

Almost All About Unit Roots

Foundations, Developments, and Applications

Many economic theories depend on the presence or absence of a unit root for their validity, and econometric and statistical theories undergo considerable changes when unit roots are present. Thus, knowledge about unit roots has become very important, necessitating an extensive, compact, and nontechnical book on this subject. This book introduces the literature on unit roots in a comprehensive manner to both students and empirical and theoretical researchers in economics and other areas. In providing a clear, complete, and critical discussion of the unit root literature, In Choi covers a wide range of topics, including uniform confidence interval construction, unit root tests allowing structural breaks, mildly explosive processes, exuberance testing, fractionally integrated processes, seasonal unit roots, and panel unit root testing. Extensive, up to date, and readily accessible, this book is a comprehensive reference source on unit roots for both students and researchers.

In Choi is a professor of economics at Sogang University in Seoul, Korea. His research focus has been on time series and panel data analysis, and he has published numerous articles in leading journals in economics and statistics. He is a Fellow of the *Journal of Econometrics* and has received the Plura Scripsit Award from *Econometric Theory* and the Chongram Award from the Korean Economic Association. He is currently an associate editor of the *Journal of Business and Economic Statistics*.

Themes in Modern Econometrics

Series Editor

PETER C. B. PHILLIPS, Sterling Professor of Economics, Yale University

Themes in Modern Econometrics provides an organized sequence of advanced textbooks in econometrics aimed directly at the student population and is the first series in the discipline to have this as its express aim. Written at a level accessible to those who have completed an introductory course in econometrics, each book addresses topics and themes that students and researchers encounter daily. All areas of econometrics are covered within the series. Particular emphasis is given to theory fundamentals and practical implementation in breaking research areas that are relevant to empirical applications. Each book stands alone as an authoritative survey in its own right. The distinct emphasis throughout is on pedagogic excellence and accessibility.

Recent Books in the Series

Granularity Theory with Applications to Finance and Insurance (2014) PATRICK GAGLIARDINI and CHRISTIAN GOURIÉROUX

Econometric Modeling with Time Series (2012) VANCE MARTIN, STAN HURN, and DAVID HARRIS

Economic Modeling and Inference (2007) JEAN-PIERRE FLORENSE, VELAYOUDOM MARIMOUTOU, and ANNE PEGUIN-FEISSOLLE; Translated by JOSEF PERKTOLD and MARINE CARRASCO

Introduction to the Mathematical and Statistical Foundations of Econometrics (2004) HERMAN J. BIERENS

Applied Time Series Econometrics (2004) HELMUT LÜTKEPOHL and MARKUS KRÄTZIG

Semiparametric Regression for the Applied Econometrician (2003) ADONIS YATCHEW

The Econometric Analysis of Seasonal Time Series (2001)

ERIC GHYSELS and DENISE R. OSBORN

Econometrics of Qualitative Dependent Variables (2000) CHRISTIAN GOURIEROUX Translated by PAUL B. KLASSEN

Nonparametric Econometrics (1999) ADRIAN PAGAN and AMAN ULLAH Generalized Method of Moments Estimation (1999) Edited by LÁSZLÓ

MÁTYÁS *Unit Roots, Cointegration, and Structural Change* (1999) G. S. MADDALA *and* IN-MOO KIM

Time Series and Dynamic Models (1997) CHRISTIAN GOURIEROUX and ALAIN MONFORT; Translated and edited by GIAMPIERO GALLO

Statistics and Econometric Models: Volumes 1 and 2 (1995)

CHRISTIAN GOURIÉROUX and ALAIN MONFORT;

Translated by QUANG VUONG

ALMOST ALL ABOUT UNIT ROOTS

Foundations, Developments, and Applications

IN CHOI

Sogang University, Korea

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781107097339

© In Choi 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Choi, In, 1958-

Almost all about unit roots: foundations, developments, and applications / In Choi. pages cm. – (Themes in modern econometrics)

Includes bibliographical references and index.

ISBN 978-1-107-09733-9 (hardback) – ISBN 978-1-107-48250-0 (pbk.)

