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Introduction

1.1 Examples of multiscale problems

Whether we explicitly recognize it or not, multiscale phenomena are part
of our daily lives. We organize our time in days, months and years, as
a result of the multiscale dynamics of the solar system. Our society is
organized in a hierarchical structure, from towns to states, countries and
continents. Such a structure has its historical and political origins but it
is also a reflection of the multiscale geographical structure of the earth.
Moving into the realm of modeling, an important method for studying
functions, signals or geometrical shapes is to decompose them according
to their components at different scales, as in Fourier or wavelet expansion.
From the viewpoint of physics all materials at the microscale are made up
of nuclei and electrons, whose structure and dynamics are responsible for
the macroscale behavior of the material, such as its transport and wave
propagation properties and its deformation and failure.

In fact, it is not an easy task to think of a situation that does not
involve multiscale characteristics. Therefore, broadly speaking, it is not
incorrect to say that multiscale modeling encompasses almost every as-
pect of modeling [29]. However, adopting such a position would make it
impossible to carry out serious discussion in any kind of depth. Therefore
we will take a narrower view and focus on a number of issues for which
the multiscale character is the dominating issue and is exploited in the
modeling process. This includes analytical and numerical techniques that
exploit the disparity of scales, as well as multi-physics problems. Here the
term “multi-physics problems” is perhaps a misnomer; what we have in
mind are problems that involve physical laws at different levels of detail,
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2 Introduction

Figure 1.1. An image with large-scale edges and small-scale textures (from 3D
Nature’s Visual Nature Studio, used with permission).

such as quantum mechanics and continuum models. We will start with
some simple examples.

1.1.1 Multiscale data and their representation

A basic multiscale phenomenon is that signals (functions, curves, images)
often contain components at disparate scales. One such example is shown
in Figure 1.1, which displays an image that contains large-scale edges as
well as textures with small scale features. Such an observation motivates
the decomposition of signals into different components according to their
scales. Classical examples of this include Fourier and wavelet decomposi-
tion [21].

1.1.2 Differential equations with multiscale data

Propagation of wave packets Consider the wave equation

∂2
t u = ∆u. (1.1.1)

This is a rather innocent-looking differential equation that describes wave
propagation. Consider now the propagation of a wave packet that is a
solution of (1.1.1) with initial condition

u(x, 0) = A(x)eiS(x)/ε (1.1.2)

where A, S are smooth functions (see Figure 1.2). As always, we will as-
sume that the scale parameter ε � 1. There are clearly two scales in this

http://www.cambridge.org/9781107096547
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-09654-7 - Principles of Multiscale Modeling
Weinan E
Excerpt
More information

1.1 Examples of multiscale problems 3

−4 −3 −2 −1 0 1 2 3 4

−1

0

1

Figure 1.2. An example of a wave packet.

problem: the short wavelength ε and the scale of the envelope A(x) of
the wave packet, which is O(1). One can exploit this disparity between
the two scales to find a simplified treatment of the problem, as is done in
geometric optics. For a review of the different numerical algorithms for
treating this kind of problem, we refer to [40].

Mechanics of composite materials The mechanical deformation of a
material is described by the equations of elasticity theory:

∇ · τ = 0,

τ = λ(∇ · u)I + µ
(
∇u + (∇u)T),

where u is the displacement field and τ is the stress tensor. The first equa-
tion describes the force balance. The second equation is the constitutive
relation, in which λ and µ are the Lamé constants that characterize the
material.

To model composite materials we may simply take

λ(x) = λε(x), µ(x) = µε(x),

where ε is again a small parameter that measures the scale of the het-
erogeneity of the material. For example, for a two-phase composite
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4 Introduction

Figure 1.3. An example of a two-phase composite material (courtesy of Sal
Torquato).

(see Figure 1.3), λ and µ take one set of values in one phase and an-
other set of values in the other phase. If the microstructure happens to
be periodic, then we have

λε(x) = A
(x

ε

)
, µε(x) = B

(x

ε

)
,

where A and B are periodic functions. However, in most cases in practice,
the microstructure tends to be random rather than periodic. A detailed
account of such issues can be found in [45].

1.1.3 Differential equations with small parameters

Consider the Navier–Stokes equation for incompressible flows at large
Reynolds numbers:

ρ0(∂tu + (u · ∇)u) + ∇p =
1

Re
∆u,

∇ · u = 0.

Here u is the velocity field, p is the pressure field, ρ0 is the (constant)
density of the fluid and Re � 1 is the Reynolds number. In this
example the highest-order derivative in the differential equation has a
small coefficient. This has some rather important consequences. These
include:

http://www.cambridge.org/9781107096547
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-09654-7 - Principles of Multiscale Modeling
Weinan E
Excerpt
More information
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(1) the occurrence of boundary layers;

(2) the occurrence of turbulent flows with vortices over a large range
of scales.

Partial differential equations of this type, in which the highest-order
derivatives have small coefficients, are examples of singular perturbation
problems. In most cases the solutions to such problems contain features
at disparate scales.

