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1 Tensor models: solution methods
and applications
Shiqian Ma, Bo Jiang, Xiuzhen Huang, and Shuzhong Zhang

This chapter introduces several models and associated computational tools for tensor
data analysis. In particular, we discuss: tensor principal component analysis, tensor
low-rank and sparse decomposition models, and tensor co-clustering problems. Such
models have a great variety of applications; examples can be found in computer vision,
machine learning, image processing, statistics, and bio-informatics. For computational
purposes, we present several useful tools in the context of tensor data analysis, includ-
ing the alternating direction method of multipliers (ADMM), and the block variables
optimization techniques. We draw on applications from the gene expression data analy-
sis in bio-informatics to demonstrate the performance of some of the aforementioned
tools.

1.1 Introduction

One rich source of big data roots is the high dimensionality of the data formats known
as tensors. Specifically, a complex-valued m-dimensional or mth-order tensor (a.k.a.
m-way multiarray) can be denoted by F ∈ C

n1×n2×···×nm , whose dimension in the i th
direction is ni , i = 1, . . . ,m. Vector and matrix are special cases of tensor when m = 1
and m = 2, respectively. In the era of big data analytics, huge-scale dense data in the
form of tensors can be found in different domains such as computer vision [1], diffusion
magnetic resonance imaging (MRI) [2–4], the quantum entanglement problem [5],
spectral hypergraph theory [6], and higher-order Markov chains [7]. For instance, a
color image can be considered as 3D data with row, column, color in each direction,
while a color video sequence can be considered as 4D data, where time is the fourth
dimension. Therefore, how to extract useful information from these tensor data becomes
a very meaningful task.

On the other hand, the past few years have witnessed an emergence of sparse and
low-rank matrix optimization models and their applications in data sciences, signal
processing, machine learning, bioinformatics, and so on. There have been extensive
investigations on low-rank matrix completion and recovery problems since the seminal
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4 Shiqian Ma, Bo Jiang, Xiuzhen Huang, and Shuzhong Zhang

works of [8–11]. Some important variants of sparse and low-rank matrix optimization
problems such as robust principal component analysis (PCA) [12, 13] and sparse PCA
[14] have also been studied. A natural extension of the matrix to higher-dimensional
space is the tensor. Traditional matrix-based data analysis is inherently two-dimensional,
which limits its ability in extracting information from a multi-dimensional perspec-
tive. Tensor-based multi-dimensional data analysis has shown that tensor models
can take full advantage of the multi-dimensional structures of the data, and gen-
erate more useful information. For example, Wang and Ahuja [1] reported that the
images obtained by tensor PCA technique have higher quality than those from matrix
PCA.

Stimulated by the need of big data analytics, and motivated by the success of com-
pressed sensing and low-rank matrix optimization, it is important and timely to study
methods for analyzing massive tensor data.

Before proceeding let us introduce notations that will be used throughout this
chapter. We use Rn to denote the n-dimensional Euclidean space. A tensor is usu-
ally denoted by a calligraphic letter, as A = (Ai1i2···im )n1×n2×···×nm . The space where
n1 × n2 × · · · × nm-dimensional real-valued tensor resides is denoted by Rn1×n2×···×nm .
We call A super-symmetric if n1 = n2 = · · · = nm and Ai1i2···im is invariant under any
permutation of (i1, i2, . . . , im), i.e., Ai1i2···im = Aπ(i1,i2,...,im ), where π (i1, i2, . . . , im) is
any permutation of indices (i1, i2, . . . , im). The space where n × n × · · · × n︸ ︷︷ ︸

m

super-

symmetric tensors reside is denoted by Snm
. Special cases of tensors are vector (m = 1)

and matrix (m = 2), and tensors can also be seen as a long vector or a specially arranged
matrix. For instance, the tensor space Rn1×n2×···×nm can also be seen as a matrix space
R(n1×n2×···×nm1 )×(nm1+1×nm1+2×···×nm ), where the row is actually an m1-way array tensor
space and the column is another (m − m1)-dimensional tensor space. Such connections
between tensor and matrix re-arrangements will play an important role in this chapter.
As a convention in this chapter, if there is no other specification we shall adhere to
the Euclidean norm (i.e. the L2-norm) for vectors and tensors; in the latter case, the
Euclidean norm is also known as the Frobenius norm, and is sometimes denoted as

‖A‖F =
√∑

i1,i2,...,im
A2

i1i2···im
. For a given matrix X , we use ‖X‖∗ to denote the nuclear

norm of X , which is the sum of all the singular values of X . Regarding the products,
we use ⊗ to denote the outer product for tensors; that is, for A1 ∈ Rn1×n2×···×nm and
A2 ∈ Rnm+1×nm+2×···×nm+� , A1 ⊗A2 is in Rn1×n2×···×nm+� with

(A1 ⊗A2)i1i2···im+� = (A1)i1i2···im (A2)im+1···im+� .