1. Econometrics. 2. Economics – Statistical methods. 3. Social sciences – Statistical methods. I. Title.

HB139.C4797 2015

330.01′5195–dc23 2014037527

ISBN 978-1-107-09733-9 Hardback

ISBN 978-1-107-48250-0 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

In memory of my father Mr. Suk Whan Choi

Contents

Fe	rewo	rd by P	Peter C. B. Phillips	page xv
P_{I}	reface	xvii		
Αl	bbrev	xix		
1	Introduction			1
	1.1		ration and Scope of This Book	1
	1.2	Prope	erties of Unit Root Processes	3
	1.3	Econo	omics and Unit Roots	5
		1.3.1	Nelson and Plosser (1982)	5
		1.3.2	Cointegration	6
		1.3.3	Purchasing Power Parity Hypothesis	6
		1.3.4	Asset Prices	7
		1.3.5	Relative Mean Reversion in International	
			Stock Markets	7
		1.3.6	Growth and Convergence	8
		1.3.7	Convergence of Real Interest Rates	9
		1.3.8	Inflation Convergence	9
		1.3.9	Unemployment Hysteresis	9
	1.4	Other	10	
		1.4.1	Political Science and Unit Roots	10
		1.4.2	Sociology and Unit Roots	11
	1.5	Techn	tical Tools	12
		1.5.1	Brownian Motion	12
		1.5.2	Functional Central Limit Theorem	13
		1.5.3	Continuous-Mapping Theorem	13
			Stochastic Integrals	13
			Other Integrals Involving $W(r)$	14
	1.6		ne of Subsequent Chapters	14

ix

x Contents

2			n Unit Roots: Basic Methods	16
	2.1	Introdu		16
	2.2		ptotic Distributions of the OLS Estimator	
			nstationary AR Models	16
			AR(1) Models with a Unit Root	17
			AR(p) Models with a Unit Root	23
			AR(1) Models with Roots Near to One	24
		2.2.4	AR Models with Fractionally Integrated Errors	27
	2.3	The D	ickey-Fuller Test and Its Extensions	30
		2.3.1	Dickey-Fuller Test	30
		2.3.2	Augmented Dickey-Fuller Test	33
		2.3.3	Phillips-Perron Test	36
		2.3.4	Empirical Size and Power Properties of the ADF	
			and Phillips-Perron Tests	37
		2.3.5	Other Extensions	39
	2.4	Unit R	oot Tests with Improved Power	39
			Score-Based Test	40
		2.4.2	Durbin-Hausman Test	41
		2.4.3	MAX Test	42
			Dickey-Fuller-GLS Test	43
			Covariate Augmented Dickey-Fuller Test	46
			Unit Root Test Using the Weighted Symmetric	
			Estimator	47
		2.4.7	Recursive Mean Adjustment for Unit Root Testing	49
			Variance Ratio Test Using Wavelets	50
			Nearly Efficient Likelihood Ratio Test	51
			Initial Variables and the Power of Unit Root Tests	52
			Uncertainty over the Trend	54
	2.5		ptotic Theory for Complex and Negative Unit Roots	55
	2.6		ary and Further Remarks	56
	2.0	Summ	ary and runner remarks	30
3	Unit	Root T	Tests under Various Model Specifications	58
	3.1	Introdu	uction	58
	3.2	Unit R	oot Tests under Structural Changes	59
		3.2.1	Structural Changes in Level and Trend	59
		3.2.2	Structural Changes in Innovation Variances	68
	3.3	Unit R	oot Tests with Conditional Heteroskedasticity	70
			Simulation Study	70
			Maximum Likelihood Estimation and Related Tests	
		-	under GARCH Errors	71
	3.4	Unit R	oot Tests in the Presence of Additive and Innovational	
		Outlier		72