1.2 Multi-physics problems

1.2.1 Examples of scale-dependent phenomena

We will now discuss some well-known examples in which the system re-
sponse exhibits a transition as a function of the scales involved.

Black-body radiation Our first example is black-body radiation. Let
eT (λ) be the energy density of the radiation of a black body at temper-
ature T and wavelength λ. Classical statistical mechanics considerations
lead to Rayleigh’s formula

eT (λ) =
8π

λ4 kBT,

where kB is the Boltzmann constant. This result fits very well with exper-
imental results for long wavelengths but fails drastically at short wave-
lengths. The reason, as was discovered by Planck, is that at short wave-
lengths quantum effects become important. Planck postulated that the
energy of a photon has to be an integer multiple of hν, where h is now
known as the Planck constant and ν is the frequency of the photon. If
quantum effects are taken into consideration, one arrives at Planck’s for-
mula

eT (λ) =
8πhc

λ5

1

ehc/(kB T λ) − 1
,

where c is the speed of light. This result agrees very well with experimental
results at all wavelengths [35]. Note that Planck’s formula reduces to
Rayleigh’s formula at long wavelengths.

Knudsen-number dependence of the heat flux in channel flows
Consider a gas flowing between two parallel plates, one of which is station-
ary and the other moving with a constant speed. The two plates are held
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6 Introduction

at uniform temperatures T0 and T1 respectively. We are interested in the
heat flux across the channel as a function of the Knudsen number, which
is the ratio between the mean free path of the gas particles (the average
distance that a gas particle travels before colliding with another gas par-
ticle) and the channel width. What is interesting is that the dependence
of the heat flux as a function of the Knudsen number is non-monotonic:
it is an increasing function for small values of the Knudsen number but a
decreasing function at large values [43]. This phenomenon can be under-
stood as follows. When the Knudsen number is very small, there is little
heat conduction since in this case the gas is very close to local equilibrium.
In this regime the dynamics of the gas is very well described by Euler’s
equations of gas dynamics; heat conduction is a higher-order effect (see
Section 4.3). If the Knudsen number is very large then effectively the gas
particles undergo free streaming. There is little momentum exchange be-
tween the particles since collisions are rare. Hence there is not much heat
flux either. In this case the dynamics of the gas can be found by solving
Boltzmann’s equation with the collision term neglected (see Section 4.3).
We see that the origins of the reduced heat conduction in the two regimes
are very different.

The reverse Hall–Petch effect In the early 1950s, Hall and Petch
independently found that, as the size of the grains that make up a material
decreases, the yield strength of the material increases according to the
equation

σ = σ0 +
k√
d
,

where k is a strengthening coefficient characteristic of the material and d
is the characteristic grain size [31]. Roughly speaking, this is due to the
fact that grain boundaries impede dislocation motion.

Recent experiments on many nanocrystalline materials demonstrate
that if the grains reach a critical size, which is typically less than 100
nm, the yield stress either remains constant or decreases with decreasing
grain size (see Figure 1.4) [20, 42]. This is called the reverse Hall–Petch
effect. The exact mechanism may depend on the specific material. For ex-
ample, in copper it is thought that the mechanical response changes from
dislocation-mediated plasticity to grain boundary sliding as the grain size
is decreased to about 10 to 15 nanometers [42].
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Figure 1.4. Yield stress vs. d−1/2, where d is the grain size, illustrating the
Hall–Petch and reverse Hall–Petch effects (adapted from Wikipedia).

All three examples discussed above exhibit a change in behavior as the
scales involved change. The change in behavior is the result of the change
in the dominating physical effects in the system.

1.2.2 Deficiencies of the traditional approaches
to modeling

Central to any kind of coarse-grained model is a constitutive relation,
which represents the effect of the microscopic processes at the macro-
scopic level. In engineering applications the constitutive relations are of-
ten empirically based on very simple considerations such as:

(1) the second law of thermodynamics;

(2) symmetry and invariance properties;

(3) linearization or Taylor expansion.

Such empirical models have been very successful in applications.
However, in many cases they are inadequate, either because of the
complexity of the system or because they lack crucial information about
how the microstructure influences the macroscale behavior of the
system.
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8 Introduction

Take incompressible fluid flow as an example. Conservation of mass
and momentum gives

ρ0(∂tu + (u · ∇)u) = ∇ · τ, (1.2.1)

∇ · u = 0, (1.2.2)

where u is the velocity field. Here, in order to write down the momentum
conservation equation we have introduced τ, the stress tensor. This is
an object introduced at the continuum level to represent the short-range
interactions between the molecules. Imagine a small piece of surface in-
side the continuous medium: the stress τ represents the force due to the
interaction between the molecules on each side of the surface. Ideally the
value of τ should be obtained from information about the dynamics of
the molecules that make up the fluid. This would be a rather difficult task.
Therefore in practice τ is often modeled empirically, through intelligent
guesses and calibration with experimental data. For a simple isotropic
fluid, say one made up of spherical particles, isotropy and Galilean in-
variance implies that τ should not depend on u. Hence a simple guess is
that τ is a function of ∇u. In the absence of further information about
the behavior of the system, it is natural to start with the very simplest
choice, namely that τ is a linear function of ∇u. In any case, every func-
tion is approximately linear in appropriate regimes. Using isotropy, we
arrive at the constitutive relation for Newtonian fluids:

τ = −pI + µ(∇u + (∇u)T) (1.2.3)

where p is the pressure. Substituting this constitutive relation into the
conservation laws leads to the well-known Navier–Stokes equation.