The inner product between two tensors A1 and A2 residing in the same space
Rn1×n2×···×nm is denoted

A1 •A2 =
∑

i1,i2,...,im

(A1)i1i2···im (A2)i1i2···im .
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Tensor models: solution methods and applications 5

Under this light, a multi-linear form A(x1, x2, . . . , xm) can also be written in inner/outer
products of tensors as

A • (x1 ⊗ · · · ⊗ xm) :=
∑

i1,...,im

Ai1,...,im (x1 ⊗ · · · ⊗ xm)i1,...,im =
∑

i1,...,im

Ai1,...,im

m∏
k=1

xk
ik
.

1.2 Tensor models

1.2.1 Sparse and low-rank tensor optimization models

We first consider the common-background and sparse-foreground decomposition for
the tensor data. To this end, we propose two tensor models below. The first model is to
write a given tensor A ∈ Rn1×n2×···×nm as the sum of three tensors: X , Y , and Z . That
is A = X + Y + Z , while X is in the form of X = X̄ ⊗ e where X̄ ∈ Rn1×n2×···×nm−1

is a (m − 1)-dimensional tensor and e is the all-one vector, and Z is the noise tensor.
Specifically, the model in question is given by [15]

min ‖Y‖1

s.t. X̄ ⊗ e + Y + Z = A
‖Z‖F ≤ δ.

(1.1)

Note that A thus has a common-tensor structure in the sense that all the Rn1×n2×···×nm−1 -
dimensional subtensors of X are the same. We now give more details about the physical
meaning of model (1.1). For ease of presentation, we assume m = 3 at this moment. In
this case,A consists of n3 matricesA1, . . . ,An3 with the same size n1 × n2. The equality
constraint in (1.1) indicates that each matrix Ai can be decomposed into three parts: the
common part (matrix X̄ ), the sparse part (matrix Yi ), and the noisy part (matrix Zi ). In
many real applications, the last dimension in tensor A denotes time. Model (1.1) implies
that the subtensors of A along time are almost the same, but different from each other
with certain sparse changes captured in Y and small noises captured in Z . By solving
model (1.1) one can identify the common part and detect the changing part that results
in significant difference among the subtensors. It should be pointed out that, even in
the matrix case, our common-tensor model (1.1) is theoretically different from the
low-rank + sparse decomposition of the robust PCA model proposed by Candes
et al. [12] and Chandrasekaran et al. [13]. The L1 norm in the objective of (1.1) natu-
rally promotes the sparsity in tensor Y . Recently, a similar model was also considered
independently by Li et al. [16] in the context of image processing.

A common observation for huge-scale data analysis is that the data exhibit a low-
dimensional property, or the most-representative part lies in low-dimensional subspace.
Along with this line, we can model the background fluctuation by a low-rank tensor and
achieve another optimization model:

min rank(X̄ ) + ρ‖Y‖1

s.t. X̄ ⊗ e + Y + Z = A
‖Z‖F ≤ δ,

(1.2)

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-09900-5 - Big Data Over Networks
Edited by Shuguang Cui, Alfred O. Hero III, Zhi-quan Luo and José M. F. Moura
Excerpt
More information

http://www.cambridge.org/9781107099005
http://www.cambridge.org
http://www.cambridge.org


6 Shiqian Ma, Bo Jiang, Xiuzhen Huang, and Shuzhong Zhang

where rank(X̄ ) denotes the CP rank of X̄ and its precise definition can be described as
follows.

Definition 1.1 Suppose X ∈ Rn1×n2×···×nm , the CP rank of X denoted by rank(X ) is
the smallest integer r such that

F =
r∑

i=1

a1,i ⊗ · · · ⊗ am,i , (1.3)

where ak,i ∈ Rnk for all 1 ≤ i ≤ r and 1 ≤ k ≤ m.

