

MATHEMATICS OF THE BOND MARKET

Mathematical models of bond markets are of interest to researchers working in applied mathematics, especially in mathematical finance. This book concerns bond market models in which random elements are represented by Lévy processes. These are more flexible than classical models and are well suited to describing prices quoted in a discontinuous fashion.

The book's key aims are to characterize bond markets that are free of arbitrage and to analyze their completeness. Nonlinear stochastic partial differential equations (SPDEs) are an important tool in the analysis. The authors begin with a relatively elementary analysis in discrete time, suitable for readers who are not familiar with finance or continuous time stochastic analysis. The book should be of interest to mathematicians, in particular to probabilists, who wish to learn the theory of the bond market and to be exposed to attractive open mathematical problems.

Encyclopedia of Mathematics and Its Applications

This series is devoted to significant topics or themes that have wide application in mathematics or mathematical science and for which a detailed development of the abstract theory is less important than a thorough and concrete exploration of the implications and applications.

Books in the **Encyclopedia of Mathematics and Its Applications** cover their subjects comprehensively. Less important results may be summarized as exercises at the ends of chapters. For technicalities, readers can be referred to the bibliography, which is expected to be comprehensive. As a result, volumes are encyclopedic references or manageable guides to major subjects.

Cambridge University Press

978-1-107-10129-6 — Mathematics of the Bond Market: A Lévy Processes Approach

Michał Barski, Jerzy Zabczyk

Frontmatter

More Information

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit www.cambridge.org/mathematics.

- 124 F. W. King Hilbert Transforms I
- 125 F. W. King Hilbert Transforms II
 126 O. Calin and D.-C. Chang Sub-Riemannian Geometry
- 127 M. Grabisch et al. Aggregation Functions
- 128 L. W. Beineke and R. J. Wilson (eds.) with J. L. Gross and T. W. Tucker Topics in Topological Graph Theory
- 129 J. Berstel, D. Perrin and C. Reutenauer Codes and Automata
- 130 T. G. Faticoni Modules over Endomorphism Rings
- 131 H. Morimoto Stochastic Control and Mathematical Modeling
- 132 G. Schmidt Relational Mathematics
- 133 P. Kornerup and D. W. Matula Finite Precision Number Systems and Arithmetic
- 134 Y. Crama and P. L. Hammer (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering
- 135 V. Berthé and M. Rigo (eds.) Combinatorics, Automata and Number Theory
- 136 A. Kristály, V. D. Rădulescu and C. Varga Variational Principles in Mathematical Physics, Geometry, and **Economics**
- 137 J. Berstel and C. Reutenauer Noncommutative Rational Series with Applications
- 138 B. Courcelle and J. Engelfriet Graph Structure and Monadic Second-Order Logic
- 139 M. Fiedler Matrices and Graphs in Geometry
- 140 N. Vakil Real Analysis through Modern Infinitesimals
- 141 R. B. Paris Hadamard Expansions and Hyperasymptotic Evaluation
- 142 Y. Crama and P. L. Hammer Boolean Functions
- 143 A. Arapostathis, V. S. Borkar and M. K. Ghosh Ergodic Control of Diffusion Processes
- 144 N. Caspard, B. Leclerc and B. Monjardet Finite Ordered Sets
- 145 D. Z. Arov and H. Dym Bitangential Direct and Inverse Problems for Systems of Integral and Differential **Equations**
- 146 G. Dassios Ellipsoidal Harmonics
- 147 L. W. Beineke and R. J. Wilson (eds.) with O. R. Oellermann Topics in Structural Graph Theory
- 148 L. Berlyand, A. G. Kolpakov and A. Novikov Introduction to the Network Approximation Method for Materials Modeling
- 149 M. Baake and U. Grimm Aperiodic Order I: A Mathematical Invitation
- 150 J. Borwein et al. Lattice Sums Then and Now
- 151 R. Schneider Convex Bodies: The Brunn-Minkowski Theory (Second Edition)
- 152 G. Da Prato and J. Zabczyk Stochastic Equations in Infinite Dimensions (Second Edition)
- 153 D. Hofmann, G. J. Seal and W. Tholen (eds.) Monoidal Topology
- 154 M. Cabrera García and Á. Rodríguez Palacios Non-Associative Normed Algebras I: The Vidav-Palmer and Gelfand-Naimark Theorems
- 155 C. F. Dunkl and Y. Xu Orthogonal Polynomials of Several Variables (Second Edition)
- 156 L. W. Beineke and R. J. Wilson (eds.) with B. Toft Topics in Chromatic Graph Theory
- 157 T. Mora Solving Polynomial Equation Systems III: Algebraic Solving
- 158 T. Mora Solving Polynomial Equation Systems IV: Buchberger Theory and Beyond
- 159 V. Berthé and M. Rigo (eds.) Combinatorics, Words and Symbolic Dynamics
- 160 B. Rubin Introduction to Radon Transforms: With Elements of Fractional Calculus and Harmonic Analysis
- 161 M. Ghergu and S. D. Taliaferro Isolated Singularities in Partial Differential Inequalities
- 162 G. Molica Bisci, V. D. Radulescu and R. Servadei Variational Methods for Nonlocal Fractional Problems
- 163 S. Wagon The Banach-Tarski Paradox (Second Edition)
- 164 K. Broughan Equivalents of the Riemann Hypothesis I: Arithmetic Equivalents
- 165 K. Broughan Equivalents of the Riemann Hypothesis II: Analytic Equivalents
- 166 M. Baake and U. Grimm (eds.) Aperiodic Order II: Crystallography and Almost Periodicity
- 167 M. Cabrera García and Á. Rodríguez Palacios Non-Associative Normed Algebras II: Representation Theory and the Zel'manov Approach
- 168 A. Yu. Khrennikov, S. V. Kozyrev and W. A. Zúñiga-Galindo Ultrametric Pseudodifferential Equations and Applications
- 169 S. R. Finch Mathematical Constants II
- 170 J. Krajíček Proof Complexity
- 171 D. Bulacu, S. Caenepeel, F. Panaite and F. Van Oystaeyen Quasi-Hopf Algebras
- 172 P. McMullen Geometric Regular Polytopes
- 173 M. Aguiar and S. Mahajan Bimonoids for Hyperplane Arrangements

ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

Mathematics of the Bond Market

A Lévy Processes Approach

MICHAŁ BARSKI

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw

JERZY ZABCZYK

Institute of Mathematics, Polish Academy of Sciences

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India
79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107101296
DOI: 10.1017/9781316181836

© Michał Barski and Jerzy Zabczyk 2020

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2020

Printed in the United Kingdom by TJ International Ltd, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-107-10129-6 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To our wives Anna and Barbara

Contents

	Prefc	Preface		
		The Fi		<i>page</i> xiii xiii
		Lévy N	Modelling	xiv
		Aims o	of the Book	XV
		Structi	ure of the Book	XV
	Acknowledgements			xvii
	Intro	Introduction		
	I.1	Bonds		1
	I.2	Models	S	2
	I.3	Conten	at of the Book	5
		PART	I BOND MARKET IN DISCRETE TIME	7
1	Elements of the Bond Market			9
	1.1	Prices	and Rates	9
	1.2	Models of the Bond Market		
1.3 Portfolios and Strategies			ios and Strategies	13
	1.4 Contingent Claims			16
	1.5	Arbitra	age	18
2	Arbitrage-Free Bond Markets			23
	2.1	Martingale Modelling		23
	2.2	Martingale Measures for HJM Models		24
		2.2.1	Existence of Martingale Measures	24
		2.2.2	Uniqueness of the Martingale Measure	27
	2.3	Martin		
		Property		31
		2.3.1	Martingale Representation Property	32
		2.3.2	Generalized Martingale Representation Property	35

viii	viii Contents			
		2.3.3 Girsanov's Theorems	37	
		2.3.4 Application to HJM Models	41	
	2.4	Markovian Models under the Martingale Measure	44	
		2.4.1 Models with Markovian Trace	45	
		2.4.2 Affine Models	48	
		2.4.3 Dynamics of the Short Rate in Affine Models	52	
		2.4.4 Shape of Forward Curves in Affine Models	58	
		2.4.5 Factor Models	61	
3	Completeness			
	3.1	Concepts of Completeness	65 68	
	3.2	Necessary Conditions for Completeness		
	3.3	1		
	3.4	Approximate Completeness	74	
		3.4.1 General Characterization	75	
		3.4.2 Bond Curves in a Finite Dimensional Space	77	
	2.5	3.4.3 Bond Curves in Hilbert Spaces	78	
	3.5	Models with Martingale Prices	82	
		3.5.1 HJM Models	83	
		3.5.2 Multiplicative Factor Model 3.5.3 Affine Models	88 92	
	3.6	Replication with Finite Portfolios	95	
	3.7	Completeness and Martingale Measures		
	DA I	RT II FUNDAMENTALS OF STOCHASTIC ANALYSIS	105	
4		nastic Preliminaries	107	
	4.1	Generalities Dela Maria Description	107	
	4.2	Doob–Meyer Decomposition 4.2.1 Predictable Quadratic Variation of Square	109	
		4.2.1 Predictable Quadratic Variation of Square Integrable Martingales	111	
		4.2.2 Compensators of Finite Variation Processes	111	
	4.3	Semimartingales	114	
	4.4	Stochastic Integration		
	7.7	4.4.1 Bounded Variation Integrators	117 117	
		4.4.2 Square Integrable Martingales as Integrators	118	
		4.4.3 Integration over Random Measures	121	
		4.4.4 Itô's Formula	123	
5	Lévy Processes			
	5.1	•		
	5.2	·		