It is remarkable that such simple-minded considerations yield a model,
namely the Navier–Stokes equation, which has proven to be very accurate
in describing the dynamics of simple fluids under a very wide range of con-
ditions. Partly for this reason, considerable effort has gone into extending
such an approach to the modeling of complex fluids such as polymeric flu-
ids. However, the results there are rather mixed [12]. The accuracy of the
constitutive laws is often questionable; in many cases, they become quite
complicated since many parameters need to be fitted and their physical
meaning becomes obscure. Consequently the original appeal of their sim-
plicity and universality is lost. In addition, there is no systematic way
of developing such empirical constitutive relations. So a constitutive rela-
tion obtained by calibrating against one set of experimental data may not
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1.2 Multi-physics problems 9

be useful in a different experimental setting. More importantly, such an
approach does not contain any explicit information about the interaction
between fluid flow and the conformation of the molecules, which might
be exactly the kind of information in which we are most interested.

The situation described above is to some extent generic. Indeed, em-
pirical modeling by constitutive relations is a very popular tool and is
used in many areas, including:

(1) elasticity and plasticity in the theory of solids;

(2) empirical potentials in molecular dynamics;

(3) empirical models of reaction kinetics;

(4) hopping rates in kinetic Monte Carlo models;

(5) collision cross sections in the kinetic theory of gases.

These constitutive relations are typically quite adequate for simple sys-
tems, such as small deformations of solids, but fail for complex systems.
When empirical models become inadequate, we have to replace them by
more accurate models that rely more on a detailed description of the
microscopic processes.

The other extreme is quantum many-body theory, which could be said
to be the true first principle. Assume that our system of interest has M
nuclei and N electrons. At the level of quantum mechanics, this system
(neglecting spin) is described by a wavefunction of the form

Ψ = Ψ(R1, . . . ,RM , r1, . . . , rN )

The Hamiltonian for this system is given by

H = −
M∑

J=1

�
2

2MJ

∇2
RJ

−
N∑

k=1

�
2

2me

∇2
rk

+
∑
J<K

ZJZK

|RJ − RK | −
∑
J,k

ZJ

|RJ − rk|
+
∑
i<j

1

|ri − rj |
(1.2.4)

where ZJ is the nuclear charge of the Jth nucleus. Here all we need in
order to analyze a given system is to input the atomic numbers ZJ for
the atoms in the system and then solve the Schrödinger equation. There
are no empirical parameters to fit! The difficulty, however, lies in the
complexity of its mathematics. This situation is very well summarized by
the following remark of Paul Dirac, made shortly after the discovery of
quantum mechanics [22]:
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10 Introduction

The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble.

The mathematical complexity noted by Dirac is indeed quite daunting:
wave functions have as many (or, rather, three times as many) indepen-
dent variables as the number of electrons and nuclei in the system. If the
system has 1030 electrons, then the wave function has 3 × 1030 indepen-
dent variables. Obtaining accurate information for such a function is a
quite impossible task. In addition, such a description often gives far too
much information, most of which is not really of any interest. Getting the
relevant information from this vast amount of data would also be quite a
challenge.

This dichotomy is the kind of situation that we encounter for many
problems. On the one hand, empirically obtained macroscale models are
very efficient but are often not accurate enough or lack crucial microstruc-
tural information in which we are interested. Microscopic models, on the
other hand, may offer better accuracy but they are often too expensive to
be used to model systems of real interest. It would be nice to have a strat-
egy that combines the efficiency of macroscale models and the accuracy
of microscale models. This is a tall order but is precisely the motivation
for multiscale modeling.

1.2.3 The multi-physics modeling hierarchy

Between macroscale models and the quantum many-body problem lie a
hierarchy of other models, which are better suited at the appropriate
scales. This is illustrated in Figure 1.5. A more detailed description of
this modeling hierarchy is shown in Table 1.1.

In traditional approaches to modeling we tend to focus on one partic-
ular scale: the effects of smaller scales are modeled through the constitu-
tive relation; the effects of larger scales are neglected by assuming that
the system is homogeneous at these scales. The philosophy of multiscale,
multi-physics modeling is the opposite. It is based on two ideas.

(1) Any system of interest can always be described by a hierarchy of
models of different complexity. This allows us to think about more
detailed models when a coarse-grained model is no longer ade-
quate. It also gives us a basis for understanding coarse-grained
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