The idea of decomposing a tensor into an (asymmetric) outer product of vectors
was first introduced and studied by Hitchcock in 1927 [17, 18]. This concept of tensor
rank became popular after its rediscovery in the 1970s in the form of CANDECOMP
(canonical decomposition) by Carroll and Chang [19] and PARAFAC (parallel factors)
by Harshman [20]. Consequently, CANDECOMP and PARAFAC are further abbreviated
as “CP” in the context of “CP rank” by many authors in the literature. In the next
subsection, we will introduce the CP rank for super-symmetric tensors.

1.2.2 Tensor principal component analysis

Principal component analysis (PCA) plays an important role in applications arising from
areas such as data analysis, dimension reduction, and bioinformatics, among others. PCA
finds a few linear combinations of the original variables. These linear combinations,
which are called principal components (PCs), are orthogonal to each other and explain
most of the variance of the data. PCs provide a powerful tool to compress data along the
direction of maximum variance to reach the minimum information loss.

Although the PCA and eigenvalue problem for the matrices have been well studied in
the literature, the research of PCA for tensors is still underdeveloped. The tensor PCA
is of great importance in practice and has many applications in computer vision [1],
diffusion magnetic resonance imaging (MRI) [2–4], quantum entanglement problem [5],
spectral hypergraph theory [6] and higher-order Markov chains [7]. Similar to its matrix
counterpart, the problem of finding the PC that explains the most of the variance of a
tensor T (with degree m) can be formulated as:

min ‖T − λx1 ⊗ x2 ⊗ · · · ⊗ xm‖
s.t. λ ∈ R, ‖xi‖ = 1, i = 1, 2, . . . ,m,

(1.4)

which is equivalent to

max T (x1, x2, . . . , xm)

s.t. ‖xi‖ = 1, i = 1, 2, . . . ,m.
(1.5)

Let us call the above solution the leading PC. Once the leading PC is found, the other
PCs can be computed sequentially via the so-called “deflation” technique. For instance,
the second PC is defined as the leading PC of the tensor subtracting the leading PC
from the original tensor, and so forth. The theoretical basis of such a deflation procedure
for tensors is not exactly sound, although its matrix counterpart is well established (see
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Tensor models: solution methods and applications 7

[21] and the references therein for more details). However, the deflation process does
provide a heuristic way to compute multiple principal components of a tensor, albeit
approximately. Thus in the rest of this paper, we focus on finding the leading PC of a
tensor.

Problem (1.5) is also known as the best rank-one approximation of tensor T , which
has been studied in [22]. By embedding T into a larger tensor (for instance, see
Section 8.4 in [23]), problem (1.5) can be reformulated as

max F(x, x, . . . , x)
s.t. ‖x‖ = 1,

(1.6)

where F is a super-symmetric tensor. Problem (1.6) is NP-hard and is called the maxi-
mum Z-eigenvalue problem in [24] and the nonlinear eigenproblem in [25]. Although a
systematic study of the eigenvalues and eigenvectors for a real symmetric tensor was first
conducted by Lim [26] and Qi [24] independently in 2005, Kofidis and Regalia in 2001
already showed that blind deconvolution can be formulated as a nonlinear eigenprob-
lem [25]. Note that various methods have been proposed to find the Z-eigenvalues [27–
31], which, however, may correspond only to local optimums, although some efforts
on heuristics for finding global optimal solution were made (see, e.g., [25, 28]). In this
chapter, we shall focus on finding the global optimal solution of (1.6).

In the subsequent analysis, for convenience we assume m to be even, i.e. m = 2d
in (1.6), where d is a positive integer, as this assumption is essentially not restrictive
(see [23]). Therefore, we will focus on the following problem of largest eigenvalue of
an even-order super-symmetric tensor:

max F(x, . . . , x︸ ︷︷ ︸
2d

)

s.t. ‖x‖ = 1,
(1.7)

where F is a 2dth-order super-symmetric tensor. In particular, problem (1.7) can be
equivalently written as

max F • x ⊗ · · · ⊗ x︸ ︷︷ ︸
2d

s.t. ‖x‖ = 1.
(1.8)

Now we introduce the so-called CP rank for even-order super-symmetric tensors.