		Contents	ix	
	5.3	Special Classes	131	
		5.3.1 Finite Variation Processes	131	
		5.3.2 Subordinators	133	
		5.3.3 Lévy Martingales	134	
	5.4			
		5.4.1 Square Integrable Integrators	137	
		5.4.2 Integration over Compensated Jump Measures	138	
		5.4.3 Stochastic Fubini's Theorem	140	
		5.4.4 Ito's Formula for Lévy Processes	141	
6	Martingale Representation and Girsanov's Theorems			
	6.1	Martingale Representation Theorem		
	6.2	Girsanov's Theorem and Equivalent Measures		
]	PART III BOND MARKET IN CONTINUOUS TIME	151	
7	Func	damentals	153	
	7.1	Prices and Rates	153	
		7.1.1 Bank Account and Discounted Bond Prices	155	
		7.1.2 Prices and Rates in Function Spaces	157	
	7.2	Portfolios and Strategies	161	
		7.2.1 Portfolios	161	
		7.2.2 Strategies and the Wealth Process	162	
		7.2.3 Wealth Process as Stochastic Integral	166	
	7.3	Non-arbitrage, Claims and Their Prices		
	7.4	HJM Modelling		
		7.4.1 Bond Prices Formula	177	
		7.4.2 Forward Curves in Function Spaces	180	
	7.5	Factor Models and the Musiela Parametrization		
8	Arbi	bitrage-Free HJM Markets		
	8.1	Heath–Jarrow–Morton Conditions	184	
		8.1.1 Proof of Theorem 8.1.1	188	
	8.2	Martingale Measures	191	
		8.2.1 Specification of Drift	193	
		8.2.2 Models with No Martingale Measures	194	
		8.2.3 Invariance of Lévy Noise	197	
		8.2.4 Volatility-Based Models	200	
		8.2.5 Uniqueness of the Martingale Measure	203	
9		itrage-Free Forward Curves Models	207	
	9.1	Term Structure Equation	207	
		9.1.1 Markov Chain and CIR as Factor Processes	210	

X		Contents		
		9.1.2 Multiplicative Factor Process	212	
		9.1.3 Affine Term Structure Model	214	
		9.1.4 Ornstein–Uhlenbeck Factors	216	
10	Arbit	trage-Free Affine Term Structure	220	
	10.1 Preliminary Model Requirements			
	10.2	Jump Diffusion Short Rate	221	
		10.2.1 Analytical HJM Condition	222	
		10.2.2 Generalized CIR Equations	226	
		10.2.3 Exploding Short Rates	234	
		10.2.4 Multidimensional Noise	236	
	10.3	General Markovian Short Rate	238	
		10.3.1 Filipović's Theorems	238	
		10.3.2 Comments on Filipović's Theorems	240	
		10.3.3 Examples	244	
		10.3.4 Back to Short-Rate Equations	245	
11	Comp	pleteness	252	
	11.1	-		
	11.2	Representation of Discounted Bond Prices		
	11.3	Admissible Strategies	257	
	11.4	Hedging Equation		
	11.5	Completeness for the HJM Model	261	
		11.5.1 Lévy Measure with Finite Support	261	
		11.5.2 Proofs of Theorems 11.5.1–11.5.3	264	
		11.5.3 Incomplete Markets	269	
	11.6	Completeness for Affine Models	275	
	11.7	Completeness for Factor Models	277	
	11.8	Approximate Completeness	280	
		11.8.1 HJM Model	283	
		11.8.2 Factor Model	288	
		11.8.3 Affine Model	289	
		PART IV STOCHASTIC EQUATIONS IN THE		
		BOND MARKET	293	
12	Stoch	nastic Equations for Forward Rates	295	
	12.1	Heath–Jarrow–Morton Equation	295	
	12.2	Morton's Equation	296	
	12.3	The Equations in the Musiela Parametrization	297	
13	Analysis of the HJMM Equation			
	13.1	Existence of Solutions to the HJMM Equation	300	
		13.1.1 Local Solutions	302	