		Conto	ents	XI
	3.5	Unit F	Root Distributions and Tests under Fat-Tailed	
		Distri	butions	75
	3.6	Unit F	Root Tests against Nonlinear Alternatives	78
			Threshold AR Processes	79
		3.6.2	Smooth-Transition AR Processes	82
		3.6.3	Random-Coefficient AR Processes	84
	3.7	Sumn	nary and Further Remarks	86
4	Alte	rnative	e Approaches to Inference on Unit Roots	88
	4.1	Introd	luction	88
	4.2	Unit F	Root Tests against the Alternatives of Fractional	
		Integr	ation	89
		4.2.1	LM Tests	89
		4.2.2	Wald Tests	91
		4.2.3	LR Test	95
			Further Remarks	95
	4.3		st Regressions in the Presence of a Unit Root	96
	4.4		1-Free Tests for a Unit Root	98
			Rank-Based Tests	98
			Tests Using the Number of Level Crossings	99
			Variance Ratio Test	100
			Range-Based Test	101
	4.5		trapping for Unit Root Testing	101
			Bootstrap Failure in the Presence of a Unit Root	101
		4.5.2	Using Bootstrapping for the Inference on a Unit	
		_	Root	102
	4.6	-	ian Inference on a Unit Root	105
			Sims' (1988) Criticism	105
			Priors and Posteriors in the Presence of a Unit Root	106
			Bayesian Testing for a Unit Root	110
		4.6.4	Bayesian Inference on a Unit Root under a Structural	114
		1.65	Change	114
			Asymptotics for Posteriors	115
	4.7	4.6.6	•	115
	4./		narity Tests	116
			Locally Best Tests for an MA Unit Root	116
		4.7.2	LM Tests for an MA Unit Root	117
		4.7.3 4.7.4	Point-Optimal Tests for an MA Unit Root	119
		4.7.4	Tests for Parameter Constancy Tests for an AR Unit Root	121 124
		4.7.6	Fluctuation Tests	124
		4.7.7	Lag-Length Selection and Stationarity Tests	
		4././	Lag-Longin Sciedion and Stationarity Tests	126

xi	i	Cont	ents	
		4.7.8	Stationarity Test against the Alternative of Long	
			Memory	126
		4.7.9	Size and Power of Stationarity Tests	127
	4.8	Statio	narity Tests under Structural Changes	128
		4.8.1	Structural Changes in Level and Trend	128
		4.8.2	8	131
	4.9		for Changing Persistence	131
		4.9.1	The Null Hypothesis of a Unit Root	131
		4.9.2	31	134
	4.10	Sumn	nary and Further Remarks	135
5	Othe	er Issu	es Related to Unit Roots	137
	5.1	Introd	luction	137
	5.2	Mode	l Selection for Nonstationary Time Series	137
	5.3	Interv	al and Point Estimation for Unit Root Processes	140
		5.3.1	Interval Estimation Based on Local-to-Unity	
			Asymptotics	141
		5.3.2	Unbiased Estimation	142
		5.3.3	Interval Estimation Using Overfitting	145
			Resampling Methods	146
			Instrumental Variables Estimation	148
			Estimation Using Differences	149
		5.3.7	Moments-Based Estimation	150
		5.3.8	J 1	
			Coverage Probabilities	151
	5.4		wed Estimation of the AR(1) Model with a Unit Root	151
			Indirect Inference Estimation	151
			Fully Aggregated Estimator	153
	5.5		bution Theory for Unit Root Tests	153
		5.5.1	Approaches Based on the Inversion of Characteristic	
			and Moment-Generating Functions	154
			Fredholm Determinant Approach	156
			Simulation-Based Methods	157
	5.6	•	ling Frequency and Tests for a Unit Root	158
		5.6.1		158
			Flow Data	160
	5.7	3		161
	5.8	Sumn	nary and Further Remarks	161
6	Seas	onal U	nit Roots	163
	6.1	Introd	luction	163

		Conte	ents	xiii
	6.2	Testin	g for Seasonal Unit Roots	164
		6.2.1	Tests Using the AR(S) Regression and Its Variants	164
		6.2.2	Component-Wise Testing for Seasonal Unit Roots	168
		6.2.3	Seasonal Unit Root Tests Using a	
			Random-Coefficient Process	176
		6.2.4	Sampling Frequency and Seasonal Unit Root Tests	177
	6.3	Season	nal Stationarity Tests	178
		6.3.1	Tests for Parameter Constancy	178
		6.3.2	Locally Best Tests for an MA Unit Root	180
	6.4	Season	nal Unit Root and Stationarity Tests under Structural	
		Chang	ges	180
		6.4.1	Effects of Structural Changes on Unit Root Testing	181
		6.4.2	Methods of Seasonal Unit Root Testing in the	
			Presence of Structural Changes	182
		6.4.3	Seasonal Stationarity Tests in the Presence of	
			Structural Changes	185
	6.5		lic Integration	186
	6.6		nce on Seasonal Unit Roots	189
	6.7	Summ	nary and Further Remarks	189
7	Panel Unit Roots			191
	7.1	Introd	uction	191
	7.2	Unit F	Root Tests for Independent Panels	192
		7.2.1	LLC Test	194
		7.2.2	IPS Test	197
		7.2.3	Combination Test	199
			Test Consistency	201
		7.2.5	Asymptotic Power Analysis of Panel Unit Root Tests	202
	7.3		for the Null of Stationarity	204
		7.3.1	Hadri's Test	205
		7.3.2	Combination Test	207
	7.4	Unit F	Root and Stationarity Tests under Structural Changes	207
	7.5	Unit F	Root Tests for Cross-Sectionally Correlated Panels	209
			Tests Using Common Factors	209
		7.5.2	Combination Tests	212
		7.5.3	GLS-Based and Robust t-Ratios	214
		7.5.4	IV Approach	216
			Resampling Methods	217
	7.6		narity Tests for Cross-Sectionally Correlated Panels	219
	7.7	Tests 1	for Seasonal Panel Unit Roots	219
	7.8	Simul	ation Studies	220