Definition 1.2 Suppose F ∈ Sn2d
, the CP rank of F denoted by rank(F) is the smallest

integer r such that

F =
r∑

i=1

λi ai ⊗ · · · ⊗ ai︸ ︷︷ ︸
2d

, (1.9)

where ai ∈ Rn, λi ∈ {1,−1}.
Thus, given any 2dth-order super-symmetric tensor form F , we call it rank one if

F = λ a ⊗ · · · ⊗ a︸ ︷︷ ︸
2d

for some a ∈ Rn and λ ∈ {1,−1}.
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8 Shiqian Ma, Bo Jiang, Xiuzhen Huang, and Shuzhong Zhang

In the following, to simplify the notation, we denote

K(n, d) =
⎧⎨⎩k = (k1, . . . , kn) ∈ Z

n
+

∣∣∣∣ n∑
j=1

k j = d

⎫⎬⎭
and

X12k1 22k2 ···n2kn := X1 . . . 1︸ ︷︷ ︸
2k1

2 . . . 2︸ ︷︷ ︸
2k2

... n . . . n︸ ︷︷ ︸
2kn

.

By letting X = x ⊗ · · · ⊗ x︸ ︷︷ ︸
2d

we can further convert problem (1.8) into:

max F • X
s.t.

∑
k∈K(n,d)

d!∏n
j=1 k j !

X12k1 22k2 ···n2kn = 1,

X ∈ Sn2d
, rank(X ) = 1,

(1.10)

where the first equality constraint is due to the fact that∑
k∈K(n,d)

d!∏n
j=1 k j !

n∏
j=1

x
2k j

j = ‖x‖2d = 1.

Thus, the tensor PCA problem can be viewed as a tensor optimization problem with
rank-one constraint, which is the extreme case of low-rank tensor optimization.

1.2.3 The tensor co-clustering problem

While genome data are relatively static, gene expression, which reflects gene activity,
is highly dynamic. Patterns of gene expression change dramatically based on cell type,
developmental stage, disease state, and in response to a wide variety of biological or
environmental factors. In addition, both the kinetics and amplitude of changes in gene
expression can have biological and biomedical significance. Gene expression of the cell
could be used to infer the cell type, state, stage, and cell environment, and may indicate
a homeostasis response or a pathological condition and thus relate to development of
new medicines, drug metabolism, and diagnosis of diseases [32–34]. High-throughput
gene expression techniques (such as microarray, next-generation sequencing and third-
generation sequencing technologies) are generating huge amounts of high-dimensional
genome-wide gene expression data (e.g. 4D with genes vs. timepoints vs. conditions
vs. tissues). While the availability of these data presents unprecedented opportunities,
it also presents major challenges for extractions of biologically meaningful information
from the mountain-like gene expression data. In particular, it calls for effective computa-
tional models, equipped with efficient solution methods, to categorize gene expression
data into biologically relevant groups in order to facilitate further functional assess-
ment of important biological and biomedical processes. Classical clustering and co-
clustering analysis of gene expression data is a worthy approach in this endeavor [35, 36]
(Figure 1.1).
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Tensor models: solution methods and applications 9

Gene expression of 10 genes at 5 time points.
(Values in the table are not real gene expression values;
They just indicate the difference in gene expression levels.)

Genes\
time points

T1

1

1

1

1

1

1

0

0

0

0

t2

1

1

1

1

1

1

0

0

0

0

t3

2

2

5

5

5

5

2

2

2

2

t4

2

2

5

5

5

5

2

2

2

2

t5

2

2

5

5

5

5

2

2

2

2

Gene a

Gene b

Gene c

Gene d

Gene e

Gene f

Gene g

Gene h

Gene i

Gene j

Four co-clusters

Tw
o clusters

Figure 1.1 This figure illustrates the idea of clustering and co-clustering analysis. This is a table
of 10 genes expression at five different time points. According to classical clustering, there are
two clusters of genes {a, b, c, d, e, f}, {g, h, i, j}. For co-clustering, there could be four
co-clusters, as shown.

Clustering as an effective approach, is usually applied to partition gene expression
data into groups, where each group aggregates genes with similar expression levels. A
lot of research has been conducted in clustering: cf. [37] for classical clustering in gene
expression analysis, where the author discussed two classes of clustering (hierarchical
clustering and partitioning), and three popular clustering methods (Eisen hierarchical
clustering [38], k-means [39], and self-organizing map (SOM) method [40]). The clas-
sical clustering methods cluster genes into a number of groups based on their similar
expression on all the considered conditions.

