Contents

Preface

Acknowledgments

Summary

PART ONE PRELIMINARIES

1 **Finite Étale Algebras over Fields**
 1.1 Terminology for Rings and Algebras 3
 1.2 Finite Field Extensions 4
 1.3 Basic Facts on Finite Étale Algebras over Fields 6
 1.4 Resultants and Discriminants of Polynomials 9
 1.5 Characteristic Polynomial, Trace, Norm, Discriminant 11
 1.6 Integral Elements and Orders 15

2 **Dedekind Domains**
 2.1 Definitions 17
 2.2 Ideal Theory of Dedekind Domains 18
 2.3 Discrete Valuations 20
 2.4 Localization 21
 2.5 Integral Closure in Finite Field Extensions 21
 2.6 Extensions of Discrete Valuations 22
 2.7 Norms of Ideals 24
 2.8 Discriminant and Different 25
 2.9 Lattices over Dedekind Domains 27
 2.10 Discriminants of Lattices of Étale Algebras 30

3 **Algebraic Number Fields**
 3.1 Definitions and Basic Results 34
 3.1.1 Absolute Norm of an Ideal 34
Contents

3.1.2 Discriminant, Class Number, Unit Group and Regulator 35
3.1.3 Explicit Estimates 36
3.2 Absolute Values: Generalities 37
3.3 Absolute Values and Places on Number Fields 39
3.4 S-integers, S-units and S-norm 41
3.5 Heights and Houses 44
3.6 Estimates for Units and S-units 48
3.7 Effective Computations in Number Fields and Étale Algebras 50
3.7.1 Algebraic Number Fields 52
3.7.2 Relative Extensions and Finite Étale Algebras 56

4 Tools from the Theory of Unit Equations 58
4.1 Effective Results over Number Fields 60
4.1.1 Equations in Units of Rings of Integers 60
4.1.2 Equations with Unknowns from a Finitely Generated Multiplicative Group 61
4.2 Effective Results over Finitely Generated Domains 64
4.3 Ineffective Results, Bounds for the Number of Solutions 66

PART TWO MONIC POLYNOMIALS AND INTEGRAL ELEMENTS OF GIVEN DISCRIMINANT, MONOGENIC ORDERS

5 Basic Finiteness Theorems 73
5.1 Basic Facts on Finitely Generated Domains 74
5.2 Discriminant Forms and Index Forms 76
5.3 Monogenic Orders, Power Bases, Indices 78
5.4 Finiteness Results 80
5.4.1 Discriminant Equations for Monic Polynomials 80
5.4.2 Discriminant Equations for Integral Elements in Étale Algebras 83
5.4.3 Discriminant Form and Index Form Equations 85
5.4.4 Consequences for Monogenic Orders 86

6 Effective Results over \mathbb{Z} 87
6.1 Discriminant Form and Index Form Equations 89
6.2 Applications to Integers in a Number Field 92
6.3 Proofs 94
6.4 Algebraic Integers of Arbitrary Degree 104
Table of Contents

6.5 Proofs 106
6.6 Monic Polynomials of Given Discriminant 108
6.7 Proofs 109
6.8 Notes 113
 6.8.1 Some Related Results 113
 6.8.2 Generalizations over \(\mathbb{Z}\) 114
 6.8.3 Other Applications 114

7 Algorithmic Resolution of Discriminant Form and Index Form Equations 117
 7.1 Solving Discriminant Form and Index Form Equations via Unit Equations, A General Approach 118
 7.1.1 Quintic Number Fields 121
 7.1.2 Examples 133
 7.2 Solving Discriminant Form and Index Form Equations via Thue Equations 137
 7.2.1 Cubic Number Fields 138
 7.2.2 Quartic Number Fields 138
 7.2.3 Examples 142
 7.3 The Solvability of Index Equations in Various Special Number Fields 145
 7.4 Notes 146

8 Effective Results over the \(S\)-integers of a Number Field 148
 8.1 Results over \(\mathbb{Z}_S\) 149
 8.2 Monic Polynomials with \(S\)-integral Coefficients 152
 8.3 Proofs 157
 8.4 Integral Elements over Rings of \(S\)-integers 172
 8.4.1 Integral Elements in Étale Algebras 172
 8.4.2 Integral Elements in Number Fields 178
 8.4.3 Algebraic Integers of Given Degree 179
 8.5 Proofs 182
 8.6 Notes 191
 8.6.1 Historical Remarks 191
 8.6.2 Generalizations and Analogues 192
 8.6.3 The Existence of Relative Power Integral Bases 195
 8.6.4 Other Applications 195