Index

Cambridge University Press 978-1-107-09733-9 — Almost All about Unit Roots In Choi Frontmatter More Information

xiv Contents 7.9 Other Studies 7.10 Summary and Further Remarks Epilogue 223 References 225

259

Foreword

Socioeconomic trends figure prominently in media discussion and the financial pages of newspapers. They dominate data, guide policy decisions, and attract intense interest that extends well beyond the subject matter of economics and finance. In spite of this widespread influence trends are poorly understood. They are the inscrutable Hamlet of econometrics. No one really knows what they will do next.

During the 1980s econometrics embarked on a revolutionary journey that opened up a new understanding of the stochastic properties of trend. The unit root revolution changed the way the profession thought about trend by emphasizing the role of random elements in the trend mechanism and by formulating a technically well-defined concept of long-run behavior that did not remove randomness. By the 1990s, functional limit laws, stochastic integrals, and functionals of stochastic processes had overtaken econometrics in a firestorm that swept away earlier methods. New symbols of limit theory forever changed the pages of the mainline economics journals. New thinking penetrated econometric teaching and empirical practice. And a vast literature of applied economic analysis was born that demonstrated surprising sophistication in its use of modern econometric technology and nonstandard limit theory.

The implications of this unit root revolution have been enormous. The methodology exported itself throughout the social and business sciences with concomitant changes in thinking that acknowledged the ubiquitous presence of nonstationarity in data. The methods now reach into the natural sciences in areas as diverse as paleoclimatology and biodiversity with datasets that span hundreds of millions of years rather than the decades and centuries of economic data.

The single most important tool in the development of a theory for nonstationary time series was the use of limit laws on function spaces, first brilliantly exposited by Patrick Billingsley in his monograph *Convergence of Probability Measures*, published in 1968. Measure theoretic principles in metric spaces

ΧV

xvi Foreword

underpinned all the foundations of this major work. Appropriately, Billingsley's author index reference to the mathematician Paul Halmos (who wrote a classic treatise on measure theory) read quite simply as "a.e." (almost everywhere).

Fittingly too, Choi's volume on nonstationarity in the Themes in Modern Econometrics series is entitled *Almost All About Unit Roots*. The world of unit roots has exploded since the 1990s when the last generation of textbooks on the subject were written. Choi escorts us into this excitingly complex arena of research and empirical findings with a text that reaches out to the non-specialist and practitioner, while providing for the specialist a guidebook to the expanding universe of literature that has come to define the discipline of unit root econometrics.

The unit root revolution was a revolution in thinking about economic time series and trends that massively changed the conduct of empirical research and supported the emergence of the field of financial econometrics. The excitement of this transformation of econometrics lives on in the latest work of the profession, which this volume seeks to reveal.

One of the laws of modern econometrics is that "no one understands trends, but everyone sees them in the data." This volume by Choi will help readers learn how unit root econometrics enabled us to tackle the curiously inscrutable phenomenon of trend by marshalling new scientific methods of function space limit theory and inference.

Peter C. B. Phillips January 2015

Preface

There has been much research conducted on nonstationary time series in the last few decades, and the related literature continues to expand. Research on nonstationary time series can be categorized into two areas: unit roots and cointegration. The literature on unit roots dates back to White (1958), and methods related to unit roots are now popular among economists and other social scientists. The concept of cointegration was developed by Engle and Granger (1987), and the techniques for cointegration have been accepted as standard tools in economics and other areas.

The aim of this book is to introduce the literature on unit roots in a comprehensive manner to both students and empirical and theoretical researchers in economics and other areas. The literature on nonstationary time series is now so huge that it seems difficult, if not impossible, to include all the related topics in a single monograph. Therefore, this book focuses on unit roots.