The concept of co-clustering was first introduced to 2D gene expression data analysis
by Cheng and Church [41]. The co-clustering method can cluster genes and conditions
simultaneously and thus can discover the similar expression of a certain group of
genes on a certain group of conditions and vice versa. Readers may refer to [42] for a
comprehensive comparison of the popular co-clustering approaches. Recently there are
developed approaches for 3D gene expression data clustering analysis [43–46].

Essentially, the principle of current clustering and co-clustering models is to conduct
partitions based on the assignment of a gene and/or a condition to a specific cluster or
co-cluster. However, even a slightly less explicitly expressed function of the gene, which
may be very important to know, can get lost under the principle of sole assignment of
each gene to one co-cluster in the clustering analysis. In fact, it is widely known that
one enzyme or a group of enzymes may get involved in more than one pathway, and
one particular gene may be co-regulated with different groups of genes under different
conditions and different development stages. The current clustering and co-clustering
models are not designed to allocate more than one assignment per gene. Note that
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10 Shiqian Ma, Bo Jiang, Xiuzhen Huang, and Shuzhong Zhang

post-processing for merging identified clusters or co-clusters into overlapping groups
[41, 47] could not address the issue. Motivated by this urgent need from the real-world
gene expression data analysis, we develop a novel identification model based on tensor
optimization that is capable of recognizing more than one assignment for one element,
to better accommodate the reality of complex biological systems.

To illustrate the ideas, let us start by considering the conventional co-clustering formu-
lation. Suppose thatA ∈ Rn1×n2×···×nd is a d-dimensional tensor. Let I j = {1, 2, . . . , n j }
be the set of indices on the j th dimension, j = 1, 2, . . . , d. We wish to find a p j -
partition of the index set I j , say I j = I j

1 ∪ I j
2 ∪ · · · ∪ I j

p j
, where j = 1, 2, . . . , d, in

such a way that each of the subtensor AI 1
i1
×I 2

i2
×···×I d

id
is as tightly packed up

as possible, where 1 ≤ i j ≤ n j and j = 1, 2, . . . , d. The notion that plays an important
role in our model is the so-called mode product between a tensor X and a matrix
P . Suppose that X ∈ Rp1×p2×···×pd and P ∈ Rpi×m . Then, X ×i P is a tensor in
Rp1×p2×···×pi−1×m×pi+1×···×pd , whose ( j1, j2, . . . , ji−1, ji , ji+1, . . . , jd )th component is
defined by

(X ×i P) j1, j2,..., ji−1, ji , ji+1,..., jd =
pi∑
�=1

X j1, j2,..., ji−1,�, ji+1,..., jd P�, ji .

Let X j1, j2,..., ji−1, ji , ji+1,..., jd be the value of the co-cluster

( j1, j2, . . . , ji−1, ji , ji+1, . . . , jd ) with 1 ≤ ji ≤ pi , i = 1, 2, . . . , d.

Let an assignment matrix Y j ∈ Rn j×p j for the indices for j th array of tensor A be:

Y j
ik =

{
1, if i is assigned to the kth partition I j

k ;
0, otherwise.

Then, we introduce a proximity measure f (s) : R → R+, with the property that f (s) ≥
0 for all s ∈ R and f (s) = 0 if and only if s = 0. The co-clustering problem can be
formulated as

min
n1∑

j1=1

n2∑
j2=1

· · ·
nd∑

jd=1

f
(
A j1, j2,..., jd − (X ×1 Y 1 ×2 Y 2 ×3 · · · ×d Y d ) j1, j2,..., jd

)
s.t. X ∈ Rp1×p2×···×pd ,

Y j ∈ Rn j×p j is a row assignment matrix, j = 1, 2, . . . , d. (1.11)

We may consider a variety of proximity measures. For instance, if f (s) = |s|2
then (1.11) can be written as

min ‖A− X ×1 Y 1 ×2 Y 2 ×3 · · · ×d Y d‖2
F

s.t. X ∈ Rp1×p2×···×pd ,

Y j ∈ Rn j×p j is a row assignment matrix, j = 1, 2, . . . , d.

(1.12)

Note that our co-identification model could accommodate different evaluation and
objective functions. Therefore, different co-clustering approaches previously developed
in the literature could be considered as special cases of our approaches. Besides the
norms L1, L2, L∞, our model could use any Bregman divergence functions [48] instead;
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