			Contents	xi
		13.1.2 G	lobal Solutions	307
		13.1.3 A	pplications to the Morton–Musiela Equation	309
14	Analysis of Morton's Equation			312
	14.1	Results		312
		14.1.1 C	omments on Assumptions $(A1)$ – $(A3)$	314
	14.2	Applicatio	ons of the Main Theorems	315
	14.3	Proof of Theorem 14.1.1		322
		14.3.1 O	utline of the Proof	322
		14.3.2 Ed	quivalence of Equations (14.1.1) and (14.1.9)	323
		14.3.3 A	uxiliary Results	324
		14.3.4 C	onclusion of the Proof	329
	14.4	Proof of T	Theorem 14.1.2	330
15	Analysis of the Morton–Musiela Equation			332
	15.1	Formulation	on and Comments on the Results	332
		15.1.1 C	omments on the Results	333
	15.2	Proofs of 7	Theorems 15.1.1 and 15.1.2	334
		15.2.1 Ed	quivalence Results	334
		15.2.2 Pr	roof of Theorem 15.1.1	335
		15.2.3 Pr	roof of Theorem 15.1.2	337
Anne	endix A			342
1 - PP	A.1	Martingale	e Representation for Jump Lévy Processes	342
	11.1	_	Iultiple Chaos Processes	343
			epresentation of Chaoses	347
			haos Expansion Theorem	350
			epresentation of Square Integrable Martingales	352
			epresentations of Local Martingales	354
Appe	endix B			360
11	B.1	Semigrour	os and Generators	360
			enerators for Equations with Lévy Noise	361
Appe	endix C			367
	C.1	General E	volution Equations	367
Refe	rences			373
Inde.				379

Preface

The Field

The book is devoted to the mathematical theory of the bond market, which is a part of mathematical finance. It is addressed to mathematicians, especially to probabilists who are not necessarily familiar with mathematical finance. In fact, Part I – out of the four parts of this book – treats the subject in discrete time and the knowledge of classical probability, as presented in Feller [51], is sufficient for its understanding.

Mathematical finance is today a part of stochastic analysis. Such concepts as stochastic integral and martingales play a fundamental role in finance. For instance, the mathematical theory of stochastic integration is well developed for large classes of integrators and integrands, and general concepts are ideally suited to financial modelling. Integrators are *price processes* of financial commodities, integrands describe *trading strategies* and the integrals represent *accumulated wealth*.

Basic objects of the theory are two random fields P(t,T), f(t,T), $0 \le t \le T$, and a stochastic process R(t), $t \ge 0$, defined on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$. They are related to each other by the formulas

$$P(t,T) = e^{-\int_t^T f(t,s)ds}, \quad 0 \le t \le T, \qquad R(t) = f(t,t), \ t \ge 0,$$

and interpreted as, respectively, bond prices, forward rates and short rate. In particular, P(t,T) is the price of a bond at time t that matures at time T, that is, the owner of the bond will receive cash P(T,T) at time T.

The theory is relatively young, approximately 40 years old, and poses new mathematical questions. An important one is about the *absence of arbitrage*. Intuitively, the market should not allow agents to accumulate wealth, by clever investments, without the possibility of facing losses. This property of bond models is mathematically expressed in the concept of non-arbitrage. A related question concerns conditions under which there exists a *martingale measure* for the bond

xiv Preface

prices, that is, a probability measure \mathbb{Q} equivalent to \mathbb{P} such that for each $T \geq 0$, the process of discounted bond prices

$$\hat{P}(t,T) = e^{-\int_0^t R(s)ds} P(t,T), \quad t \in [0,T]$$

is a local martingale under \mathbb{Q} . Problems of this type have never been asked earlier. Another question is that of *completeness* of the market. Mathematically it is equivalent to the condition that each, say, bounded \mathcal{F}_{T^*} -measurable random variable, with $T^* > 0$, can be represented as a sum of a constant and a stochastic integral, over the interval $[0, T^*]$, with integrator $\hat{P}(t, \cdot)$, $t \in [0, T^*]$.

The time evolution of bond prices, short rates and forward rates is studied using the theory of Lévy processes and stochastic differential equations. In fact, applications of the theory of stochastic partial differential equations with Lévy noise – a relatively young branch of stochastic processes – are discussed in the book in great detail.

For the reader's convenience the book starts with an extensive treatment of discrete time models. Here the role of Lévy processes is played by random walks.

Lévy Modelling

A good model of bond prices should satisfy several conditions and allow easy confrontation with reality. Stochastic processes used in applications are numerically "tractable" if they are of Markov type or, more specifically, if they are solutions of stochastic equations. For them, at least theoretically, one can find finite dimensional distributions by solving parabolic equations of Kolmogorov type.

