Contents

Preface

PART I SETTING THE SCENE

1 What are singularities all about? 3
 1.1 Drop pinch-off: scaling and universality 5
 1.2 Stationary cusps: persistent singularities 9
 1.3 Shock waves: propagation 10
 Exercises 12

2 Blowup 16
 2.1 A scalar example 16
 2.2 Crossover 20
 2.3 Regularization: saturation 22
 2.4 What is special about power laws? 26
 Exercises 28

3 Similarity profile 32
 3.1 The spatial structure of blowup 32
 3.2 Stability 39
 3.3 Similarity solutions and the dynamical system 45
 3.4 Regularization 47
 3.5 Continuation 50
 3.5.1 Similarity description 55
 Exercises 57

4 Continuum equations 63
 4.1 General ideas 63
 4.2 The Navier–Stokes equation 64
 4.3 Boundary conditions 68
Contents

4.4 Free surface motion
- 4.5 Special limits
 - 4.5.1 Potential flow
 - 4.5.2 Two-dimensional flow
 - 4.5.3 Stokes flow
- 4.6 Elasticity

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>82</td>
</tr>
</tbody>
</table>

5 Local singular expansions
- 5.1 Potential flow in a corner
- 5.2 Potential flow around a two-dimensional airfoil
- 5.3 Stokes waves
- 5.4 Electric fields near tips: Taylor cones
- 5.5 Mixed boundary conditions
- 5.6 Viscous flow in corners and Moffatt eddies

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>110</td>
</tr>
</tbody>
</table>

6 Asymptotic expansions of PDEs
- 6.1 Thin film equation
 - 6.1.1 Hele-Shaw flow
- 6.2 Slender jets

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>129</td>
</tr>
</tbody>
</table>

PART II FORMATION OF SINGULARITIES

7 Drop breakup
- 7.1 Overview and dimensional analysis
 - 7.1.1 Surface tension–viscosity–inertia balance
 - 7.1.2 Surface tension–inertia balance
 - 7.1.3 Surface tension–viscosity balance
- 7.2 Viscous breakup
 - 7.2.1 Lagrangian transformation
 - 7.2.2 Similarity solutions
- 7.3 Generic breakup
 - 7.3.1 The universal solution
 - 7.3.2 Stability
- 7.4 Fluctuating jet equations
- 7.5 Inviscid breakup
- 7.6 Crossover
- 7.7 Fluid–fluid breakup

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>182</td>
</tr>
</tbody>
</table>
8 A numerical example: drop pinch-off
 8.1 Finite-difference scheme
 8.2 Time stepping and stability
 8.3 Grid refinement
 8.4 Analysis of pinching
Exercises

9 Slow convergence
 9.1 Mean curvature flow
 9.2 Center-manifold analysis
 9.3 Bubbles
 9.3.1 Basics
 9.3.2 Slender body theory
 9.3.3 Cavity dynamics
 9.3.4 Approach to the fixed point
Exercises

10 Continuation
 10.1 Post-breakup solution: viscous thread
 10.2 Regularization: thread formation for viscoelastic materials
 10.2.1 Dilute polymer solutions
 10.2.2 The beads-on-a-string configuration
 10.3 Crossover: bubbles and satellites
Exercises

PART III PERSISTENT SINGULARITIES: PROPAGATION

11 Shock waves
 11.1 Burgers’ equation
 11.2 Similarity description
 11.3 Conservation laws: shocks and unique continuation
 11.4 Viscosity solutions
 11.5 Compressible gas flow
 11.5.1 Unique continuation for systems
 11.6 Imploding spherical shocks
 11.6.1 Geometrical shock dynamics
Exercises

12 The dynamical system
 12.1 Overview
 12.2 Periodic orbits: a toy model
12.3 Discrete self-similarity in the implosion of polygonal shocks 302
12.4 Chaos 307
Exercises 310

13 Vortices 313
13.1 Point vortices in inviscid fluid flow 316
 13.1.1 Vortex motion 316
13.2 Vortex filaments 322
 13.2.1 Corner singularity of a vortex filament 326
13.3 Vortex sheets 328
 13.3.1 Linear instability of vortex sheets 333
 13.3.2 Moore’s singularity of vortex sheets 335
 13.3.3 Continuation of Moore’s singularity 339
13.4 Vortices in the Ginzburg–Landau equation 341
 13.4.1 Structure of stationary vortices 343
 13.4.2 The renormalized energy 346
 13.4.3 Dynamics of Ginzburg–Landau vortices 349
13.5 Nonlinear Schrödinger equation 352
Exercises 354

14 Cusps and caustics 358
14.1 Viscous free surface cusps 358
14.2 Singularity theory 364
14.3 Hele-Shaw flow 366
14.4 Optical caustics 372
14.5 The wavelength scale 378
Exercises 383

15 Contact lines and cracks 390
15.1 Driven singularities 390
15.2 A spreading drop 390
 15.2.1 Voinov solution: the universal singularity 394
 15.2.2 Regularization: inner region 398
 15.2.3 The drop: outer region 403
 15.2.4 The global problem: matching 408
15.3 A moving crack 409
 15.3.1 Universal tip singularity 410
 15.3.2 Inner problem: the fracture energy 415
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.3.3 The J-integral</td>
<td>417</td>
</tr>
<tr>
<td>15.3.4 The global problem</td>
<td>420</td>
</tr>
<tr>
<td>Exercises</td>
<td>423</td>
</tr>
<tr>
<td>Appendix A Vector calculus</td>
<td>427</td>
</tr>
<tr>
<td>Appendix B Index notation and the summation convention</td>
<td>431</td>
</tr>
<tr>
<td>Appendix C Dimensional analysis</td>
<td>434</td>
</tr>
<tr>
<td>References</td>
<td>436</td>
</tr>
<tr>
<td>Index</td>
<td>446</td>
</tr>
</tbody>
</table>