(
INr +

P

Nt
HQH†

)
< B

)
,

where Q is the covariance matrix of the transmitted vector x.
For the most popular Rayleigh channel fading model, where each entry of the channel matrix

H is i.i.d. CN (0, 1) distributed, the distribution of the maximum mutual information expression
log det(I + HH†) is unknown. Consequently, finding the outage capacity of the multiple antenna
channel has remained unsolved. The mutual information expression can be significantly simplified if
instead of an ML decoder, we use a ZF decoder, where different data streams sent by the transmitter
are decoupled before decoding. From [4] for (1.6), with Nt independent data streams, and assuming
that each data stream is required to have rate B, and outage probability constraint ϵ, the outage
capacity of a Nt ×Nr, Nr ≥ Nt multiple antenna channel with ZF decoder is

CZFout (ϵ) = max
P(log(1+|g|2)<B)≤ϵ

NtB, (1.9)

where |g|2 is the signal power after zero forcing other Nt − 1 signal components and hence |g|2 ∼
χ2(2(Nr − Nt + 1)). Thus, the outage capacity of the multiple antenna channel with ZF decoder
can be found by using the CDF of a χ2 distributed random variable with Nr − Nt + 1 degrees of
freedom.

After discussing the point-to-point communication scenario, we next look at the signal
interactions in a wireless network, which is of primary interest in this book.

1.5 Wireless Network Signal Model
Consider a wireless network with K nodes, where the nth node’s location is denoted by Tn. We
assume that each node has N antennas for transmission and reception. The received signal at the
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8 Random Wireless Networks

mth node is

ym = d−αmmHmmxm +
K∑

k=1,k ̸=m

1kd−αkmHkmxk + wm, (1.10)

where xm is the transmitted signal from transmitter Tm, dkm and Hkm ∈ CN×N are the distance
and channel coefficient matrix between the kth transmitter and the mth receiver node, respectively,
1k is the indicator function that represents whether kth node is active/transmitting, and wm is the
AWGN vector. We will assume throughout this book that each entry of Hkm is i.i.d. and CN (0, 1)
distributed to model a Rayleigh fading channel. Scheduling policy of transmitter k defines the
indicator function 1k that critically determines the network performance, since it controls the
amount of interference seen at any receiver.

Remark 1.5.1 In a wireless network, the signal transmitted by the mth node (xm) could be its own
signal or a signal that is being forwarded by it to facilitate communication between some other
source–destination pair, in which case xm is function of the received signal in previous time slots.

In a wireless network, there are various source–destination configurations possible, for
example, a single node might be interested in communicating with a single node (unicast), few
nodes (broadcast), or all nodes (multicast), or two different nodes might be interested in
communicating with the same node, or a relay might be helping a single source–destination pair
communicate. A wireless network can essentially be broken down into four building block
channels that are listed as follows:

• Interference channel: A canonical example of an interference channel is where there are two
source–destination pairs that are interested in receiving their own information and do not care
about the other pair’s data.

• Relay channel: In its simplest form, in a relay channel, a single node (designated relay) helps a
single source–destination pair communicate. In more complex form, multiple relays can help
multiple source–destination pairs to communicate.

• Broadcast channel: The simplest broadcast channel is where a single source wants to
communicate with two destinations, where the information content for the two destinations
has both common and private components. Extensions to multiple destinations are also
possible.

• Multiple access channel: A multiple access channel is where multiple sources want to
communicate with a single destination at the same time.

1.5.1 Information Theoretic Limits of Wireless Networks
From an information theoretic point of view, one of the basic questions is to find the limit on reliable
rate of information transfer (Shannon capacity) in a wireless network. In comparison to point-to-
point communication, where the Shannon capacity is a scalar quantity, the Shannon capacity of a
wireless network is a region spanned by rate tuples corresponding to various source–destination
pairs that can be simultaneously supported, such that the error probability can be made arbitrarily
small for large block lengths.

Clearly, finding the Shannon capacity of the four basic building block channels discussed above
is a prerequisite for finding the Shannon capacity of a wireless network. Unfortunately, the Shannon
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Introduction 9

capacity of the relay channel and the interference channel is unknown, precluding the possibility
of finding the Shannon capacity of a wireless network. Today, one of the biggest challenges (some
people call it the “holy grail”) in information theory is to find the Shannon capacity of a wireless
network. A simple upper bound on the Shannon capacity of the wireless network can be found using
the Fano’s inequality, called the cut-set bound; however, there is no known strategy with achievable
rates close to the upper bound.

Primary reason for the intractability of the Shannon capacity of the wireless network is the
strict reliability constraint that requires the error probability to be arbitrarily small for large block
lengths and complicated signal interaction resulting in interference, which is hard to charcterize.
In practice, however, if the SINR seen at the receiver is above a threshold, communication can be
deemed successful with sufficient reliability. This SINR model of successful transmission gives rise
to the concept of transmission capacity [1] and throughput capacity [2] that were introduced to
understand the fundamental limits on the overall throughout of the wireless network as a function of
the number of nodes.