As already mentioned, the book is concerned with models in which random elements are represented through Lévy processes that are natural generalizations of the Wiener process. There are several reasons to go outside the classical paradigm. Models based on Lévy processes allow one to treat situations leading to heavy-tailed distributions. Moreover, they allow exploiting the full strength of Markovian modelling because the most general Markov processes are solutions of stochastic differential equations driven by Lévy processes. Since Lévy processes admit jumps, they are well suited to describing prices quoted on exchanges in a discontinuous fashion.

The mathematical theory of the bond market sets a specific area in financial mathematics. Its analysis involves an infinite dimensional setting because basic objects of the theory, bond prices and forward rates, are function-valued processes. Such a framework can hardly be found in classical stock market models.

The research literature on the Lévy bond market is very extensive and growing with an increasing speed. The starting point was the seminal 1997 papers by Björk, Kabanov and Runggaldier [20] and Björk, Di Masi, Kabanov and Runggaldier [19] that laid down the foundations for the analysis of the bond market in a stochastic model with a general discontinuous noise and prompted further research in that

Preface xv

direction. Important contributions describing basic properties of the bond market with Lévy noise are due to Eberlein, Jacod and Raible [48], [47]. Interesting results were published in particular by Filipović, Tappe and Teichmann [52], [54], [56], [57]. Several issues were treated by the authors of the present book [5], [3], [7], [6], [8] and [9] and together with Jakubowski [76], [4]. As the results are mathematically rather involved, it seemed that a book on the subject giving solid foundations for future research would be a welcome contribution.

There are rather few books containing material on Lévy modelling of the financial market and there is none devoted to the bond market. The well-known book by Cont and Tankov [29] deals with stock markets. Only in the final comments does it indicate Lévy bond markets as a possible direction of research. Similarly Applebaum [2] considers some problems of Lévy stock markets limiting his discussion of the bond market to some far-reaching suggestions. In the book [100] by Peszat and Zabczyk a more extensive treatment is available, but many questions were left for further study. The well-known books of Carmona and Tehranchi [25] and Filipović [52] as well as part of the classical monograph of Björk [16] are devoted to the bond market, but all deal with models based on the Wiener process.

Aims of the Book

Our first aim is to mathematically characterize those Lévy bond markets that are free of arbitrage. Intuitively, a market is arbitrage free if a trader is not able to generate profit without taking risk. A sufficient condition for that is the existence of the so-called martingale probability measure equivalent to the basic one.

The second main concept we analyze is completeness of the market. Again, intuitively, a market is complete if a trader can construct a strategy that reproduces any prespecified financial contract.

It turns out that a useful tool to construct arbitrage-free bond market models is provided by stochastic equations. The stochastic equations that appear here are nonlinear and sometimes with partial derivatives. Their analysis is one of the main novelties of the book.

The analysis of the mentioned issues is mathematically rather involved. To make the material more accessible we begin by considering a discrete time setting. It is of independent interest, and almost all results from the continuous time framework are proven here in a more direct way.

Structure of the Book

The book consists of four parts preceded by an Introduction that, in particular, contains some financial background. Part I deals with discrete time models and

xvi Preface

it is aimed at those readers who have had no previous contact with mathematical finance. The randomness is generated by a sequence of independent identically distributed random variables, a counterpart of the increments of Lévy processes. The results described in this part suggest what can be obtained in the much more challenging continuous time setting. Part II is an overview of results from stochastic analysis required for the continuous time framework. In Part III we treat in detail bond markets driven by Lévy processes, covering such topics as non-arbitrage conditions including the derivation of the general Heath–Jarrow–Morton conditions as well as the existence of martingale measures and completeness of the models. Special attention is paid to the important class of models with affine term structure and general models with Markovian factors. In Part IV we construct arbitrage-free models with the use of stochastic partial differential equations with Lévy noise. The equations that appear there are of unusual type as their coefficients, both linear and nonlinear, are of nonlocal character.

Acknowledgements

It is a pleasure to thank our colleagues Tomas Björk, Nikos Frangos, Jacek Jakubowski, Szymon Peszat, Anna Rusinek and Thorsten Schmidt for discussions on the topics of this book. We also thank Jerzy Trzeciak for language consultations.

The first author thanks Leipzig University and Warsaw University for good working conditions and the Institute of Mathematics Polish Academy of Sciences for constant support. The second author is grateful to his home institution, the Institute of Mathematics Polish Academy of Sciences for providing a stimulating research environment. Financial support from the Warsaw Center of Mathematical and Computer Sciences is gratefully acknowledged.

Any comments and remarks from the readers are welcome and can be sent to mbarski@mimuw.edu.pl.