This book takes the approach of discussing as many papers as possible in presenting developments in the literature on unit roots. Yet it emphasizes important works that either contain novel ideas or have been cited often. By reading this book, the student or researcher can understand major developments in the literature on unit roots and related areas. The papers covered in this book were published in more than 30 major journals in econometrics, statistics, and other branches of social science up to 2013. A few unpublished papers and book chapters are also included.

This book is ideal for graduate students and researchers in economics, finance, political science, sociology, statistics, and other areas who want to learn about unit roots as they conduct their empirical research projects or theoretical research on unit roots. Material in this book can be taught in graduate-level courses on time series analysis along with more conventional textbooks such as Brockwell and Davies (1991), Hamilton (1994), and Fuller (1976). This book is also useful as a reference for researchers interested in nonstationary time series analysis. For those who are interested in theoretical aspects of unit roots,

xvii

xviii Preface

this book provides an up-to-date literature survey and suggests some open questions. To understand this book fully, the reader must have some knowledge of time series analysis at the level of, for example, Brockwell and Davies (1991).

There are excellent books that deal with unit roots, such as Banerjee, Dolado, Galbraith, and Hendry (1993); Hatanaka (1996); Maddala and Kim (1998); and Patterson (2010, 2011). However, the first three of these books were written more than 15 years ago and do not reflect recent contributions to the literature on unit roots. The books by Patterson focus on conventional methods of unit root testing. In contrast, this book contains up-to-date and comprehensive research results about unit roots and therefore is complementary to them.

I am thankful to many people who have guided me in my development as a researcher and helped me while I was writing this book. I am grateful to Professors Peter Phillips, Don Andrews, Matthew Shapiro, Vassilis Hajivassiliou, Benedikt Pötscher, and David Pollard, who taught me econometrics, statistics, and probability at Yale. In particular, Professor Peter Phillips, as my thesis advisor, led me into the research area of nonstationary time series. He showed me how to do research, how to teach, and how hard academicians should work to achieve their goals. I owe much to him for what I am now as a researcher and educator. In fact, without his encouragement, I would not have dared to start writing this book. He, as well as four anonymous reviewers, provided very helpful comments on previous versions of this book. Those comments greatly improved the book, for which I am truly thankful. I also thank him for his insightful foreword for this book. I first learned econometrics from Professor Ki-Jun Jeong, then at Seoul National University. His course was challenging for most undergraduate students at that time, but I became interested in econometrics despite its difficulty. I appreciate his serious teaching. Part of this book was written while I was visiting the University of Leeds and the University of Bonn. I thank Professors Jörg Breitung, Martin Carter, Matei Demetrescu, Christian Pigorsch, Kevin Reilly, and Yongcheol Shin for their hospitality. Minchul Yum (now a graduate student at the Ohio State University) gathered the papers covered in this book, and I thank him for his diligent efforts. John Morris read the entire manuscript carefully and suggested grammatical corrections and stylistic improvements, which I deeply appreciate. The research reported in this book was supported by the National Research Foundation of Korea (project #NRF-2010-342-B00006), which I gratefully acknowledge. Last, but most important, I thank my wife Joanne Jung-un Han for her enduring support for the last 25 years. Indeed, I can live a happy personal life and a productive professional one thanks to her presence.

> In Choi Seoul, Korea September 2013

Abbreviations and Notation

The following abbreviations and notations are used throughout this book.

AR autoregressive

ARCH autoregressive conditional heteroskedasticity ARIMA autoregressive integrated moving average

ARMA autoregressive moving average cdf cumulative density function CLT central limit theorem

DGP data-generating process

FCLT functional central limit theorem

GARCH generalized autoregressive conditional heteroskedasticity

GLS generalized least squares GMM generalized method of moments HPD highest posterior density

i.i.d., iid independent and identically distributed

IV instrumental variables
LAD least absolute deviation
LM Lagrange multiplier
LR likelihood ratio
MA moving average

MLE maximum likelihood estimator

OLS ordinary least squares
pdf probability density function
SUR seemingly unrelated regression

VAR vector autoregression [x] integer not greater than x

 $1{A}$ indicator function taking value one when A is true and zero

otherwise

xix

xx Abbreviations and Notation

\Rightarrow	weak convergence
\xrightarrow{p}	convergence in probability
B	backward-shift operator (i.e., $B^m X_t = X_{t-m}$ for an integer m)
Δ^d	$\Delta^d X_t = (1 - B)^d X_t$
$X_t = I(d)$	$\Delta^d X_t$ is a stationary process