9 The Number of Solutions of Discriminant Equations 196
 9.1 Results over \(\mathbb{Z}\) 197
 9.2 Results over the \(S\)-integers of a Number Field 200
Contents

9.3 Proof of Theorem 9.2.1 202
9.4 Proof of Theorem 9.2.2 205
9.5 Three Times Monogenic Orders over Finitely Generated Domains 209
9.6 Notes 218

10 Effective Results over Finitely Generated Domains 222
10.1 Statements of the Results 223
10.1.1 Results for General Domains 224
10.1.2 A Special Class of Integral Domains 226
10.2 The Main Proposition 228
10.3 Rank Estimates for Unit Groups 229
10.4 Proofs of Theorems 10.1.1 and 10.1.2 231
10.5 Proofs of Theorem 10.1.3 and Corollary 10.1.4 236
10.6 Proofs of the Results from Subsection 10.1.2 239
10.7 Supplement: Effective Computations in Finitely Generated Domains 245
10.7.1 Finitely Generated Fields over \(\mathbb{Q} \) 245
10.7.2 Finitely Generated Domains over \(\mathbb{Z} \) 249
10.8 Notes 255

11 Further Applications 257
11.1 Number Systems and Power Integral Bases 257
11.1.1 Canonical Number Systems in Algebraic Number Fields 258
11.1.2 Proofs 259
11.1.3 Notes 266
11.2 The Number of Generators of an \(O_S \)-order 268
11.2.1 Notes 271

PART THREE BINARY FORMS OF GIVEN DISCRIMINANT

12 A Brief Overview of the Basic Finiteness Theorems 275
13 Reduction Theory of Binary Forms 278
13.1 Reduction of Binary Forms over \(\mathbb{Z} \) 279
13.2 Geometry of Numbers over the \(S \)-integers 284
13.3 Estimates for Polynomials 290
13.4 Reduction of Binary Forms over the \(S \)-integers 293

14 Effective Results for Binary Forms of Given Discriminant 302
14.1 Results over \(\mathbb{Z} \) 303
Contents

<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2</td>
</tr>
<tr>
<td>14.3</td>
</tr>
<tr>
<td>14.4</td>
</tr>
<tr>
<td>14.5</td>
</tr>
<tr>
<td>14.6</td>
</tr>
<tr>
<td>14.7</td>
</tr>
<tr>
<td>14.8</td>
</tr>
<tr>
<td>14.9</td>
</tr>
<tr>
<td>14.10</td>
</tr>
<tr>
<td>14.10.1</td>
</tr>
<tr>
<td>14.10.2</td>
</tr>
<tr>
<td>14.10.3</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>15.1</td>
</tr>
<tr>
<td>15.2</td>
</tr>
<tr>
<td>15.3</td>
</tr>
<tr>
<td>15.4</td>
</tr>
<tr>
<td>15.5</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>16.1</td>
</tr>
<tr>
<td>16.2</td>
</tr>
<tr>
<td>16.3</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>17.1</td>
</tr>
<tr>
<td>17.2</td>
</tr>
<tr>
<td>17.3</td>
</tr>
<tr>
<td>17.4</td>
</tr>
<tr>
<td>17.5</td>
</tr>
<tr>
<td>17.6</td>
</tr>
<tr>
<td>17.7</td>
</tr>
<tr>
<td>17.8</td>
</tr>
<tr>
<td>17.9</td>
</tr>
<tr>
<td>17.10</td>
</tr>
</tbody>
</table>
18 Further Applications

18.1 Root Separation of Polynomials
18.1.1 Results for Polynomials over \(\mathbb{Z} \)
18.1.2 Results over Number Fields
18.1.3 Proof of Theorem 18.1.5
18.1.4 Proof of Theorems 18.1.6 and 18.1.7
18.1.5 Notes

18.2 An Effective Proof of Shafarevich’s Conjecture for Hyperelliptic Curves
18.2.1 Definitions
18.2.2 Results
18.2.3 Preliminaries
18.2.4 Proofs
18.2.5 Notes

Glossary of Frequently Used Notation

References

Index