Transmission capacity definition uses the concept of outage probability as a reliability metric.
Assuming that all the source–destination pairs are at a fixed distance from each other, the
transmission capacity is defined to be the maximum density of nodes per unit area such that the
outage probability at each node is below a threshold for a fixed rate of transmission by each node.
In essence, given a quality of service QoS constraint (rate of transmission and outage probability),
transmission capacity counts the maximum number of concurrently allowed transmissions in a
given area. In Chapter 2, we discuss the concept of transmission capacity in detail and derive it
using tools from stochastic geometry. We also quantify the effects of multiple antenna nodes,
interference cancelation, spectrum sharing on the transmission capacity and bi-directional
communication in Chapters 3 and 4. We also highlight the use of stochastic geometric tools to
analyze some important performance measures in cellular wireless network in Chapter 5, which are
hard to find otherwise.

The alternate notion of capacity, called the per-node throughput capacity for a random wireless
network with density n is defined to be t(n) bits/sec/Hz, if there is a spatial and temporal
scheduling strategy, such that each node can send t(n) bits/sec/Hz on average to its randomly
chosen destination with high probability. The network wide throughput capacity is obtained by
multiplying the density of nodes n with t(n). In Chapter 9, we will discuss the concept of
throughput capacity and derive the seminal result of [2], which showed that the network-wide
throughput capacity of a random wireless network with density n, scales as order

√
n under the

SINR model. The order
√
n scaling is specific to the SINR model and is not an information

theoretic limit. We next derive an information theoretic upper bound of order n log n on the
throughput capacity and then show that a hierarchical cooperation strategy can achieve a
throughput capacity of order n by using multi-antenna transmission using distributed antennas of
different nodes in Chapter 9.

Both the throughput and transmission capacity yield the same scaling with respect to the number
of nodes of the wireless network. Because of the use of the outage probability framework, however,
quantifying the effects of advanced physical layer techniques, such as equipping nodes with multiple
antennas, using successive interference cancelation, and ARQ, on the transmission capacity is easier
than on throughput capacity.

An important distinction between the transmission and throughput capacity is in the averaging
of successful transmission event. The transmission capacity uses an outage probability constraint
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10 Random Wireless Networks

P(SINR < β) ≤ ϵ and counts the number of successful transmissions satisfying the outage
probability constraint. In contrast, in the throughput capacity definition, we are counting the
number of nodes that can simultaneously transmit so that the SINR (realization and not the
probability) for each pair of transmissions is above a threshold.

1.6 Connectivity in Wireless Networks
Global network connectivity is more or less a prerequisite for ensuring efficient operation of a
wireless network. For example, in a military network, where for obvious reasons, it is imperative to
have an active communication link between any pair of nodes. Similarly, in a sensor network,
fusion node needs to have a path from each of nodes for data collection and processing. Even
though connectivity is desirable, ensuring it is quite challenging, since even a single isolated node
breaks the connectivity of the network.

In addition to connectivity, efficient routing protocols that are robust to node failures/outages,
intelligent network management tools for transmission scheduling, smart application layer
protocols are equally important for a smooth operation of a wireless network. In this book,
however, we will restrict ourselves to studying the physical layer properties of the wireless network
such as connectivity and refer the reader to [8] for the discussion on higher layer issues such as
routing, link management, and scheduling etc.

Connectivity in a wireless network is defined for a variety of link connection models, for
example, the disc model, and the SINR model. With the disc connection model, two nodes within a
fixed distance are assumed to be connected. The motivation behind this model comes from the
radio range of each node—the distance to which each node’s signal can be received with sufficient
strength. The disc connection model, however, assumes that simultaneously active transmitters do
not interfere with each which is an idealization. A more realistic connection model is the SINR
model that allows multiple nodes to transmit at the same, where a link between two nodes exists if
the SINR between them is above a threshold. SINR model is far more complicated than the disc
model, since it gives rise to directed links in contrast to the disc model, and the existence of a link
between any pair of nodes depends on the formation of all other links.

Under any connection model, a wireless network can be naturally thought of a graph, where
an edge in the graph corresponds to a link in the wireless network. Because of this association,
graph theoretic tools, namely, percolation theory is used to study the connectivity properties of the
graph. In particular, questions like: what is the minimum radio range required to ensure connectivity
in a large wireless network and when does a connected component of unbounded size exists as a
function of the density of the nodes are answered using percolation theory. The event of formation
of an unbounded component is generally referred to as percolation and from a wireless network
perspective, percolation guarantees long-range communication possibility. Percolation theory is not
only useful for studying connectivity properties, but as we will see in Chapter 9, it is also useful in
deriving the throughput capacity of a wireless network.

In Chapter 7, we give a brief introduction to the basics of percolation theory that are required
for deriving the results presented in this book. In particular, we describe the basic ideas behind
main results in discrete percolation theory over square lattice and hexagonal face lattice, and study
some properties of the continuum percolation. In Chapters 7 and 8, we discuss in detail the
connectivity properties of the wireless network under the disc model and the SINR connection
models, respectively. For the disc model, we derive the critical radio range required for connectivity
as a function of the number of nodes. For the SINR model, we show that if nodes use multiple

Cambridge University Press
978-1-107-10232-3 - Random Wireless Networks: An Information Theoretic Perspective
Rahul Vaze
Excerpt
More information

www.cambridge.org© in this web service Cambridge University Press

http://www.cambridge.org/9781107102323
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9781107102323: 


